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Motivation

Reasons to Study HIV Recombination

@ Allows for “discontinuous” jumps in evolution

@ Has immediate medical applications (HIV drug resistance)
@ Complicates phylogenetic reconstruction

@ Not as rare as thought before (43 circulating recombinant
forms (CRFs) in the Los Alamos HIV database)

What do we want to know about HIV recombination?

@ Spatial distribution of recombination break-points

@ Biochemical and selective forces that shape this
distribution
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Steps in HIV Recombination

@ Co-infection of host cell by
2 distinct subtypes
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Steps in HIV Recombination

@ Co-infection of host cell by
2 distinct subtypes

@ Co-packaging of 2 distinct
RNAs into a single virion

© Strand jumping during
reverse transcription

@ Release of recombinant
virus
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Evolutionary Histories with Recombination

TAGCTA ' GACG
AAGCTA  GTCA
AATGTT  GTCA
AATGTT, GACG

@ Hein’s parsimony algorithm (Hein, 1990)

@ Various sliding window approaches (Salminen et al., 1995,
McGuire et al., 1997, Husmeier et al., 2001, ...)

@ Hidden Markov models (Husmeier et al., 2003, 2005)

@ Multiple change-point models (Suchard et al., 2002, 2003,
Minin et al., 2005)
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Dual Multiple Change-Point (DMCP) model, Part 1

organism 1 G CTAA..
organism 2 | GCTAA.._id
organism 3 TGTTA..
organism4 T.GT T C ...
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DMCP Model, Part 2
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@ Two change-point processes are independent
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DMCP Analysis, Example 1
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DMCP Analysis, Example 2 - HIV CRF
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@ Uncertainty in number and locations of break-points
@ Variable dimensions = reversible jump MCMC
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Multiple Recombinants
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Bayesian Hierarchical Model

Common Recombination Prior
@ R - indicator of a recombination at site s, ps = Pr(Rs = 1)

%) PI'(R1 =TIq,..., RS = rs) = H§:1 p£5(1 — ps)1—rs
@ M =33 | Rs ~ Poisson (2521 ps) (approximately)
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Bayesian Hierarchical Model

Common Recombination Prior
@ R - indicator of a recombination at site s, ps = Pr(Rs = 1)

@ Pr(Ry =ry,...,Rs =15) = [[5_ p=(1 — ps)'~™
@ M =33 | Rs ~ Poisson (2521 ps) (approximately)

05000 RCC20)

@ v =1In (ﬂsps) - recombination log-odds

@ Pr(v|w) o w12 exp {_% 25;11 (s — ’Ys+1)2}
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Graphical Model Representation
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Graphical Model Representation
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Graphical Model Representation
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Graphical Model Representation
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MCMC Algorithm

Metropolis-within-Gibbs with two major blocks
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MCMC Algorithm

Metropolis-within-Gibbs with two major blocks

Updating individual-level parameters
@ Condition on population-level recombination probabilities

@ Use DMCP kernels with informative prior on recombination
break-point locations
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MCMC Algorithm

Metropolis-within-Gibbs with two major blocks

Updating individual-level parameters
@ Condition on population-level recombination probabilities

@ Use DMCP kernels with informative prior on recombination
break-point locations

Updating population-level parameters
@ Use fast GMRF sampling (Rue et al., 2001, 2004)
@ Draw w* from an arbitrary univariate proposal distribution
@ Use Gaussian approximation of Pr(v | w*, R) to propose ~*
@ Jointly accept/reject (w*,~*) in MH step
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Implementing Constraints

Objective

Pr(M >0)=c = Y5 ,ps=—In(1—c).
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Implementing Constraints

Pr(M >0)=c = Y5 ,ps=—In(1—c).

Sum-of-probabilities constraint is non-linear in ~:
Y_1e™/(1+e*)=—In(1—c)
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Implementing Constraints

Objective
Pr(M >0)=c = Y5 ,ps=—In(1—c).

Problem

Sum-of-probabilities constraint is non-linear in ~:
Y_1e™/(1+e*)=—In(1—c)

| \

Solution 1

Linearize constraint via Taylor expansion about arbitrary point
v. Sampling from GMRFs with linear constraints is easy (just
re-centering). Choosing v is tricky, but feasible.

Solution 2
Renormalize the prior - not implemented yet!

ps =Pr(Rs =1) = —In(1 — C)ps/Z§:1 Ps

\
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Gag Recombinants
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Env Recombinants
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@ 53 env conservatively selected recombinants
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Not controlled for subtype composition

@ R2is experimentally determined hot-spot (Galetto et al.,
2004, 2006)
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