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Single Alignment Approach
 PhastCons (Siepel et al., 2004)

 Two-state HMM (fast/slow substitution)
 Conditioned on a single alignment
 Emission states are alignment columns

 Slow state tends to emit more conserved 
columns

 Can increase number of states, use indels 
for inference
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Conventional Challenges
 TFBS not always perfectly conserved
 Single alignment approach

 Drosophila TFBS detection (Stark et al, 
2007)

 61% agreement from different alignments
 Pollard et al., 2006 

 Alignment inaccuracies can result in significant 
errors for evolutionary studies

 Comparative tools must properly accommodate 
alignment uncertainty



Statistical Alignment/Rate 
Variation
 TKF92: Local substitution rate variation

 fast/slow fragments
 only variation in substitution rate

 Arribas-Gil, Metzler, Plouhinec (2007)
 modified TKF92 HMM implementing fast/

slow fragments
 slow fragments don’t contain indels

 successfully developed MCMC sampler 
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Statistical Aligner, Phylogenetic Footprinter 
(SAPF)

 Neutral evolution vs. purifying selection
 Fast/slow fragments evolve under same 

model with rates of substitution, indel
 Analyze multiple species (4-5 max), 

related by a known phylogeny
 HMM transducers (Holmes, 2003, 2007)

 Functional element predictions made 
from distribution of alignments
 Correctly accounts for uncertainty



SAPF Branch HMM 
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•  Branch HMM represents evolutionary process on each branch
•  Second wait state enables delete to self-transition



The Multiple HMM
 PhyloComposer used to generate 

multiple sequence HMM
 Each MHMM state represents collection of 

branch HMM states
 Emission states are alignment columns

 Double number of states 
 Corresponds to creating an HMM on the 

root, alternating between fast/slow
 Fixes Fast/Slow annotation on a column 

8



SAPF HMM Parameters
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• Baum-Welch followed by EM used to calculate ML estimates 
for all parameters
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Drosophila Genome Data
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SAPF Results
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Fig. 6. Two possible alignments of a region in the eve stripe 3+7 CRM.

While both alignments are plausible, only (b) aligns the binding site in all

four species. Posterior probabilities of the most likely alignment column

range from 43%-72% in the binding site region, exhibiting the uncertainty

in the alignment. This example demonstrates the necessity for analyzing

multiple alignments in order to predict functional elements.

considered. This enables SAPF to correctly annotate the binding

site.

The hypothesis that summing over a distribution of alignments

can improve functional element predictions is supported further by

the results from the eve mesodermal enhancer (eme) CRM. SAPF

was run on on sequence data from D. melanogaster, D. erecta, D.

willistoni, and D. grimshawi. As in the eve stripe 3+7 dataset, these

sequences are very distantly related with the exception of the first

two. The level of conservation among many of the 13 annotated

binding sites is extremely poor, and is thus accompanied by high

levels of uncertainty throughout all regions of the alignment. Figure

5c reveals that analyzing the distribution of alignments significantly

increased the accuracy of the predictions, augmenting the AUC

statistic by 22.14%. The dangers of using a single alignment to

make functional predictors are apparent when observing that for the

MPP alignment predictions, the AUC value of 50.26% is virtually

identical to that of a random predictor.

3.2 Simulated Sequence Data

The results of the ROC analysis for the first simulated dataset

are shown below in Figure 7a. The results exhibit two important

points. The first is that the quality of the predictions is extremely

good, with an AUC value of over 95%. Secondly, the AUC is nearly

identical for predictions made from a distribution of alignments, and

predictions based off the MPP alignment. This is consistent with the

results obtained from the eve stripe 2 dataset.

In the second simulated dataset, the parameter values for the

functional sequence states have been altered to create significantly

more evolutionary events (substitutions, insertions, and deletions)

in the functional elements. Due to the increased uncertainty in the

alignment of these regions, we expected that SAPF would perform

significantly better by summing over a distribution of alignments.

We also expected that the increased number of mutations in the

functional elements should make them more difficult to detect.

The ROC analysis of the second dataset, shown in Figure 7b,

confirms both of these predictions. Altering the parameter values

reduces the AUC value for the distribution-based predictions curve
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Fig. 7. ROC curves for predictions created from summing over an alignment

distribution, or from analyzing a single MPP alignment for two simulated

datasets. (a) Dataset was created with the estimated parameters from the eve

stripe 2 dataset. (b) Dataset was created with modified parameters to increase

uncertainty in the alignment of functional regions.

to slightly over 80%. Additionally, SAPF performs significantly

better when summing over a distribution of alignments than it does

when analyzing the single MPP alignment alone. The increase in

AUC by 10.50% demonstrates SAPF’s potential benefit when there

is uncertainty in the alignment of the functional regions.

3.3 The Effect of Multiple Sequences

To demonstrate the additional potential benefit of adding multiple

sequences, we ran SAPF on different numbers of species while

analyzing the eve stripe 3+7 locus. In addition to the previously

mentioned analysis with four species (D. melanogaster, D. erecta,

D. willistoni, and D. virilis), we also ran the analysis using only

three species (excluding D. virilis), and ran one final analysis

including just two species (D. melanogaster and D. virilis). The

ROC analysis shown in Figure 5d demonstrates the additional

benefit of adding more species to the analysis, in particular, the

significant jump in predictive ability gained from going from

two species to three. All curves were generated from predictions

based on a distribution of alignments. While we expect that

the benefit from adding additional species information may be

highly variable, these results imply that significant amounts of

phylogenetic information could be lost by focusing on only a small

number of sequences.

4 CONCLUSION

Our results have demonstrated, for both simulated and Drosophila

sequence data, the potential of combining statistical alignment with

phylogenetic footprinting to improve the accuracy of regulatory

signal detection. We have shown that this benefit increases as the

uncertainty in the alignment of functional regions increases, and we

have also demonstrated the benefit of analyzing multiple sequences

as opposed to a pairwise alignment.

Improvements to SAPF can be made, especially relating to the

algorithm’s speed and efficiency. Multiple alignment is a np-hard

problem, and adding phylogenetic footprinting techniques slows

the algorithm further. Due to the large number of states in the

SAPF HMM, it is currently only possible to analzye data from

four different species. While this was sufficient to demonstrate

the potential improvement of summing over a distribution of
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Alignment Uncertainty
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Summary
 Transducer framework allows for 

multiple sequence analysis
 State doubling enables PF
 Integrating over alignments can improve 

performance
 Increase speed, analyze more data

 Aim is to analyze 12-16 species
 MCMC approach

 Collaboration with Istvan Miklos, Adam Novak



StatAlign Package
 Bayesian co-estimation of alignment, 

phylogeny
 partial alignment sampler

 TKF92 represents each branch alignment
 Kimura3, Jukes-Cantor, etc.
 all parameters are sampled

 phylogeny sampling
 branch lengths, tree topology

 Java GUI

17



Adding Rate 
Heterogeneity 
 Fix phylogeny
 Split into fast and slow fragments

 Add root HMM
 Sample new parameters

 expected fragment length
 branch length scaling (substitution, indel)

 Sample fragment locations
 fragment split (create new fragment boundary)
 fragment merge (delete fragment boundary)
 adjust fragment boundary 18



MCMC Challenges 
 Low probability regions

 alignment, fragment boundaries
 must visit occasionally, not often

 visiting rarely causes skewed MH ratios
 Mixing

 Allowing homology between sequences in 
different fragments
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MCMC Results (4 species)
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Substitution Scale Density

Substitution Branch Scale Parameter
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MCMC Results (10 Species)
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Substitution Scale Density
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Indels in binding site regions
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Conclusions  
 Modified StatAlign to incorporate rate 

heterogeneity 
  Gives similar results to dynamic 

programming
 Hopefully enables us to analyze more data

 Indels in fast/slow fragments
 Both frequency and length distributions are 

important in inference
 Especially important with larger numbers of 

species 26



Advanced Models of TFBS

 Position state weight matrix
 Accurate modeling of known binding sites
 Incorporate into SAPF HMM

 Improve quality of predictions, alignment

 Accurately model binding site gain/loss
 Better understanding of TFBS evolution
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