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Abstract

Let ¢ be a proper k-coloring of a connected graph G and II = (C1,Cy,...,Cy) be
an ordered partition of V(@) into the resulting color classes. For a vertex v of G,
the color code of v with respect to II is defined to be the ordered k-tuple

ey (v) == (d(v,C1),d(v,Ca),...,d(v,Cy)),

where d(v,C;) = min{d(v,z) | z € C;},1 < i < k. If distinct vertices have distinct
color codes, then c is called a locating coloring. The minimum number of colors
needed in a locating coloring of G is the locating chromatic number of G, denoted
by X, (G). In this paper, we study the locating chromatic number of the cartesian
product of paths and complete graphs.
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1 Introduction

Let G be a graph without loops and multiple edges with vertex set V(G) and
edge set F(G). A proper k-coloring of G is a function ¢ defined from V(G)
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onto a set of colors C' = {1,2,...,k} such that every two adjacent vertices
have different colors. In fact, for every i, 1 < i < k, the set ¢71(i) is a
nonempty independent set of vertices which is called the color class i. The
minimum cardinality £ for which G has a proper k-coloring is the chromatic
number of G, denoted by x(G). For a connected graph G, the distance d(u, v)
between two vertices u and v in G is the length of a shortest path between
them, and for a subset S of V(G), the distance between u and S is given by
d(u,S) := min{d(u,x) | x € S}. A set W C V(G) is called a resolving set,
if for each two distinct vertices u,v € V(G) there exists w € W such that
d(u,w) # d(v,w), see [6,8]. The minimum cardinality of a resolving set in G
is called the metric dimension of G, and denoted by dimy;(G). The vertices of
a connected graph G could be represented by other means, namely, through
partitions of V(G) and the distances between each vertex of G and the subsets
in the partition. Dividing the vertex set of a graph into classes according to
some prescribed rule is a fundamental process in graph theory. Perhaps the
best known example of this process is graph coloring, where the vertex set of
a graph is partitioned into classes each of which is an independent set.

Definition 1.1 [1] Let ¢ be a proper k-coloring of a connected graph G and
IT=(Cy,Cy,...,Ck) be an ordered partition of V(G) into the resulting color
classes. For a vertex v of GG, the color code of v with respect to II is defined
to be the ordered k-tuple

ey (v) == (d(v,Cy),d(v,Cy),...,d(v,Cy)).

If distinct vertices of G have distinct color codes, then c is called a resolving
or locating coloring of G. The locating chromatic number, x, (G), is the
minimum number of colors in a locating coloring of G.

The concept of locating coloring was first introduced by Chartrand et al. in
[1] and studied further in [2] and [3]. Note that since every locating coloring is
a proper coloring, x(G) < x, (G). For more results in the subject and related
subjects, one can see [1, 2, 3, 4, 7].

2 Main results

First we give an upper bound for the locating chromatic number of cartesian
product of two graphs. Recall that GOH is a graph with vertex set V(G) x
V(H) in which two vertices (a, b) and (a’, V') are adjacent in it just when a = o’
and bb' € E(H), or ad’ € E(G) and b=1V'.



Theorem 2.1 If G and H are two connected graphs, then
x2(GOH) < x1(G)xw(H).

Proof. let m := x.(G) and let Aj, Ao, ..., A, be the color classes of a locating
coloring of G. Also let n := x(H) and let By, By, ..., B, be the color classes
of a locating coloring of H. for each ¢ € [n] and j € [m], A; X B; is an
independent set in GOH and so the partition {A; X B; | i € [n], j € [m] }
can be considered as the color classes of a proper coloring of GLIH. we show
that this is a locating coloring of GOH. Let (a,b) and (a/,b") be two distinct
vertices in the color class A; x B; and, without loss of generality, assume that
a # a'. Then there exists k € [n] such that dg(a, Ax) # dg(a’, Ax) and so

d((a,b), Ax, x B;)=d(a, Ay) + d(b, B))
=d(a,Ag) +0
#d(d, Ag)
=d(a Ar) +0
—d(d', Ay) + d(V/, B))
=d((a’,V), A, X By)

—_— ==

Thus this coloring is a locating coloring. O

For G = H = K5 we have
XL(FKOKs) = x(Cy) =4 =2 x 2 = x(K)xr(K>)

and so the inequality is sharp. But in general this upper bound is not so good.
First we will compute the exact value of the locating chromatic number of an
m by n grid.

Theorem 2.2 Ifn >m > 2, then xr(P,0P,) = 4.

For the locating chromatic number of P,[1K; we have the following obvious
cases:

(a) xp(PoOK2) = xp(F,05) =4
(b) xr(FOK) = xro(Pn) =3
(c) xp(POKG) = xo(Ky) =t
and for the general case we have the following theorem.

Theorem 2.3 Let n > 2,t > 3 be two positive integers. Then



t+1 ifn<t+l,
Yo (P,0K,) =
t+2 ifn>t+2

For the locating chromatic number of cartesian product of complete graphs
K,, and K,,, Theorem 2.1 will also give a bad upper bound, mn. If m = n,
then every proper coloring of K,,[1K, is equivalent to an n by n Latin square.
Similarly, a locating coloring of K,,[1K, is equivalent to an m by n Latin
rectangle in which every two blocks with the same symbol in it, have different
neighbors in their rows and columns.

Theorem 2.4 For two positive integers 2 < m < n, let
mg :=max{m; | mi(m; —1) —1<mn, m; € N}.

(a) If m < mg — 1, then x(K,0K,,)=n+1,
(b) If mo+1<m <5, then xp(K,OK,,) =n+2.
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