

Overview

- Priors on trees
- Decision-theoretic view
- Models of sequence evolution
- The Bayesian 'star paradox'
\qquad

Part 1: Priors on binary trees*

- T_{B} - tree on labelled leaf set $B \quad \sum_{T_{B}} P\left(T_{B}\right)=1$
- Desirable properties:
- Exchangeable $P\left(T_{B}{ }^{\sigma}\right)=P\left(T_{B}\right)$
- Markovian

$$
\begin{aligned}
& \quad t_{1} \perp_{\left(B_{1}, B_{2}\right)} t_{2} \quad t_{1} \approx T_{B_{1}}, t_{2} \approx T_{B_{2}} \\
& \Rightarrow P(T=t)=\prod_{v \in V_{\mathrm{N}_{1}}} p\left(\# v_{1}, \# v_{2}\right)
\end{aligned}
$$

- Consistent $\quad A \subset B \Rightarrow T_{B} \mid A \approx T_{A}$ $\Rightarrow p(i, j) \quad$ satisfy system of equations
*From 'Gibbs fragmentation trees', McCullagh, Pitman, Winkel, $2008{ }^{3}$

Priors on trees: Aldous' beta-splitting model

$$
\begin{aligned}
P(T=t)= & \prod_{v \in V_{V_{i n}}} p\left(\# v_{1}, \# v_{2}\right) \\
& p(i, j)=\frac{1}{Z} \int_{0}^{1} x^{i+\beta}(1-x)^{j+\beta} d x
\end{aligned}
$$

$\beta=\frac{-3}{2}$, Uniform (PDA) distribution on binary trees
$\beta=0$, Yule model (=coalescent)
$\beta=-1$, Intermediate balance (good fit to some data)

What's special about the beta-splitting model

$$
p(i, j)=\frac{1}{Z} \int_{0}^{1} x^{i+\beta}(1-x)^{j+\beta} d x \quad P(T=t)=\prod_{v \in V_{\mathrm{int}}} p\left(\# v_{1}, \# v_{2}\right)
$$

$$
p(i, j) \propto w(i) w(j)
$$

- Theorem [McCullagh, Pitman, Winkel, 2008].

If a prior on binary trees is exchangable, Markovian, consistent, and with factorizing p, then it is the Aldous β -splitting model for some $\beta>-2$.

Strange bayes, indeed? uniform topological priors imply non-uniform clade priors. Mol. Phyl. Evol. 34, 203-211.

- Clade size... a uniform prior on trees gives a uniform prior on clades (regardless of size)?

12

$P($ bcd clade $)=3 / 15+0 / 15=1 / 5$
$P($ cd clade $)=2 / 15+1 / 15=1 / 5$
-Theorem: For $n>4$, there is no prior on trees is uniform on clade size.

Part 2: A decision-theoretic perspective (I)

$$
T^{*} \rightarrow X \xrightarrow{\varphi} T
$$

Example: $\quad \varphi=\varphi_{M P}$

$$
L\left(T^{*}, T\right) \text { 'loss function’ }
$$

Expected posterior loss of a tree T (given X)

$$
\rho(T)=\sum_{T^{*}} L\left(T^{*}, T\right) P\left(T^{*} \mid X\right)
$$

A decision-theoretic perspective (II)

- 0-1 loss

$$
L_{0 / 1}\left(T^{*}, T\right)=\left\{\begin{array}{l}
0 \text { if } T^{*}=T \\
1, \text { if } T^{*} \text { is different to } T
\end{array}\right.
$$

- Trivial observation: The tree T that minimizes the EPL for $L_{0 / 1}$ is the max posterior probability tree

$$
\rho(T)=\sum_{T^{*}} L\left(T^{*}, T\right) P\left(T^{*} \mid X\right)
$$

A decision-theoretic perspective (II)

Branch loss $\quad L_{\alpha}\left(T^{*}, T\right)=\alpha \cdot\left|T-T^{*}\right|+(1-\alpha) \cdot\left|T^{*}-T\right|$ $\alpha>\frac{1}{2}$

Question: What tree minimizes the expected posterior loss for L_{α} ?

Posterior probability of split $\sigma \quad P(\sigma \mid X)=\sum_{T^{*}} P\left(T^{*} \mid X\right)$

- Theorem [M. Holder*, 2008].

The tree T that minimizes the EPL for L_{α} is precisely the tree consisting of those splits σ with $P(\sigma \mid X) \geq \alpha$

Part 3: Models of sequence evolution

'spherical cows'

`elliptical cows'
\qquad

Cows come in different sizes...

1990-ish -- "rates across sites" (Yang et al.)

Some cows have horns...

2000-ish -- "heterotachy" (Philipe, Lockhart, et al; Fitch 1970-ish)

... others are just plain weird

Phylogenetic Mixtures

- [Matsen, E. and S, 2007. Phylogenetic mixtures on a single tree can mimic a tree of another topology. Systematic Biology 56(5): 767--775.]

Two elliptical cows = elliptical cow (same or different topology)

From spherical cows to.... 'real' cows

UCM: The "ultra-common mechanism" model

NCM: The "no-common mechanism" model

How to restore 'statistical respectibility' to a NCM approach?

Two recent approaches

- Huelsenbeck, Ane, Larget, Ronquist
"A Bayesian perspective on a non-parsimonious parsimony model." Syst. Biol. 56(3): 406-419, 2008.
- Wu, Susko and Roger
"An independent heterotachy model and its implications for phylogeny and divergence time estimation." Mol. Phyl. Evol. ;46(2):801-806, 2008.

From 'real' cows, to....

BNCM: The Bayesian "no-common mechanism" model (Neyman-model)

UCM: The "ultra-common mechanism" model
\qquad

- Properties of expectation (mean)

$$
\begin{aligned}
& E[X+Y]=E[X]+E[Y] \\
& X \perp Y \Rightarrow E[X \cdot Y]=E[X] \cdot E[Y]
\end{aligned}
$$

\qquad

Why?

$$
\begin{aligned}
& P(f)=\int_{\Gamma} \sum_{F: F L=f} P(F \mid \gamma) \phi(\gamma) d \gamma \\
& =E_{\phi}\left[\sum P(F \mid \gamma)\right] \quad=\sum E_{\phi}[P(F \mid \gamma)] \\
& =\sum E\left[\prod_{e \in C} p_{e}\left(\gamma_{e}\right) \cdot \prod_{e \notin C} q_{e}\left(\gamma_{e}\right)\right] \\
& =\sum \prod_{e \in C} p_{e}^{\prime} \cdot \prod_{e \notin C} q_{e}^{\prime}
\end{aligned}
$$

Wu et al. model

Branches have fixed lengths, but each has an iid variable site-specific rate
for JC, same as ER (eliptical cow) model
for other rate matrices R, eigenvalues of R matter
logdet is additive on this model.

Moral of story so far?

Pessimist: Models of DNA evolution that ignore site position can't be too different to UCM

Optimist: Unrealistic models can have more realistic interpretations
...and these more 'realistic(?)' models allow T to be identified...

Part 4: The Bayesian Star Paradox

Some general comments

Not peculiar to phylogeny
Not peculiar to Bayesian
The phenomenon is real (contra. Kolaczkowsi and Thornton)
But... it's signficance for phylogenetics is debatable.

$$
P\left[T_{1} \mid \text { Data }\right]=c \cdot \int_{0}^{\infty} \int_{0}^{\infty} P\left[\text { Data } \mid T_{1}, t_{0}, t_{1}\right] f\left(t_{0}, t_{1}\right) d t_{0}, d t_{1}
$$

"Data" $=\left(n_{0}, n_{1}, n_{2}, n_{3}\right), n_{0}+n_{1}+n_{2}+n_{3}=n$ (sequence length)

$$
P_{1}=P\left[T_{1} \mid \text { Data }\right]
$$

P_{1} is a random variable.

- As n becomes large we might expect P_{1} to $\rightarrow 1 / 3$
-What's distribution of P_{1} or $\left(P_{1}, P_{2}, P_{3}\right)$ for n large?
- Brute force calculation?

Abducted by an alien circus company, Professor Winters is forced to write Linear Algebra equations in center ring.

Simpler problem: coin tossing (Bootstrap)

\qquad

Mol. Biol. Evol. 23(10):1819-1823. 2006

LETTERS

Is There a Star Tree Paradox?

Bryan Kolaczkowski* and Joseph W. Thornton ${ }^{\dagger}$

"...With infinite data, posterior probabilities give equal support for all resolved trees, and the rate of false inferences falls to zero. We conclude that there is no star tree paradox caused by not sampling unresolved trees."

Chicken scratchings...

$$
\begin{aligned}
& P\left(H_{1} \mid D\right)=\frac{P\left(D \mid H_{1}\right) P\left(H_{1}\right)}{P(D)}=\left(1+Y^{-1}\right)^{-1} \\
& Y=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)} \quad \begin{array}{l}
\text { Show: Under } \mathrm{H}^{\star} \text { the probability that } \mathrm{D} \text { is such that } \mathrm{Y} \text { is } \\
\text { large }(\mathrm{K}) \text { tends to } e_{\mathrm{K}}>0 \text {, as } \mathrm{n} \text { grows. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& Y=\frac{E\left[(1+X)^{h}(1-X)^{t}\right]}{E\left[(1-X)^{h}(1+X)^{t}\right]} \\
& h=n \frac{1}{2}+C \sqrt{n} \\
& Y=\frac{E\left[\left(1-X^{2}\right)^{n / 2} Z^{C \sqrt{n}}\right]}{E\left[\left(1-X^{2}\right)^{n / 2} Z^{-C^{\sqrt{n}}}\right]} \quad Z=\frac{1+X}{1-X}
\end{aligned}
$$

Chicken scratchings 2:

$$
Y=\frac{E\left[\left(1-X^{2}\right)^{n / 2} Z^{C^{\sqrt{n}}}\right]}{E\left[\left(1-X^{2}\right)^{n / 2} Z^{-C \sqrt{n}}\right]} \quad Z=\frac{1+X}{1-X}
$$

$$
\text { Let } W:=1-X^{2}
$$

Under $\mathrm{H}^{\star}, C \geq c$ w.p. $d=d(c)>0$.

$$
Y \geq \frac{E\left[W^{n / 2} c^{2} n(1-W)\right]}{E\left[W^{n / 2}\right]}=2 c^{2}\left(k \frac{E\left[W^{k}\right]-E\left[W^{k+1}\right]}{E\left[W^{k}\right]}\right) \rightarrow f(c)
$$

Exercise for the 'mathmos'

- Show that, under H^{*} and any 'tame' prior that the distribution of $\mathrm{P}\left(\mathrm{H}_{1} \mid \mathrm{D}\right)$ converges to uniform $[0,1]$ as n->infty.

What about trees?

Theorem

Consider sequences of length n generated by a star tree T_{0} with (positive, finite) edge length t_{1}.

For any 'tame' prior on the three resolved trees and their branch lengths, and any $\varepsilon>0$ the following holds: The probability that the Data has the property that
$P\left(T_{1} \mid\right.$ Data $)>1-\varepsilon$,
does not converge to 0 as n tends to infinity.

Remedies

Allow > 0 prior probability to unresolved trees

Let prior on branch lengths depend on n (sequence length)
--i.e. shrink to zero at correct rate.

Thanks to....

- Alexander von-Humbold Stiftung
- NZ Marsden Fund
- Reprints
www.math.canterbury.ac.nz
ALLAN
WILSON
CENTRE

