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Abstract 
 
The paper deals with the problems of characterization of simple graphical partitions belonging 
to the perfect graphs and one class of stable graphs. The necessary and sufficient conditions for 
that the partition belonging to the perfect graph have been established.  
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1 Introduction 
         
Studying of properties of the graphs connected with their partitions, is one of interesting 
and perspective directions of the graph theory. The present work is devoted to charac-
terization of the one class of simple graphic partitions. Here we use concepts of simple 
graphic partitions [1], movings of edges of the graph [2], and besides, two definitions 
are introduced. 
    If in the graph there are no four of vertices such that it is possible some moving of 
edges incidental to them, that we name such graph perfect.    
The graph with simple partition is named stable. 
 
2  Characterization of  perfect graphs. 
 
Theorem 1 If  ( )11,UXG =  and ( )22 ,UXH =  - two graphs with identical partitions 
then it is possible to receive H  from G  by means of finite number of movings of graph 
edges. 
 
Proof. The proof is similar to the proof of the theorem of "semi-degrees" for the ori-
ented graphs []. From theorem 1 follows that perfect graphs are stable. 
Let's consider more in detail structure of perfect graphs. Lemma 1 follows directly from 
definition 1. 
 
Lemma 1 Graph G  is perfect if and only if the subgraph formed by any of its four ver-
tices and edges connecting them, contains either a triangle, or three not adjacent in pairs 
vertices. 
 
Lemma 2 The perfect graph contains no more than one unconnected components. 
Indeed, if the graph contains two unconnected components, that, taking in each of them 
on two adjacent vertices, we will receive the four of vertices forbidden by lemma 1. 
This contradiction proves lemma 2. 
 



Lemma 3 If  ( )UXG ,=  is the perfect graph without isolated vertices then it is con-

nected graph, and also the greatest of degrees of its vertices is equal 1−=∆ X . 

Proof. Connectivity of the graph follows from lemma 2. The second statement will be 
proved by contradiction. We will assume that 1−<∆ X , and let be ∆=1degv , and 

12 ,, +∆vv K  are vertices, adjacent to 1v . Then, as the graph is connected, there is the ver-

tex w  such that ( ) Uvw ∉1,  and   ( ) Uvw k ∈, for some vertex  kv  such that ( ) Uvv k ∈,1 . 

Applying lemma 1 to the four of vertices of  graph ik vvvwG ,,,: 1  where iv  is any of 

vertices, adjacent to 1v , but not coinciding with kv , we obtain ( ) Uvv ik ∈, . From here it 

follows 1deg +∆≥kv  that is impossible, since ∆  is the greatest degree. This contradic-

tion proves lemma 3.  
 
   The lemma 4 follows from lemma1. 
 
Lemma 4 After removing any vertex together with edges incidental to it from the per-
fect graph we obtain the graph that also will be perfect. 
 
   Let's use further two forms of graphic partitions: 
1)     the not increasing sequence of degrees of vertices nddd ,,, 21 K=Π ; 

 

2)   the form  121 ,,,
~

−=Π naaa K , where ia  is the number of vertices of the graph hav-

ing degree i . 
Perfect graphs and their partitions  are characterized by the following theorem 
 

Theorem 2 The graphic partition ( )ΠΠ ~
 is a partition of the connected perfect graph 

( )UXG ,=  if and only if for all jd j ≥  the following relations are fulfilled: 
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Proof.  1. Necessity. In the connected perfect graph we have 11 −= Xd  (lemma 3). 

Let’s remove from G  the vertex 1v  of degree 1d  and all edges incidental to it too. Thus 

we will receive the perfect graph G′  (lemma 4) with 1a  isolated vertices. If it contains 

also non-trivial component, then maximum degree of its vertices is 111 −−=∆′ ad  

(lemma 3). Returning to graph G , we have 111 add −=+∆′= . Deleting, thus, from 

graph G  the vertices of degrees jddd ,,, 21 K  until the graph consisting of isolated ver-

tices will turn up, we receive at each stage equalities 11 −− −= iii add  for all  jd j ≥ . 

2. Sufficiency. Let partition ( )ΠΠ ~
 satisfying to conditions (1) be set. The algorithm for 

constructing the graph belonging to this partition consists of the following steps. 
1. We build the star with the partition 1,,1,1 K−=Π X . 

2. From  ( )1−X  vertices of the degree 1 we chose any and it is connected with 

( )21 −− aX  vertices of the same degree. Then we repeat this procedure with vertices 

of degree 2 etc., backward to how it was done at the proof of the necessity of condition 



(1), yet we will receive the vertex of degree jd j ≥  such that jd j ≤+1 . The constructed 

graph evidently belongs to the set partition. 
Sample1. Graphic partition 1,1,2,2,3,4,4,5,7,9=Π  is set. Let’s show that it is a partition 
of the perfect graph. We check performance of conditions (1): 

4;5;7;91 3342231121 =−==−==−==−= addaddaddXd . 

 
2 One class of stable graphs 
 
The problem of characterization of stable graphs (and simple graphic partitions) can be 
formulated in the matrix form. 
   Let A  is a matrix of contiguities of some graph ( )UXG ,= . We form the sum 

∑
=

X

i
ii CAC

1

2  where iC  is the square matrix of order X  in which the element ijc  is equal 

to 1, and other elements are equal to 0. Then it is clear that at corresponding enumerat-
ing of vertices of the graph we obtain the matrix ( )Π  in which the diagonal elements are 
degrees of vertices of the graph, and other elements are equal to zero.  
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If 1A  and 2A  are matrixes of contiguities of two isomorphic graphs then they are con-
nected among themselves by relations of type  
 

( )112 1111
AIIAIIA jijijiji kkkk

π== KK ,                                                                           (3) 

 
 where ijI  is the matrix obtained from a single matrix by the permutation of i -th and  

j -th lines [3]. As II ij =2  then ( )2
1

2
2 AA π= .  

   If now we designate YA =2  and will consider expression (2) as the matrix equation 
at the given Π  then its solution can be given by matrixes of stable graphs in following 
two cases. 
1. There is unique solution 2AY =  of equation (2), where Y  is the square of a symmet-
ric matrix of order X  with a zero diagonal.  

2. All solutions of equation (2) are connected among themselves by relations (3), but 

( ) 2
1

2
1

2
2 AAA ≠= π . 

   It is obvious that any transformation of type (3) of the matrix of contiguities of graph 
G , keeping equality (2), will be equivalent to remarks of vertices of the graph G , con-
sisting of cycles of the vertices having equal degrees. 
   Let’s investigate case 1.  
 
Theorem 3  If  A  is the matrix of contiguities of perfect graphG , and ( )Aπ  is the re-

mark of type (3) keeping relation (2), then ( ) 22 AA =π . 
 
Proof.  Let’s in the perfect graph ( )UXG ,=  the vertices iv  and jv   have equal de-

grees ddd ji == . Further, let iM  be the set of vertices, adjacent toiv , and let jM  be 



the set of vertices, adjacent tojv . Then there are two different vertices lk vv ;  of the 

graph G  such that jik MMv ∈  and ijl MMv ∈ . 

   If   ( ) Uvv ji ∉,   then kv  doesn’t coincide with jv , and lv - with iv . 

   However in this case the four-in-hand of vertices lkji vvvv ,,,  does not satisfy the con-

ditions of  lemma 1 and consequently it  cannot belong to the perfect graph. From here 
it follows that in the perfect graph for any two vertices having equal degrees, one of the 
following statements is correct:  
 
a) ( ) UvvMM jiji ∉≡ ,& ; 

b) jij MMv ∈ & iji MMv ∈ . 

 
   Extending our reasoning to some set { }

liii vvN K,
1

=  of vertices of the graph  G  hav-

ing equal degrees, we will receive that for one of the following systems of relations is 
also carried out: 
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   Thus, in the perfect graph the subgraph formed by vertices with equal degrees, is ei-
ther the complete graph, or completely unconnected. 

   As each element ( )2
lma  of the matrix 2A  is equal to number of ways of length 2 from 

the vertex lv  to the vertex mv , and remarks of type (3) consist of cycles of vertices with 

equal degrees, the theorem statement is easily deduced from conditions (4) and (5).  
From the proved theorem it follows that if Π  is the partition of the perfect graph, the 

equation ( )Π=∑
i

iiYCC  where 2AY = , has the unique solution Y . 

   Let's assume now that the equation (2) has the unique solutionY , but Π  is not the 
partition of the perfect graph. Let 1A   be the matrix of contiguities of the graph 1G  be-

longing to the partitionΠ , and 2A  -the matrix of contiguities of the graph 2G  obtained 

from 1G  by moving any pair edges and having the same partition Π . 

Let's admit, for example, that such moving of edges is made:( ) ( )liji vvvv ,, → ; 

( ) ( )jllk vvvv ,, → . We will put for definiteness that lkji >>> . 

As a result of this moving the matrix of contiguities will change:   
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   Let’s investigate, to what requirements the elements of matrixes 1A  and 2A  should 

satisfy that condition 2
2

2
1 AA =  was met. 

 

1. As ( ) ( ) ( ) ( ) 21
2
1

22
2

2 δδ ++= AAAa ijij  then equalities 0;0 21 == δδ  should be fulfilled.  

2. For any jm ≠  we get  
 

( )( ) ( )11
2 AaAa jmim +Σ= & ( )( ) ( )12

2 AaAa lmim +Σ= .  

 
From this it follows ( ) ( )11 AaAa lmjm = . 

  It is similarly proved that ( ) ( )11 AaAa kmim = & ( ) ( )11 AaAa kmjm = . Here we consider 

moving ( ) ( )kiji vvvv ,,, → & ( ) ( )ljlk vvvv ,,, → which is possible, since 021 == δδ . 

3. If lkji MMMM ′′′′ ,,,  are the sets of vertices, adjacent to vertices lkji vvvv ,,,  accord-

ingly, and these sets don’t contain these vertices in themselves, then 

lkji MMMM ′≡′≡′≡′  follows from the previous consideration. Let’s 2≥′ijklM , and 

for some sr,  we have ijklr Mv ′∈ & ijkls Mv ′∈ . Then we get 

1=== ksrkjs aaa & 0=jka .  

   As ( ) 01 =Aa jk  then at ( ) 01 =Aars   the moving 

( ) ( )jkrk vvvv ,,, → & ( ) ( )srsj vvvv ,,, →  is possible in the graph 1G . But from here we 

will come to result 0=ksa   by repeating point 1,. The received contradiction proves 

that ( ) 11 =Aars , i.e. the subgraph formed by set of vertices ijklM ′ , is complete. 

4. We will consider now any edge ( )qp vv ,  of the graph 1G . The  following  is obvious: 

a) if the moving of edges ( )qp vv ,  and ( )ljki vv ;; ,  is impossible, then at least one of ver-

tice-  pv  or qv  - belongs to ijklM ′ ; 

b) if the moving ( )qp vv ,  and ( )ljki vv ;; ,  is possible, then ijklqp MMM ′≡′≡′ . 

5. From point 4 it follows that if  ( )fe vv ,  is such edge of the graph 1G  that ijkle Mv ′∉ ; 

ijklf Mv ′∉ ; ev  doesn’t coincide with ji vv ∨ , and fv - with ji vv ∨  also, then the mov-

ing of edges   ( )fe vv ,  and ( )ji vv ,  is possible and consequently ijfe MMM ′≡′≡′ .  

6. If  u  and w  are two edges, each of which is incidental at least to one vertex from 

ijklM ′  then the moving of edges u  and w  is impossible. It follows from points 1 and 3. 

7. From points 1-6 it follows that graphs 1G  can be realized in the form of superposition 

of three graphs. The first graph 1G′   is formed by a subset of edges of the graph 1G  in 
which the each pair of edges supposes the moving. This graph consists of components 
of type 2K . 

    Removing from the graph 1G all vertices and edges of the graph  1G′ , and also edges 

incidental to vertices of 1G′  too,  we obtain the second graph - 1G ′′  which is perfect. 

    The third graph 1G ′′′   is formed by the edges connecting the each vertex of the graph 

1G′   with all vertices of some complete subgraph G
~

of the graph 1G ′′ ; and other vertices 

of 1G ′′  form a trivial subgraph. (As appears from the proof of  theorem 2, in the perfect 



graph all vertices of degree id i ≥  form the complete subgraph, and all vertices of de-

gree  id i < - the trivial subgraph).  

   It is easy to show that the constructed graph 1G   is stable. From the reasoning spent in 
points 1-7, and theorems 2 and 3 we obtain the following theorem. 
 
Theorem 4 If  G is the stable graph such that at any remark π  of its vertices keeping 
equality (2), the square of the matrix of contiguities of G  doesn't change then partitions 

( )ΠΠ ~
 of this graph satisfy to following conditions: 

1) 11 −= nd ; 

2) for all id i >  it is true: 11 −− −= iii add  ; 

3) if there exists the term id i =  then the subset consisting of even number of terms of 

the partition such that iddd siii ==== −++ 121 K   exists also. Thus the changed parti-

tion nsii ddsdsdsd ,,,2,,2,2 2121 KK +− −−−=Π′ , consisting of ( )sn 2−  terms, is the 

partition of the perfect graph. 
   The return to the theorem 4 statement also is correct. 
 
Example 2 Let’s graphic partition 1,2,3,4,4,5,5,5,5,9,10,11,12=Π  be given. We check 
performance of the first condition of theorem 3: 

9;10;11;121 3342231121 =−==−==−==−= addaddaddnd . 

In the partition Π  there is the subset consisting of four terms: 58765 ==== dddd . 

Changed partition 1,2,3,4,4,5,6,7,8=Π′  is the partition of the perfect graph, as it is easy 
to check up. From this it follows that partition Π  is simple, and for stable graph belong-

ing to it by any π  the equality ( ) 22 AA =π  is carried out.  
 
Interesting problem The following problem is very interesting. What is the criterion 
(or algorithm) for defining graphic partitions such that graphs belonging to them: 
1) are planar without fail (strongly planar);  
2) are non-planar without fail (strongly non-planar);  
3) can be planar or non-planar.    
   For example, Kuratowski’s graph 5K  (4,4,4,4,4) is strongly non-planar; however 

Kuratowski’s graph 3,3K  (3,3,3,3,3,3) is neither strongly non-planar nor strongly pla-

nar.   
We know the work of Ćhvatal [4], where the conditions for planarity of graphs belong-
ing to the given partitions were found. But we don’t know if the mentioned above prob-
lem is solved.  
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