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Some mathematical aspects  

of Bayesian phylogenetics 

Budapest, June 28, 2008 

Overview 

!! Priors on trees 

!! Decision-theoretic view 

!! Models of sequence evolution 

!! The Bayesian ‘star paradox’ 
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Part 1: Priors on binary trees* 

!! TB – tree on labelled leaf set B 

!! Desirable properties: 
"! Exchangeable 

"! Markovian  

"! Consistent 

3 *From ‘Gibbs fragmentation trees ’, McCullagh, Pitman, Winkel, 2008 
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Priors on trees: Aldous’ beta-splitting model 
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Uniform (PDA) distribution on binary trees 

Yule model (=coalescent) 

Intermediate balance (good fit to some data) 
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What’s special about the beta-splitting model 
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!! Theorem [McCullagh, Pitman, Winkel, 2008]. 

 If a prior on binary trees is exchangable, Markovian,

 consistent, and with factorizing p, then it is the Aldous !

-splitting model for some ! >- 2.  
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Strange bayes, indeed? 

!! Clade size… a uniform prior on trees gives a uniform prior  

on clades (regardless of size)? 

Pickett, K.M. and Randle, C.P., 2005.  Strange bayes indeed: 

uniform topological priors imply non-uniform clade priors. 

Mol. Phyl. Evol. 34, 203-211.  

On the impossibility of uniform priors on clade size 
Mike Steel  and Kurt M. Pickett (MPE,2006) 
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    a    b   c   d                a     b   c       d  

!!Theorem: For n>4, there is no prior on trees is uniform on 
clade size. 

P(bcd clade) =  3/15 + 0/15 = 1/5   

P(cd clade) =  2/15 + 1/15 = 1/5 

Why non-uniform priors on clades are both unavoidable and  
unobjectionable 

Joel D. Velasco (MPE,2007) 
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Part 2: A decision-theoretic perspective (I) 
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Example: 

!! 0-1 loss 

0 if T*=T,  

1, if T* is different to T. 
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!! Trivial observation: The tree T that  minimizes

 the EPL for L0/1 is the max posterior probability
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A decision-theoretic perspective (II) 
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Branch loss 
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!! Theorem [M. Holder*, 2008]. 

 The tree T that  minimizes the EPL for L" is precisely the

 tree consisting of those splits # with   

A decision-theoretic perspective (II) 
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*A justification for reporting majority-rule consensus trees in Bayesian phylogenetics, Syst. Biol. (in press).  

Question: What tree minimizes the expected 
posterior loss for L"? 

Posterior probability of split #$
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Part 3:  Models of sequence evolution 

`elliptical cows’ 

‘spherical  cows’ 
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Cows come in different sizes… 

1990-ish -- “rates across 
sites” (Yang et al.) 

12 

Some cows have horns… 

 … others are just plain weird 

2000-ish -- “heterotachy” (Philipe, 
Lockhart, et al; Fitch 1970-ish) 
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Phylogenetic Mixtures 
!! [Matsen, E. and S, 2007. Phylogenetic mixtures on a single tree can mimic a tree 

of another topology. Systematic Biology 56(5): 767--775. ] 

Two elliptical cows = elliptical cow (same or different topology) 
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From spherical cows to…. ‘real’ cows 

UCM: The “ultra-common mechanism” 
model 

NCM: The “no-common mechanism” model 
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How to restore ‘statistical respectibility’  
to a NCM approach? 

Two recent approaches  

!! Huelsenbeck, Ane, Larget, Ronquist  

!! Wu, Susko and Roger 

“A Bayesian perspective on a non-parsimonious 
parsimony model.”  Syst. Biol. 56(3): 406—419, 2008.  

“An independent heterotachy model and its 
implications for phylogeny and divergence time 
estimation.”  Mol. Phyl. Evol. ;46(2):801—806, 2008. 
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From ‘real’ cows, to…. 

BNCM: The Bayesian “no-common 
mechanism” model (Neyman-model) 

=  

UCM: The “ultra-common mechanism” 
model 
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!! Properties of expectation (mean) 

! 

E[X +Y ] = E[X]+ E[Y ]

X"Y # E[X $Y ] = E[X] $ E[Y ]

18 

Why? 
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Wu et al. model 

Branches have fixed lengths, but each has an 
iid variable site-specific rate 

    for JC, same as ER (eliptical cow) model  

   for other rate matrices R, eigenvalues of  
R matter 

   logdet is additive on this model. 
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Moral of story so far? 

Pessimist: Models of DNA evolution that ignore 
site position can’t be too different to UCM 

Optimist:  Unrealistic models can have more 
realistic interpretations  

 …and these more ‘realistic(?)’ models allow T to  be identified… 
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Part 4:  The Bayesian Star Paradox 

Some general comments 

Not peculiar to phylogeny 

Not peculiar to Bayesian 

The phenomenon is real 
(contra. Kolaczkowsi and 
Thornton)  

But… it’s signficance for 
phylogenetics is debatable. 
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“Data” = (n0, n1, n2, n3), n0+n1+n2+n3 = n (sequence length) 

P1 is a random variable.  

•! As n becomes large we might expect P1 to ->1/3   

•!What’s distribution of P1 or  (P1, P2, P3) for n large?  
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!! Brute force calculation?   

24 

“We encountered problems with numerical integration using 

Mathematica for large n, and it is unclear whtat the limiting 

distribution f(P1, P2, P3) is when             .” 

Yang and Rannala, MBE 
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Simpler problem: coin tossing (Bootstrap) 

H1: p> ! 

H2: p< ! 

‘Truth’:  H* p= ! 

26 

“…With infinite data, posterior probabilities give equal 
support for all resolved trees, and the rate of false 
inferences falls to zero. We conclude that there is no 
star tree paradox caused by not sampling unresolved 
trees.” 
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Simpler problem: coin tossing (Bayesian) 

H1: p> ! 

H2: p< ! 

‘Truth’:  H* p= ! 

p 

0 0.5 1.0 

‘Tame’ prior 

f(p) 
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Chicken scratchings… 

Show: Under H* the probability that D is such that Y is 
large (>K) tends to eK > 0, as n grows. 
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Chicken scratchings 2: 
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Under H*,   C >c, w.p. d = d(c)>0.   
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Exercise for the ‘mathmos’ 

!! Show that, under H* and any ‘tame’ prior that
 the distribution of P(H1|D) converges to
 uniform [0,1] as n->infty.   
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What about trees? 

Theorem  

 Consider sequences of length n generated by a star tree T0 with 
(positive, finite) edge length t1.  

 For any ‘tame’ prior on the three resolved trees and their branch 
lengths, and any %>0 the following holds: The probability that the 
Data has the property that  

   P(T1|Data) > 1-%,  

 does not converge to 0 as n tends to infinity.  

32 

Ziheng Yang,  Fair-Balance Paradox, Star-tree Paradox, and Bayesian Phylogenetics 
Molecular Biology and Evolution 2007 24(8):1639-1655  

Ed Susko – forthcoming paper describes f(P1) and extension to 
larger trees with different branch lengths 

Not uniform! 
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Remedies 

Allow > 0 prior probability to unresolved trees 

Let prior on branch lengths depend on n 
(sequence length) 
 --i.e.  shrink to zero at correct rate. 

Thanks to…. 

!! Alexander von-Humbold Stiftung 

!! NZ Marsden Fund 

"! Reprints 

  www.math.canterbury.ac.nz 


