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1 Introduction

1.1 Definition

Let Γ = (V,E) be a graph of order n and let B(D) be the set of vertices
in V \ D that have a neighbor in the vertex set D. The differential of D is
defined as ∂(D) = |B(D)| − |D| and the differential of a graph is equal to
max{∂(D) : D ⊆ V }. The graph parameter ∂ was introduced in [9]. There,
also several basic properties were derived. Notice that for a graph Γ of order
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n, 0 ≤ ∂(Γ) ≤ n−2. For every graph Γ with connected components Γ1, ...,Γk,
∂(Γ) = ∂(Γ1)+ · · ·+∂(Γk). Therefore, we will only consider connected graphs.

The study of the differential in graphs was continued in [1,2,12,14].

1.2 Motivation

Social networks, such a Facebook or Twitter, have served as an important
medium for communication and information disseminating. As a result of
their massive popularity, social networks now have wide applications in the
viral marketing of products and political campaigns. Motivated by its wide
applications in these topics some authors proposed some influence maximiza-
tion problems [4,6,8] as a fundamental algorithmic problem for information
diffusion in social networks. This problem consists in determining the best
group of nodes to influence the rest. The study of the graph parameter ∂(Γ),
called the differential of Γ, could be motivated from such scenarios.

The differential of a set could act as a measure of how this set can influence
the rest of the vertices. Suppose that we have a political party and we are
interested in giving some political talks in some cities of a country to influence
the people. A natural problem would be to find “the best cities” to organize
those talks, in the sense that we want to give the talks in the cities where we
can influence most people, assuming a certain bound on the number of cities
that we are able to visit. We could see the map of the country as a graph and,
to avoid weights, we could consider all the cities having the same population
and the same importance, and all roads between cities having the same length.
We also assume that people might go to a meeting if this takes place in their
city or in a neighboring city. In such a particular case, if we want to influence
everybody, it looks logical to choose the cities which belong to the dominating
set but, sometimes, the dominating set contains some vertices which do not
dominate anybody but themselves and possibly one single neighbor. From the
economical point of view, it might not be interesting to give a talk in a city
if virtually nobody is supposed to attend it. In this example, the best choice
could be the cities which belong to the minimum differential set, although we
do not influence every city in the country.

More generally, the idea of viral marketing (as explained in [4,6,8]) tries
to (ab)use customers acquired by specific marketing offers as multiplicators,
influencing their immediate neighborhood to buy certain products. This model
is a stochastic one from the start, but can be simplified to lead to the graph
problem studied in this paper.



2 Preliminaries

2.1 Connections with Domination and the Enclaveless Number

As explained in [9], the differential of a graph is related to the well-known
parameter γ(Γ) denoting the minimum size of a dominating vertex set in Γ.
Namely [5,15],

Ψ(Γ) := max{|B(D)| : D ⊆ V } = n− γ(Γ),

where the parameter Ψ is known as the enclaveless number of a graph and, for
a B with |B(D)| = Ψ(Γ), B(D) is also known as a nonblocker set; see [5,7].

Moreover, for any graph without isolated vertices,

Ψ(Γ)− γ(Γ) = n− 2γ(Γ) ≤ ∂(Γ) ≤ Ψ(Γ)− 1,(1)

see [9]. We have shown in [1] that computing ∂(Γ) is of a complexity similar
to computing Ψ(Γ), being NP-complete on rather restricted graph classes but
solvable using parameterized algorithms (with a standard parameterization);
confer to [5].

In this paper, we are studying lower bounds on the differential of a graph,
obtaining results that nicely complement what is known about the enclaveless
number. For that parameter, the following is known:

• [11] For any connected graph Γ of order n ≥ 2, Ψ(Γ) ≥ n/2.

• [3,10] For any connected graph Γ of order n ≥ 8 and minimum degree
δ(Γ) ≥ 2, Ψ(Γ) ≥ 3n

5
. Moreover, there are seven exceptional connected

graphs at all that violate this bound.

• [13] For any graph Γ of order n satisfying δ(Γ) ≥ 3, Ψ(Γ) ≥ 5n
8

.

The second item immediately implies, when combined with Eq. (1), that
∂(Γ) ≥ n

5
for any connnected graph Γ of order n ≥ 8 satisfying δ(Γ) ≥ 2.

2.2 Statement of Main Results

Here, we derive the following main results, improving this immediate bound:

Theorem 1 For any connected graph Γ of order n ≥ 3, ∂(Γ) ≥ n/5.

Theorem 2 For any connected graph Γ of order n that has minimum degree
two, ∂(Γ) ≥ 3n
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apart from five exceptional graphs.



2.3 Auxiliary Results

An alternative way of defining the differential of a graph is the following, which
is based on the notion of a big star, i.e., some star Sd with d ≥ 2. Given the
graph Γ = (V,E), a big star packing is given by a vertex-disjoint collection
S = {Xi | 1 ≤ i ≤ k} of (not necessarily induced) big stars Xi ⊆ V , i.e., Γ[Xi]
contains some Sd with d = |Xi| − 1 ≥ 2. If S is a big star packing of Γ, we
also denote this property by SP (Γ,S).

Proposition 1 ∂(Γ) = max{
∑

S∈S (|S| − 2) : SP (Γ,S)}.
Proposition 2 There exists an infinite family of connected graphs Γ′k, k ≥ 1,
of order n with a differential of n/5.

We will say that a vertex v ∈ V is a critical vertex if v ∈ D ∪B(D) for every
set D ⊆ V such that ∂(D) = ∂(Γ).

Lemma 1 Let Γi = (Vi, Ei) be a graph which has a critical vertex ui, for i =
1, 2. If Γ = (V,E) is a graph such that V = V1∪V2 and E = E1∪E2∪{u1u2},
then u1 and u2 are critical vertices of Γ and ∂(Γ) = ∂(Γ1) + ∂(Γ2).

Proposition 3 There exists an infinite family of connected graphs Γk, k ≥ 1,
of minimum degree two and of order 11k with a differential of 3k.

Proof. Consider the following graph Γi = (V i, Ei) of order 11.

The differential of this graph is 3 and vi is the only critical vertex. Now, we
consider a connected graph Γk = (Vk, Ek) such that Vk =

⋃k
i=1 V

i and Ek =⋃k
i=1E

i ∪ {v1v2, v2v3, ..., vk−1vk}. By Lemma 1, we know that ∂(Γ) = 3k. 2

This also shows that the bounds given in the Main Results are best possi-
ble.

3 Towards Proving the Main Results

As the proof of Theorem 1 is pretty straightforward, we will sketch the proof
of Theorem 2 only in the following. We will use methods from Extremal
Combinatorics.

If our theorem was false, then there should exist an example Γ = (V,E)
with |V | = n, δ(Γ) ≥ 2 and ∂(Γ) < 3n

11
. If such a counterexample exists, we

could also ask for a proof, i.e., we are also given a big star packing S(D) such



that the set D of its star centers satisfies ∂(D) = ∂(Γ). Let D1(Γ) = {D ⊆ V |
D is the set of star centers of a big star packing and ∂(D) = ∂(Γ)}. Define
C(D) = V \ (D ∪B(D)).

Lemma 2 If D ∈ D1(Γ), then the induced graph Γ[C(D)] decomposes into
K1- and K2-components.

Recall that, apart from D ∈ D1(Γ), we are also given a corresponding big star
packing S(D). Hence, ∂(D) =

∑
S∈S(D) (|S| − 2) and D∪B(D) =

⋃
S∈S(D) S.

Notice that there might be several big star packings that testify the differential
claimed for D, but we will fix one of these big star packings, denoted as S(D),
in the following discussion. For every j = 2, ...,∆, we will denote by Sj(D)
the set of all stars S in S(D) such that |S| = j+1, and S≥3(D) =

⋃
j≥3 Sj(D).

Since there could be several differential sets that attain the differential ∂(Γ), we
will furthermore ask for a differential set D that maximizes |D| among all those
with ∂(D) = ∂(Γ). Let D2(Γ) = {D ∈ D1(Γ) | ∀D′ ∈ D1(Γ) (|D′| ≤ |D|)}.
Lemma 3 If D ∈ D2(Γ), then any vertex x in B(D) has at most one neighbor
in C(D).

As a possible application of Lemma 2 and Lemma 3, we state:

Lemma 4 For any connected graph Γ of order n ≤ 8 that has minimum degree
two, if ∂(Γ) < 3n

11
, then Γ is one of the five exceptional graphs.

Due to Lemma 2, we could also establish a third priority; let k2(D) denote
the number of K2-components in Γ[C(D)]. Let D3(Γ) = {D ∈ D2(Γ) | ∀D′ ∈
D2(Γ) (k2(D

′) ≤ k2(D))}. Fix some arbitrary D ∈ D3(Γ) in the following dis-
cussion. In order to explain the importance of the given sequence of priorities,
we establish:

Lemma 5 If S ∈ S(D) with |S| ≥ 4, then no x ∈ S \ D is neighbor of a
K2-component in Γ[C(D)].

Our previous reasoning shows that stars with more than three vertices are
giving a very good bound. Bad situations arise with S2-stars, which we are
now studying in details.

A sequence of pairwise distinct adjacent vertices v1, . . . , vt is called an S2

sequence if it obeys the following recursive definition:

• either t = 1 and v1 ∈ C(D), or

• t = 3, {v1, v2, v3} ∈ S(D), and v2 ∈ D, or

• t > 1, vt ∈ C(D), and v1, . . . , vt−1 is an S2 sequence, or

• t > 3, {vt−2, vt−1, vt} ∈ S(D), vt−1 ∈ D, and v1, . . . , vt−3 is an S2 sequence.



An S2 sequence s is called maximal if there are no vertices x (or x, y, z) that
do not already occur in s, such that s, x or x, s or x, y, z, s or s, x, y, z form
an S2 sequence. An S2 sequence s = v1, v2, . . . , vt is called maximal from v1

if there are no vertices x (or x, y, z) that do not already occur in s, such that
s, x or s, x, y, z form an S2 sequence. Clearly, if s = v1, v2, . . . , vt is an S2

sequence, then s− = vt, vt−1, . . . , v1 is an S2 sequence, as well; s is maximal
if and only if s is maximal from v1 and s− is maximal from vt. If v1 is
adjacent to vt we will consider that s and s− are equivalent. For S ∈ S(D),
let C(S,D) collect all vertices from C(D) that are neighbors of vertices from
S. For a collection S ⊆ S(D) of stars, let C(S, D) =

⋃
S∈S C(S,D). Let

D4(Γ) = {D ∈ D3 | ∀D′ ∈ D3(|C(S≥3(D
′), D′)| ≤ |C(S≥3(D), D)|)}. So, in

the following, let D ∈ D4(Γ).

For every D ∈ D4(Γ) we denote by s2(D) the number of maximal inequiv-
alent S2 sequences in Γ, and D5(Γ) = {D ∈ D4(Γ) : ∀D′ ∈ D4(Γ) (s2(D) ≤
s2(D

′))}. In the following, we consider D ∈ D5(Γ).

According to our priorities, for the discussion of any maximal S2 sequence
s starting with x, it sufficient to distinguish three different cases:

non-C case: s contains no vertex from C(D) at all.

single-C case: s contains exactly one vertex from C(D), which is x.

double-C case: s contains exactly two vertices from C(D), which are the
first vertex x in s and the second vertex y in s.

In order to prove our bound, the first of the three cases does not harm,
since it implies a better ratio (of three) on the S2 path. Of particular danger
to our counting are those C(D)-vertices that are not close to big stars.

In the following, we abbreviate C2(D) = C(D) \ C(S≥3(D), D).

We start discussing the single-C case:

Lemma 6 Consider a maximal S2 sequence s starting with x such that s
contains exactly one vertex from C(D), which is x. Assume that x /∈ N(S)
for any S ∈ S≥3(D). Let z be the last vertex of s and let N(z, /∈ s) collect all
neighbors of z that are not already in s. Then, N(z, /∈ s) = ∅.

A similar statement is true for the double-C case.

We will say that a vertex x ∈ C2(D) has a private S2 star if there exists
a maximal S2 sequence starting with x containing this star, which does not
belong to a S2 sequence starting with x′ ∈ C2(D) with x′ 6= x.

Lemma 7 Every maximal S2 sequence starting with x ∈ C2(D) contains more
than one S2 star.



A similar Lemma is true for the double-C case.

Lemma 8 If s is an S2 sequence that starts with x ∈ C2(D) (or with e =
{x, y} ⊆ C2(D)), then any S2 star in s is private for x (or for e).

We denote by kj the number of S ∈ S(D) such that |S| = j + 1. By the
previous lemmas we obtain the following result.

Lemma 9 If |C2(D)| = r, then 3r ≤ 2k2.

This is the final cornerstone to establish a contradiction to the existence
of a counterexample by a rather straightforward counting argument.

4 Concluding Remarks

Using arguments very similar to those leading to Theorem 2, we could improve
the lower bound ratio from 3

11
to 2

7
in the cases of subcubic graphs of minimum

degree (at least) two, under some mild additional conditions. Since our lower
bound example graph families are of maximum degree four, this completes the
study with respect to a further maximum degree bound, since 2-regular graphs
have been already completely studied in [9]. Furthermore, in the long version
of this paper, we also study the influence of the graph parameter “maximum
number of induced P5” in order to improve on Theorem 1.

Having established some lower bounds, some natural questions prevail:
(1) Reed could establish a better bound in relation with the domination (or
enclaveless) parameter for graphs with minimum degree three. Are similar
achievements possible for the differential? (2) So far, we could only make
use of Theorem 1 for purposes of parameterized complexity in the spirit of
reference [5]; see [1]. Is there any way to employ Theorem 2 for this purpose
to obtain better running times of our parameterized algorithms?
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