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Abstract

The paper deals with the problems of charactedmati simple graphical partitions belonging
to the perfect graphs and one class of stable grapite necessary and sufficient conditions for
that the partition belonging to the perfect grapkiehbeen established.
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1 Introduction

Studying of properties of the graphs connected Widir partitions, is one of interesting
and perspective directions of the graph theory. piesent work is devoted to charac-
terization of the one class of simple graphic paris. Here we use concepts of simple
graphic partitions [1], movings of edgesthe graph [2], and besides, two definitions
are introduced.

If in the graph there are no four of verticeststhat it is possible some moving of
edgesncidental to them, that we name such graph perfect
The graph with simple partition is named stable.

2 Characterization of perfect graphs.

Theorem 1 If G =(X,,U;) and H =(X,,U,) - two graphs with identical partitions
then it is possible to receivid from G by means of finite number of movings of graph
edges.

Proof. The proof is similar to the proof of the theorem"sémi-degrees" for the ori-
ented graphs []. From theorem 1 follows that perfgaphs are stable.

Let's consider more in detail structure of perfpetphs. Lemma 1 follows directly from
definition 1.

Lemma 1 Graph G is perfect if and only if the subgraph formed lmy &f its four ver-
tices and edges connecting them, contains eith@rayle, or three not adjacent in pairs
vertices.

Lemma 2 The perfect graph contains no more than one uncbetie€omponents.
Indeed, if the graph contains two unconnected corapts, that, taking in each of them
on two adjacent vertices, we will receive the fotfirvertices forbidden by lemma 1.
This contradiction proves lemma 2.



Lemma 3 If G=(X,U) is the perfect graph without isolated verticestiteis con-
nected graph, amalso the greatest of degrees of its vertices ialéga |X| -1.

Proof. Connectivity of the graph follows from lemma 2. Téecond statement will be
proved by contradiction. We will assume that|X|-1, and let bedegy; =A, and
V,,...,Vpy are vertices, adjacent t9. Then, as the graph is connected, there is the ver
tex w such thaffw,v;)0U and (w,v,)OU for some vertexv, such that(v;,v, )OU .
Applying lemma 1 to the four of vertices of gra@h w,v;,v,,Vv, wherev; is any of
vertices, adjacent tg;, but not coinciding withv, , we obtain(v, ,v;)JU . From here it
follows degv, = A +1 that is impossible, sincA is the greatest degree. This contradic-
tion proves lemma 3.

The lemma 4 follows from lemmal.

Lemma 4 After removing any vertex together with edges ieai@l to it from the per-
fect graph we obtain the graph that also will befgu.

Let's use further two forms of graphic partison
1) the notincreasing sequence of degreesrttesll =d;,d,,...,d;

2) the form M = a,,8,,...,8,4, whereg; is the number of vertices of the graph hav-

ing degred .
Perfect graphs and their partitions are charastdrby the following theorem

Theorem 2 The graphic partitiori‘l(ﬁ) Is a partition of the connected perfect graph
G =(X,U) ifand only if for alld; = j the following relations are fulfilled:

d; =[X|-1

d =d;-a 1)

izl

Proof. 1. Necessity. In the connected perfect graph we have, :|X| -1 (lemma 3).
Let's remove fromG the vertexv, of degreed; and all edges incidental to it too. Thus
we will receive the perfect grap@’ (lemma 4) witha, isolated vertices. If it contains
also non-trivial component, then maximum degredt®fvertices isA’'=d, —a, -1
(lemma 3). Returning to grap@, we haved =A'+1=d, —a,. Deleting, thus, from
graph G the vertices of degrees;, d,,...,d; until the graph consisting of isolated ver-
tices will turn up, we receive at each stage etjgald;, =d;; —a_, forall d; = j.

2. Sufficiency. Let partition I'I(ﬁ) satisfying to conditions (1) be set. The algoritfan

constructing the graph belonging to this partittomsists of the following steps.
1. We build the star with the partitidi = |X| - 11,... 1.

2. From QX|—1) vertices of the degree 1 we chose any and it metted with

QX| - —2) vertices of the same degree. Then we repeat thiegure with vertices
of degree 2 etc., backward to how it was done@ptioof of the necessity of condition



(1), yet we will receive the vertex of degrde > j such thatd,; < j. The constructed
graph evidently belongs to the set partition.

Samplel. Graphic partition = 9754432211 is set. Let’'s show that it is a partition
of the perfect graph. We check performance of dom (1):
d, =|X|-1=9,d, =d, -8, =7;d; =d, ~a, =5;d, =d; —a; = 4.

2 Oneclass of stable graphs

The problem of characterization of stable grapimsl @mple graphic partitions) can be
formulated in the matrix form.

Let A is a matrix of contiguities of some graph- (X,U). We form the sum
X
> C,A’C, whereC; is the square matrix of ordfX| in which the element; is equal
i=1
to 1, and other elements are equal to 0. Thendlesr that at corresponding enumerat-
ing of vertices of the graph we obtain the ma(ﬁk) in which the diagonal elements are

degrees of vertices of the graph, and other elesraetequal to zero.

X

> C A%C, =(N). (2)
=

If A and A, are matrixes of contiguities of two isomorphic @ra then they are con-
nected among themselves by relatiohgype

Po =l Al g, = 7 A, (3)

wherel;; is the matrix obtained from a single matrix by fregmutation ofi -th and
j -th lines [3]. As1Z =1 thenA? = 7{A2).

If now we designated® =Y and will consider expression (2) as the matrixatign
at the givenll then its solution can be given by matrixes of letapaphs in following
two cases.

1. There is unique solutiovi = A of equation (2), wher¥ is the square of a symmet-
ric matrix of order{ X| with a zero diagonal.
2. All solutions of equation (2) are connected aghtmemselves by relations (3), but
A =rlad)2 A2,

It is obvious that any transformation of type ¢8 the matrix of contiguities of graph
G, keeping equality (2), will be equivalent to rekespf vertices of the grap& , con-

sisting of cycles of the vertices having equal degr
Let’s investigate case 1.

Theorem 3 If A is the matrix of contiguities of perfect graph and ﬂ(A) is the re-
mark of type (3) keeping relation (2), thezﬁAz): AZ,

Proof. Let’s in the perfect grapit = (X,U) the verticesv, andv; have equal de-
greesd; =d; =d. Further, letM; be the set of vertices, adjacentjtoand leM ; be



the set of vertices, adjacentvta Then there are two different verticeg;v, of the
graphG such thaty, OM; /M andv OM; /M;.

If (vi V| )DU thenv, doesn't coincide withi; , andv, - with v, .

However in this case the four-in-hand of veriegv;,v,,v, does not satisfy the con-

ditions of lemma 1 and consequently it cannobibglto the perfect graph. From here
it follows that in the perfect graph for any twortiees having equal degrees, one of the
following statements is correct:

M, =M; &(v,v,)0U;
b) v, OM, /M &V, OM | /M, .

Extending our reasoning to some 8ét= {vil,...vil} of vertices of the graphG hav-

ing equal degrees, we will receive that for onehef following systems of relations is
also carried out:

|
M, /(M =0; (4)
r=1...1/ s=1

|
Mi /(M =N;/v, . (5)
r=1...1/ s=1 r=1...1

Thus, in the perfect graph the subgraph formeddstices with equal degrees, is ei-
ther the complete graph, or completely unconnected.

As each elemermﬁ) of the matrix A? is equal to number of ways of length 2 from
the vertexv, to the vertexv,,, and remarks of type (3) consist of cycles ofieed with

equal degrees, the theorem statement is easilycdddtom conditions (4) and (5).
From the proved theorem it follows thatlif is the partition of the perfect graph, the

equation C,YC, = () whereY = A?, has the unique solutiov.
i

Let's assume now that the equation (2) has tiigua solutiory , but I is not the
partition of the perfect graph. Ley be the matrix of contiguities of the grafh be-

longing to the partitiofil , and A, -the matrix of contiguities of the grapgh, obtained
from G; by moving any pair edges and having the sametipartil .

Let's admit, for example, that such moving of edgesmadelv;,v;) - (vi,v);
(Vi vi) = (v,v; ). We will put for definiteness thae j >k >1.

As a result of this moving the matrix of contigagiwill change:

A = 0 1 4 0|-A-= 0 0 g 1
10 0 g, 00 1 g
5 0 0 1 5 1 0 0
045 1 0 15 0 0



Let’s investigate, to what requirements the @ets of matrixesA, and A, should
satisfy that conditiord? = AZ was met.

1. As a?(a2) = AP (A?)+ 8, + 5, then equalitiess; = 03, = 0 should be fulfilled.

2. Foranym# | we get

a?(A)=2+a,(A)&a?(A) =2 +an(A).

From this it followsa,,(A) = a,(A).

It is similarly proved thata, (A ) = (A1) & a;n(A) = 8 (A,). Here we consider
moving (vi V| ) - (vi ,vk)& (vk,v| ) - (vj WV )Which is possible, sine® =9, =0.

3. If M{,M|,M,M| are the sets of vertices, adjacent to vertigeg;,v,,v, accord-
ingly, and these sets don't contain these vertices themselves, then
M{=Mj =M =M, follows from the previous consideration. Le*M i'jkl‘ >2, and
for some r,s we have v,OM;u& Vv,OMy,. Then we get
ajs =y = =1&ay =0.

As a;(A)=0 then at  ag(A)=0 the moving
(vk,vr ) - (vk,vj)& (vj ,vs,) - (vr ,vs) is possible in the grapfs,. But from here we
will come to resulta,, = 0 by repeating point 1,. The received contradictiwaves
that a,;(A,) =1, i.e. the subgraph formed by set of vertidds, , is complete
4. We will consider now any edg{ep,vq) of the graphG,. The following is obvious:
a) if the moving of edgeé/p,vq) and (vi;k,vj;,) Is impossible, then at least one of ver-
tice- v, orv, - belongs toM, ;

b) if the moving(vp,vq) and(vi;k,vj;|) is possible, theM |, =M, =My, .

5. From point 4 it follows that if(ve,vf) is such edge of the grajg that v, OMjy;
V¢ OMjy; Ve doesn't coincide withy; Ov;, and v - with v, Ov; also, then the mov-
ing of edges (ve,vf ) and(vi ,vj) is possible and consequenty, =M} = Mj;.

6. If u andw are two edges, each of which is incidental attlea®ne vertex from
Mj then the moving of edgas and w is impossible. It follows from points 1 and 3.

7. From points 1-6 it follows that grapl@ can be realized in the form of superposition
of three graphs. The first grapgh; is formed by a subset of edges of the gréphn
which the each pair of edges supposes the movinig. graph consists of components
of type K.

Removing from the grap@, all vertices and edges of the grafhi , and also edges
incidental to vertices o6, too, we obtain the second grapB which is perfect.

The third graphG;" is formed by the edges connecting the each veftéixe graph
G; with all vertices of some complete subgrafélmf the graphG;/ ; and other vertices
of G; form a trivial subgraph. (As appears from the prafo theorem 2, in the perfect



graph all vertices of degred, =i form the complete subgraph, and all vertices of de
gree d; <i - the trivial subgraph).

It is easy to show that the constructed gr@phis stable. From the reasoning spent in
points 1-7, and theorems 2 and 3 we obtain theviatig theorem.

Theorem 4 If Gis the stable graph such that at any remarkf its vertices keeping
equality (2), the square of the matrix of contigagtof G doesn't change then partitions

I'I(ﬁ) of this graph satisfy to following conditions:

1)d, =n-1,

2) forall d; >i itistrue:d, =d,; —&a_; ;

3) if there exists the terrd; =i then the subset consisting of even number of t&ims
the partition such thatl, =d,,; =... =d,,,., =1 exists also. Thus the changed parti-

tion N'=d, -2s,d, - 2s,...,d;_; - 25,d,,,,...,d,,, consisting of(n—Zs) terms, is the

partition of the perfect graph.
The return to the theorem 4 statement alsori®cb

Example 2 Let’s graphic partitionl1 = 121110955554,4,321 be given. We check

performance of the first condition of theorem 3:
d,=n-1=12d, =d;, - =11d; =d, -a, =10,d, =d;-a; =9.

In the partitionlT there is the subset consisting of four terms=d; =d, =dg= . 5
Changed partitiod1' = 8,7,654,4,32]1s the partition of the perfect graph, as it isyea

to check up. From this it follows that partitidh is simple, and for stable graph belong-
ing to it by any7 the equalityn(Az)z A? is carried out.

Interesting problem The following problem is very interesting. Whattise criterion
(or algorithm) for defining graphic partitions suttat graphs belonging to them:
1) are planar without fail (strongly planar);
2) are non-planar without fail (strongly non-planar);
3) can be planar or non-planar.
For example, Kuratowski's grapKsg (4,4,4,4,4) is strongly non-planar; however

Kuratowski's graphK ;3 (3,3,3,3,3,3) is neither strongly non-planar niworsgly pla-

nar.
We know the work of hvatal [4], where the conditions for planarity shghs belong-
ing to the given partitions were found. But we ddaiow if the mentioned above prob-
lem is solved.
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