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Motivation

Reasons to Study HIV Recombination
Allows for “discontinuous” jumps in evolution

Has immediate medical applications (HIV drug resistance)

Complicates phylogenetic reconstruction

Not as rare as thought before (43 circulating recombinant
forms (CRFs) in the Los Alamos HIV database)

What do we want to know about HIV recombination?
1 Spatial distribution of recombination break-points

2 Biochemical and selective forces that shape this
distribution
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Steps in HIV Recombination

1

1 Co-infection of host cell by
2 distinct subtypes

2 Co-packaging of 2 distinct
RNAs into a single virion

3 Strand jumping during
reverse transcription

4 Release of recombinant
virus
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Evolutionary Histories with Recombination
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Hein’s parsimony algorithm (Hein, 1990)

Various sliding window approaches (Salminen et al., 1995,
McGuire et al., 1997, Husmeier et al., 2001, ...)

Hidden Markov models (Husmeier et al., 2003, 2005)

Multiple change-point models (Suchard et al., 2002, 2003,
Minin et al., 2005)
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Dual Multiple Change-Point (DMCP) model, Part 1
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Λ = {λij} - substitution matrix
P(t) = etΛ

HKY model:
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π = (πA, πG, πC , πT )

free parameter: κ = α
β
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DMCP Model, Part 2

1 2 τM−1 τM

1Θ 2Θ JΘ

alignmentnucleotide sequence
τ τ

∏

s

f (Ys|τ(s),Θ(s)) - phylogenetic likelihood

1 = ξ0 < ξ1 < · · · < ξM < ξM+1 = S + 1, ∀ s ∈ [ξm−1, ξm),
τ(s) = τm, with τm $= τm+1 - recombination break-points

1 = ρ0 < ρ1 < · · · < ρJ < ρJ+1 = S + 1, ∀ s ∈ [ρj−1, ρj),
Θ(s) = Θj - substitution change-points

Two change-point processes are independent
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DMCP Analysis, Example 1
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DMCP Analysis, Example 2 - HIV CRF
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Uncertainty in number and locations of break-points
Variable dimensions ⇒ reversible jump MCMC
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Multiple Recombinants

Sparse data
(# break-points &
sequence length)

Unbalanced data
(long indels)

recombinant 4

parent 1
parent 2
parent 3
recombinant 1
recombinant 2
recombinant 3
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Bayesian Hierarchical Model

Common Recombination Prior
Rs - indicator of a recombination at site s, ps = Pr(Rs = 1)

Pr(R1 = r1, . . . , RS = rS) =
∏S

s=1 prs
s (1 − ps)1−rs

M =
∑S

s=1 Rs ∼ Poisson
(

∑S
s=1 ps

)

(approximately)

Smoothing GMRF Hyper-Prior

γs = ln
(

ps
1−ps

)

- recombination log-odds

Pr(γ |ω) ∝ ω(S−1)/2 exp
{

−ω
2

∑S−1
s=1 (γs − γs+1)

2
}
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Graphical Model Representation
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Graphical Model Representation
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Graphical Model Representation
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Graphical Model Representation
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MCMC Algorithm

Metropolis-within-Gibbs with two major blocks

Updating individual-level parameters
Condition on population-level recombination probabilities
Use DMCP kernels with informative prior on recombination
break-point locations

Updating population-level parameters
Use fast GMRF sampling (Rue et al., 2001, 2004)
Draw ω∗ from an arbitrary univariate proposal distribution
Use Gaussian approximation of Pr(γ |ω∗, R) to propose γ

∗

Jointly accept/reject (ω∗,γ∗) in MH step
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Implementing Constraints

Objective
Pr(M > 0) = c ⇒

∑S
s=1 ps = − ln(1 − c).

Problem
Sum-of-probabilities constraint is non-linear in γ:

∑S
s=1 eγs/(1 + eγs) = − ln(1 − c)

Solution 1
Linearize constraint via Taylor expansion about arbitrary point
v. Sampling from GMRFs with linear constraints is easy (just
re-centering). Choosing v is tricky, but feasible.

Solution 2
Renormalize the prior - not implemented yet!

p∗

s = Pr(Rs = 1) = − ln(1 − c)ps/
∑S

s=1 ps
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Gag Recombinants
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42 gag
recombinants
From 6 epi-
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All originated
from A and G
subtypes
Length ranges
from 562 to
820 nts (very
unbalanced)
INS-instability
element,
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expression
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Env Recombinants
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53 env conservatively selected recombinants
Not controlled for subtype composition
R2 is experimentally determined hot-spot (Galetto et al.,
2004, 2006)
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