On the Locating Chromatic Number of Cartesian Product of Graphs

Ali Behtoei ${ }^{1}$
Department of Mathematical Sciences
Isfahan University of Technology
Isfahan, Iran

Behnaz Omoomi ${ }^{2}$
Department of Mathematical Sciences
Isfahan University of Technology
Isfahan, Iran

Abstract

Let c be a proper k-coloring of a connected graph G and $\Pi=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple $$
c_{\Pi}(v):=\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right),
$$ where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}, 1 \leq i \leq k$. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by $\chi_{L}(G)$. In this paper, we study the locating chromatic number of the cartesian product of paths and complete graphs.

Keywords: Cartesian product, Locating coloring, Locating chromatic number.

1 Introduction

Let G be a graph without loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper k-coloring of G is a function c defined from $V(G)$

[^0]onto a set of colors $C=\{1,2, \ldots, k\}$ such that every two adjacent vertices have different colors. In fact, for every $i, 1 \leq i \leq k$, the set $c^{-1}(i)$ is a nonempty independent set of vertices which is called the color class i. The minimum cardinality k for which G has a proper k-coloring is the chromatic number of G, denoted by $\chi(G)$. For a connected graph G, the distance $d(u, v)$ between two vertices u and v in G is the length of a shortest path between them, and for a subset S of $V(G)$, the distance between u and S is given by $d(u, S):=\min \{d(u, x) \mid x \in S\}$. A set $W \subseteq V(G)$ is called a resolving set, if for each two distinct vertices $u, v \in V(G)$ there exists $w \in W$ such that $d(u, w) \neq d(v, w)$, see $[6,8]$. The minimum cardinality of a resolving set in G is called the metric dimension of G, and denoted by $\operatorname{dim}_{M}(G)$. The vertices of a connected graph G could be represented by other means, namely, through partitions of $V(G)$ and the distances between each vertex of G and the subsets in the partition. Dividing the vertex set of a graph into classes according to some prescribed rule is a fundamental process in graph theory. Perhaps the best known example of this process is graph coloring, where the vertex set of a graph is partitioned into classes each of which is an independent set.

Definition 1.1 [1] Let c be a proper k-coloring of a connected graph G and $\Pi=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple

$$
c_{\Pi}(v):=\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right) .
$$

If distinct vertices of G have distinct color codes, then c is called a resolving or locating coloring of G. The locating chromatic number, $\chi_{L}(G)$, is the minimum number of colors in a locating coloring of G.

The concept of locating coloring was first introduced by Chartrand et al. in [1] and studied further in [2] and [3]. Note that since every locating coloring is a proper coloring, $\chi(G) \leq \chi_{L}(G)$. For more results in the subject and related subjects, one can see $[1,2,3,4,7]$.

2 Main results

First we give an upper bound for the locating chromatic number of cartesian product of two graphs. Recall that $G \square H$ is a graph with vertex set $V(G) \times$ $V(H)$ in which two vertices (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ are adjacent in it just when $a=a^{\prime}$ and $b b^{\prime} \in E(H)$, or $a a^{\prime} \in E(G)$ and $b=b^{\prime}$.

Theorem 2.1 If G and H are two connected graphs, then

$$
\chi_{L}(G \square H) \leq \chi_{L}(G) \chi_{L}(H)
$$

Proof. let $m:=\chi_{L}(G)$ and let $A_{1}, A_{2}, \ldots, A_{m}$ be the color classes of a locating coloring of G. Also let $n:=\chi_{L}(H)$ and let $B_{1}, B_{2}, \ldots, B_{n}$ be the color classes of a locating coloring of H. for each $i \in[n]$ and $j \in[m], A_{i} \times B_{j}$ is an independent set in $G \square H$ and so the partition $\left\{A_{i} \times B_{j} \mid i \in[n], j \in[m]\right\}$ can be considered as the color classes of a proper coloring of $G \square H$. we show that this is a locating coloring of $G \square H$. Let (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ be two distinct vertices in the color class $A_{i} \times B_{j}$ and, without loss of generality, assume that $a \neq a^{\prime}$. Then there exists $k \in[n]$ such that $d_{G}\left(a, A_{k}\right) \neq d_{G}\left(a^{\prime}, A_{k}\right)$ and so

$$
\begin{aligned}
d\left((a, b), A_{k} \times B_{j}\right) & =d\left(a, A_{k}\right)+d\left(b, B_{j}\right) \\
& =d\left(a, A_{k}\right)+0 \\
& \neq d\left(a^{\prime}, A_{k}\right) \\
& =d\left(a^{\prime} A_{k}\right)+0 \\
& =d\left(a^{\prime}, A_{k}\right)+d\left(b^{\prime}, B_{j}\right) \\
& =d\left(\left(a^{\prime}, b^{\prime}\right), A_{k} \times B_{j}\right)
\end{aligned}
$$

Thus this coloring is a locating coloring.
For $G=H=K_{2}$ we have

$$
\chi_{L}\left(K_{2} \square K_{2}\right)=\chi_{L}\left(C_{4}\right)=4=2 \times 2=\chi_{L}\left(K_{2}\right) \chi_{L}\left(K_{2}\right)
$$

and so the inequality is sharp. But in general this upper bound is not so good. First we will compute the exact value of the locating chromatic number of an m by n grid.
Theorem 2.2 If $n \geq m \geq 2$, then $\chi_{L}\left(P_{m} \square P_{n}\right)=4$.
For the locating chromatic number of $P_{n} \square K_{t}$ we have the following obvious cases:
(a) $\chi_{L}\left(P_{n} \square K_{2}\right)=\chi_{L}\left(P_{n} \square P_{2}\right)=4$
(b) $\chi_{L}\left(P_{n} \square K_{1}\right)=\chi_{L}\left(P_{n}\right)=3$
(c) $\chi_{L}\left(P_{1} \square K_{t}\right)=\chi_{L}\left(K_{t}\right)=t$
and for the general case we have the following theorem.
Theorem 2.3 Let $n \geq 2, t \geq 3$ be two positive integers. Then

$$
\chi_{L}\left(P_{n} \square K_{t}\right)= \begin{cases}t+1 & \text { if } n \leq t+1 \\ t+2 & \text { if } n \geq t+2\end{cases}
$$

For the locating chromatic number of cartesian product of complete graphs K_{m} and K_{n}, Theorem 2.1 will also give a bad upper bound, $m n$. If $m=n$, then every proper coloring of $K_{m} \square K_{n}$ is equivalent to an n by n Latin square. Similarly, a locating coloring of $K_{m} \square K_{n}$ is equivalent to an m by n Latin rectangle in which every two blocks with the same symbol in it, have different neighbors in their rows and columns.
Theorem 2.4 For two positive integers $2 \leq m \leq n$, let

$$
m_{0}:=\max \left\{m_{1} \mid m_{1}\left(m_{1}-1\right)-1 \leq n, m_{1} \in \mathbb{N}\right\} .
$$

(a) If $m \leq m_{0}-1$, then $\chi_{L}\left(K_{n} \square K_{m}\right)=n+1$,
(b) If $m_{0}+1 \leq m \leq \frac{n}{2}$, then $\chi_{L}\left(K_{n} \square K_{m}\right)=n+2$.

References

[1] Chartrand G., D. Erwin, M.A. Henning, P.J. Slater, and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002) 89-101.
[2] Chartrand G., D. Erwin, M.A. Henning, P.J. Slater, and P. Zhang, Graphs of order n with locating-chromatic number $n-1$, Discrete Math. no. 13, 269 (2003) 65-79.
[3] Chartrand G., F. Okamoto, and P. Zhang, The metric chromatic number of a graph, Australasian Journal of Combinatorics 44 (2009) 273-286.
[4] Chartrand G., V. Saenpholphat, and P. Zhang, Resolving edge colorings in graphs, Ars Combin. 74 (2005) 33-47.
[5] Chartrand G., E. Salehi, and P. Zhang, The partition dimension of a graph, Aequationes Math. no. 1-2, 59 (2000) 45-54.
[6] Harary F., and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[7] Saenpholphat V., P. Zhang, Conditional resolvability in graphs: A survey, Int. J. Math. Math. Sci. 37-40 (2004) 1997-2017.
[8] Slater P.J., Leaves of trees, Congress. Numer. 14 (1975) 549-559.

[^0]: 1 Email: alibehtoei@math.iut.ac.ir
 2 Email: bomoomi@cc.iut.ac.ir

