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Abstract. The theory of sortability of partition property was introduced to

prove the existence of an optimal partition satisfying the property for optimal par-

tition problems over single-parameter space, and then extended to multi-dimensional

parameter spaces. For each partition property of interest,almost all levels of sorta-

bilities were obtained; however, the part-specific-sortabilities are hard to be deter-

mined for many properties. In this paper, we establish a ruleto generate exam-

ples that reveal the non-part-specific-sortabilities of these properties for almost

all cases. Such rule also has potential of generating more concise examples to

support known results.
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1 Introduction

For a finite setΘ of distinct points in a multi-dimensional parameter spaceRd,

a partition of Θ is of the formπ = (π1, · · · , πp) whereπ1, · · · , πp are disjoint

nonempty subsets ofΘ whose union isΘ; moreover,p is referred to as thesizeof

π, π1, · · · , πp the partsof π, and(n1, · · · , np) the shapeof π whereni := |πi|.

An optimal partition problemdeals with the selection of a partition from a given

family Π of partitions ofΘ so as to optimize a given objective function. In many

applications, partitions in the candidate familyΠ have prescribed sizes which are
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constants in terms ofn and even have prescribed shapes.Π is called ashape-

family (size-family) if all partitions have a prescribed shape (size), and anopen-

family if no restriction is placed. The familyΠ usually contains exponentially (in

n) many candidates and it is usually difficult to find an optimalpartition analyti-

cally. In the literature, a common approach used to reduce the candidate partitions

is to identify a property of optimal partitions. Thus if there are only polynomial

number of partitions satisfying the property, we can find an optimal one in poly-

nomial time by examining all partitions satisfying the property. For example, a

partition iscone-separableif the cones spanned by any two parts only have the

origin in common. Some objective functions were proved to have optimal parti-

tions that are cone-separable [8] and the number of cone-separable partitions of

sizep over a set ofn points inRd is at mostO(n(d−1)(p

2
)) which is polynomial in

n [6].

Hwanget al. [9] proposed a strategy to prove the existence of a partitionthat is

optimal over a familyΠ and satisfies a propertyQ. The main idea of the strategy

is to show that for any optimal partitionπ overΠ not satisfyingQ, there is a finite

sequence of transformations of partitions inΠ starting atπ such that the optimal-

ity is preserved and the transformations guarantee ending at a partition satisfying

Q. The success of the strategy is decided by two sequential notions “invariance”

which ensures transformations staying inside the family and “sortability” which

concerns whether transformations end at a partition satisfying Q, complement-

ing the first notion. We will introduce their formal descriptions together with a

commonly used transformation – (local) k-sorting(introduced in [9]).

A k-subpartitionof a partitionπ is a set ofk parts ofπ. A Q-k-sortingsorts

a k-subpartitionK of π not satisfyingQ into a partitionK ′ such thatK ′ satisfies

Q. A k-sorting is further characterized by different constraints onK ′: A size-

sorting is a sorting withJ(K) = J(K ′) whereJ(K) denotes the index set of

a subpartitionK; a shape-sortingpreserves not only the index set but also the

shape; aopen-sortingallowsK ′ to be any partition satisfyingQ.

A t-family Π, t ∈ {size, shape, open}, is Q-k-invariant if for every parti-

tion in Π not satisfyingQ and ak-subpartitionK not satisfyingQ, there exists

a Q-k-t-sorting ofK which yields a partition also inΠ. Changet al. [4] in-

troduced four levels of invariance families.Π is (strong, k, t)-invariant if for
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every subpartitionK not satisfyingQ and everyQ-k-sorting ofK, π′ is in Π;

Π is (part-specific, k, t)-invariant if K is specific but the sorting is arbitrary;Π

is (sort-specific, k, t)-invariant if K is arbitrary but the sorting is specific;Π is

(weak, k, t)-invariant if both K and the sorting are specific. A familyΠ with each

partition satisfyingQ is surelyQ-(l, k, t)-invariant and is referred to as atrivial

invariant family. For simplicity’s sake, we say that a partition family satisfiesQ if

it contains a partition satisfyingQ. Accordingly, sortability can be classified into

four levels. Ifl is a member of{strong, weak} (or {part-specific, sort-specific}),

thenl−1 denote the other member of that pair. ThenQ is (l, k, t)-sortable if and

only if there exists a non-trivialQ-(l−1, k, t)-invariant family and every such fam-

ily satisfiesQ. Therefore, the studies turn to concern the sortabilities of partition

properties.

The sortability theory was first introduced to deal with the objects in one-

dimensional parameter space [9], and the(l, k, t)-sortabilities for partition prop-

erties of interest were later completely determined [4]. Hwanget al. [6] first ex-

tended the sortability theory to multi-dimensional parameter space. The properties

of interest (will be defined in Section 2) are acyclic, convex-separable (CvS), non-

penetrating (NP ), noncrossing (NC), cone-separable (CnS), sphere-separable

(SS), and monopoly. Most of their sortabilities were obtained [6, 5] except:k-

part-specific-sortabilities forNP , SS, CvS, andNC whenk ≥ 2 andCnS when

k = 2. In this paper, we prove their non-sortabilities fork ≥ 3 by generating

invariant families from an identical rule; further, such rule can also be applied to

generate a weak-2-invariant-family not satisfyingNP which is much more con-

cise than the known example in [5].

2 Main Result

For a finite setΩ ⊂ Rd, let Cone(Ω) denote the cone spanned byΩ with its vertex

at the origin0, and letConv(Ω) denote the convex hull ofΩ. A cone ispointedif

for any nonzero pointv, not bothv and−v are in the cone. Furthermore,Ω is said

to penetrateanother finite setΩ′ ⊂ Rd if Ω∩ Conv(Ω′) 6= ∅; in this case we write

Ω → Ω′.

The following properties of a partitionπ are considered in the literature [1, 2,
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3, 5, 6, 7].

Convex Separable(CvS): For all i, j, Conv(πi) ∩ Conv(πj) = ∅.
Noncrossing(NC): For all i, j, either Conv(πi) ∩ Conv(πj) = ∅ or

πi ⊂ Conv(πj) and Conv(πi) ∩ πj = ∅ or vice
versa.

Nonpenetrating(NP ): For all i, j, πi 6→ πj .
Cone Separable(CnS): For all i, j, Cone(πi) ∩ Cone(πj) = {0}.
Sphere Separable(SS): For all i, j, there exists a sphereS ⊂ Rd such

that one part is withinS and the other outside of
S.

The implications among the partition properties were givenin [6] as in Figure

1 whereQ ⇒ Q′ means that if a partition satisfiesQ, then it also satisfiesQ′.

NP

⇒
CnS ⇒ CvS ⇒ SS

⇒

NC

Figure 1: Implications among properties.

For a finite setΩ ⊂ Rd andδ > 0, let Ω(δ) denote the setΩ ∪ {δv : v ∈ Ω}.

For the sake of simplicity, we defineΩ(0) = Ω. For a sphereS = {x ∈ Rd :

‖x − v‖ ≤ R}, the boundary ofS is given by bd(S) = {x ∈ Rd : ‖x − v‖ = R}.

Let B denote the unit sphere centering at0.

Lemma 1. For any finite setΩ ⊂ bd(B) and anyδ with 0 < δ < 1, if v ∈

Conv(Ω(δ)) ∩ bd(B), thenv ∈ Ω.

Proof. Let Ω = {x1, x2, · · · , xs}. Thenv =
∑s

i=1 aixi +
∑s

i=1 biδxi for some

non-negativeai’s andbi’s with
∑s

i=1(ai + bi) = 1. Then

1 = ‖v‖ ≤
s∑

i=1

(ai + biδ)‖xi‖ = 1 − (1 − δ)

s∑

i=1

bi ≤ 1. (1)

Sinceδ < 1,
∑s

i=1 bi = 0 and thusbi = 0 for i = 1, · · · , s. That the equality of

(1) holds impliesv = axi for somea > 0 and somei; further,1 = ‖v‖ and thus

v = xi ∈ Ω.
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A consequence of Lemma 1 is for any finite setsΩ1, Ω2 ⊂ bd(B) with Ω1 *

Ω2, Ω1(δ) * Conv(Ω2(δ)); otherwise,Ω1 ⊂ Conv(Ω2(δ)) and thenΩ1 ⊆ Ω2, a

contradiction.

Lemma 2. SupposeΩ1, Ω2 ⊂ bd(B) ⊂ Rd are finite and distinct, and Cone(Ωi)

is pointed fori = 1, 2. For Q ∈ {CvS, NC}, {Ω1(δ), Ω2(δ)} satisfiesQ for all δ

with 0 < δ < 1 if and only if{Ω1, Ω2} satisfiesCnS. For Q = NP , the statement

holds except for the necessary condition underd ≥ 3.

Proof. Let Ω1 = {x1, x2, · · · , xs} andΩ2 = {y1, y2, · · · , yr}. For the sufficient

condition, suppose{Ω1, Ω2} satisfiesCnS. Then there exists a nonzerod-vector

C such thatCx > 0 > Cy for all x ∈ Ω1 andy ∈ Ω2. Then

C

s∑

i=1

(aixi + a′
iδxi) =

s∑

i=1

(ai + a′
iδ)Cxi > 0

>

r∑

i=1

(bi + b′iδ)Cyi = C

s∑

i=1

(biyi + b′iδyi)

for anyai, a
′
i ≥ 0 but not all zero,bi, b

′
i ≥ 0 but not all zero, and any0 < δ < 1.

Hence,{Ω1(δ), Ω2(δ)} satisfiesCvS and thusNC andNP by implications in

Figure 1.

For the necessary condition, it is easy to derive from Lemma 1that neither

Ω1(δ) ⊂ Conv(Ω2(δ)) nor Ω2(δ) ⊂ Conv(Ω1(δ)); hence, it suffices to consider

Q = CvS. Suppose to the contrary that Cone(Ω1)∩Cone(Ω2) contains a non-zero

point v. Thenv =

s∑

i=1

aixi =

r∑

i=1

biyi for some non-negativeai’s andbi’s with

∑s

i=1(ai + bi) = 1. Let a =
∑s

i=1 ai andb =
∑r

i=1 bi. If a = b, then
s∑

i=1

ai

a
xi =

r∑

i=1

bi

b
yi whose coefficients sum to1, respectively. Thusv ∈ Conv(Ω1(δ)) ∩

Conv(Ω2(δ)) for any0 < δ < 1, a contradiction. Suppose, w.l.o.g,a > b. Let δ =

b

a
(< 1). Then

s∑

i=1

ai

a
xi =

r∑

i=1

bi

aδ
δyi where

∑r

i=1
bi

aδ
= 1. Thus Conv(Ω1(δ)) ∩

Conv(Ω2(δ)) 6= ∅ whenδ =
b

a
, a contradiction.
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For Q = NP and d = 2, along bd(B) order points inΩ1 ∪ Ω2 clock-

wise. Suppose there existx, z ∈ Ωi andy ∈ Ωj such thatx, y, z are ordered

for i 6= j. Let δ′y be the intersection point of the0y segment and thexz seg-

ment. Thenδ′y ∈ Conv(Ω1(δ)) ∩ Conv(Ω2(δ)) whenever0 < δ < δ′, a con-

tradiction. Hence, points inΩi are consecutive along the order fori = 1, 2;

further, their convex hulls are pointed and thus they are cone-disjoint. Ford ≥

3, let Ω1 = {( 1√
d
, 1√

d
, · · · , 1√

d
), (−1√

d
, 1√

d
, · · · , 1√

d
)} and Ω2 = {xi : (xi)j =

δ{j=i+1} for i = 1, · · · , d − 1}. It is easy to verify that{Ω1(δ), Ω2(δ)} satisfies

NP for any0 < δ < 1, butΩ1 andΩ2 are not cone-separable.

For a partitionπ = {π1, · · · , πp}, let π(δ) denote{πi(δ) : i = 1, · · · , p}; for

a familyΠ of partitions, letΠ(δ) denote{π(δ) : π ∈ Π}. Then we have

Lemma 3. For Q ∈ {CvS, NC}, l = weak or sort-specific, andΘ ⊂ bd(B) ⊂ Rd,

if Π is an(l, k, t)-invariant family of partitions ofΘ not satisfyingCnS, thenΠ(δ)

is an(l, k, t)-invariant family not satisfyingQ for some0 < δ < 1. For Q = NP ,

the statement holds ford = 2.

Proof. Let πi andπj be any two parts of a partitionπ ∈ Π. It is easy to verify

that if {πi(δ
′), πj(δ

′)} does not satisfyQ for some0 < δ′ < 1, then{πi(δ), πj(δ)}

does not satisfyQ for any 0 < δ < δ′. Thus by Lemma 2, there exists aδ

with 0 < δ < 1 such that for anyπ ∈ Π, {πi, πj} satisfiesCnS if and only

{πi(δ), πj(δ)} satisfiesQ for any two partsπi andπj of π. Let π(δ) ∈ Π(δ) be a

partition not satisfyingQ. Then for anyk-subpartitionK(δ) of π(δ), K(δ) does

not satisfyQ if and only if K does not satisfyCnS. Besides, aCnS-k-t-sorting

of K provides aQ-sorting ofK(δ) while v andδv are always sorted into the same

part, guaranteeingΠ(δ) being a(l, k, t)-invariant family not satisfyingQ.

Theorem 4. NP is not(strong,2, t)-sortable.

Proof. By Lemma 3 and the non-(strong, 2, t)-sortability ofCnS [5, 6], the the-

orem follows.

For example, the(weak,2, shape)-invariant family not satisfyingNP con-

structed from the invariant family not satisfyingCnS in [5] is shown in Figure
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Figure 2: We start on the partitionπ1 = ({1, 1′, 2, 2′, 7, 7′}, {3, 3′, 4, 4′, 6, 6′},
{0, 0′, 5, 5′, 8, 8′}) which does not satisfyNP . Sort π1

2 and π1
3, two parts not

satisfyingNP , to obtain a partitionπ2 = ( {1, 1′, 2, 2′, 7, 7′}, {0, 0′, 3, 3′, 4, 4′},
{5, 5′, 6, 6′, 8, 8′}). π2 can be viewed as a rotation ofπ1 by an angle2π

9
; thus,

π1 will be encountered again if the corresponding sortings areimplemented nine
times.

2. Notice that the pattern of this invariant family is much more concise than the

example in [5].

Theorem 5. CvS, NC and NP are not (part-specific,k, t)-sortable for anyt

and anyk ≥ 3.

Proof. Obtained from Lemma 3 and the non-(part-specific,k, t)-sortability of

CnS for k ≥ 3 [6].

For example, the(sort-specific,3, shape)-invariant family not satisfyingQ ∈

{CvS, NC, NP} is shown in Figure 3 which is constructed from the invariant

family not satisfyingCnS in [6].
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Figure 3: Each figure shows a partition of{1, 1′, 2, 2′, 3, 3′, 4, 4′, 5, 5′} and the con-
vex hull of each part. Let us discuss unordered partitions. We can easily extend the
arguments to ordered partitions. In figure (a), all3-subpartitions not satisfyingQ
areK1 = {{1, 1′}, {2, 2′, 5, 5′}, {3, 3′}} andK2 = {{1, 1′}, {2, 2′, 5, 5′}, {4, 4′}}.
(b) is obtained from aQ-3-shape-sorting ofK1 and (c) is obtained from aQ-3-
shape-sorting ofK2. Either case keeps the same pattern as in Figure (a). Thus
continuing the same sorting rule would produce partitions of the same pattern and
thus generate a(sort-specific,3, shape)-invariant family not satisfyingQ.
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