Galton-Watson Trees in Statistical Alignment

Dirk Metzler

Johann Wolfgang Goethe-Universität Frankfurt am Main
Fachbereich Informatik und Mathematik

Workshop on Bayesian Phylogeny Budapest, 25.-29. June 2008

Outline

(9) Galton Watson Trees
(2) Insertion-Deletion Models
(3) Multiple Alignments

4 Challenges/Problems: Bayesian Sampling of Multiple Alignments

Outline

2 Insertion-Deletion Models
(3) Multiple Alignments
(4) Challenges/Problems: Bayesian Sampling of Multiple Alignments

Galton and Watson

Sir Francis Galton 1822-1911

Henry William Watson
1827-1903

Galton and Watson

Sir Francis Galton 1822-1911

Henry William Watson
1827-1903

What's the probability for an English aristocratic family name to die out?

Galton Watson Tree

$$
t=0
$$

$X_{k}:=$ number of offsprings at node k
$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k
$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k
$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k
$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k
$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random
variables

Galton Watson Tree

$$
\begin{aligned}
& t=0 \\
& t=1 \\
& t=2 \\
& t=3 \\
& t=4 \\
& t=5
\end{aligned}
$$ $X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random

$X_{k}:=$ number of offsprings at node k
variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k $X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k $X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random

variables

Galton Watson Tree

$X_{k}:=$ number of offsprings at node k $X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random

variables

Galton Watson Tree

$\mathrm{t}=0$	
$t=1$	
$\mathrm{t}=2$	
$\mathrm{t}=3$	$X_{k}:=$ number of offsprings at node k
	$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random
$t=5$	variables
$\mathrm{t}=6$	
$\mathrm{t}=7$	
$\mathrm{t}=8$	

Galton Watson Tree

$\mathrm{t}=0$	
$\mathrm{t}=1$	
$\mathrm{t}=2$	
$\mathrm{t}=3$	$X_{k}:=$ number of offsprings
$\mathrm{t}=4$	at node k
	$X_{1}, X_{2}, X_{3}, \ldots$ i.i.d. random
$\mathrm{t}=5$	variables
$\mathrm{t}=6$	$\mathbb{E} X_{k}<1:$ "subcritical"
$\mathrm{t}=7$	$\mathbb{E} X_{k}=1:$ "critical"
$\mathbb{E} X_{k}>1:$ "supercritical"	
$\mathrm{t}=8$	
$\mathrm{t}=9$	

Galton-Watson Process in continuous time

Time

Binary Branching GW Process in cont. time

Time

Theorem

If a Galton-Watson process with binary branching or geometric offspring distribution (on $\{0,1,2, \ldots\}$) is still alive at time t, then the number of survivors at time t is geometrically distributed (on $\{1,2,3, \ldots\})$.

Theorem

If a Galton-Watson process with binary branching or geometric offspring distribution (on $\{0,1,2, \ldots\}$) is still alive at time t, then the number of survivors at time t is geometrically distributed (on $\{1,2,3, \ldots\})$.
on $\{0,1,2, \ldots\}: \operatorname{Pr}(X=k)=(1-p)^{k} \cdot p$

Theorem

If a Galton-Watson process with binary branching or geometric offspring distribution (on $\{0,1,2, \ldots\}$) is still alive at time t, then the number of survivors at time t is geometrically distributed (on $\{1,2,3, \ldots\})$.

```
on {0,1,2,\ldots}:}\operatorname{Pr}(X=k)=(1-p\mp@subsup{)}{}{k}\cdot
on {1,2,\ldots}:
    Pr}(X=k)=(1-p\mp@subsup{)}{}{k-1}\cdot
```


Theorem

If a Galton-Watson process with binary branching or geometric offspring distribution (on $\{0,1,2, \ldots\}$) is still alive at time t, then the number of survivors at time t is geometrically distributed (on $\{1,2,3, \ldots\})$.

$$
\begin{array}{ll}
\text { on }\{0,1,2, \ldots\}: & \operatorname{Pr}(X=k)=(1-p)^{k} \cdot p, \mathbb{E}(X)=(1-p) / p \\
\text { on }\{1,2, \ldots\}: & \operatorname{Pr}(X=k)=(1-p)^{k-1} \cdot p
\end{array}
$$

Theorem

If a Galton-Watson process with binary branching or geometric offspring distribution (on $\{0,1,2, \ldots\}$) is still alive at time t, then the number of survivors at time t is geometrically distributed (on $\{1,2,3, \ldots\})$.

$$
\begin{array}{ll}
\text { on }\{0,1,2, \ldots\}: & \operatorname{Pr}(X=k)=(1-p)^{k} \cdot p, \mathbb{E}(X)=(1-p) / p \\
\text { on }\{1,2, \ldots\}: & \operatorname{Pr}(X=k)=(1-p)^{k-1} \cdot p, \mathbb{E}(X)=1 / p
\end{array}
$$

Theorem

If a Galton-Watson process with binary branching or geometric offspring distribution (on $\{0,1,2, \ldots\}$) is still alive at time t, then the number of survivors at time t is geometrically distributed (on $\{1,2,3, \ldots\}$).

$$
\begin{array}{ll}
\text { on }\{0,1,2, \ldots\}: & \operatorname{Pr}(X=k)=(1-p)^{k} \cdot p, \mathbb{E}(X)=(1-p) / p \\
\text { on }\{1,2, \ldots\}: & \operatorname{Pr}(X=k)=(1-p)^{k-1} \cdot p, \mathbb{E}(X)=1 / p
\end{array}
$$

The geometric distribution is the only one on $\{(0) 1,2,3,, \ldots\}$ without memory: $\operatorname{Pr}(X=n+k \mid X>n)=\operatorname{Pr}(X=k)$

Outline

(4) Galton Watson Trees

(2) Insertion-Deletion Models

3 Multiple Alignments
4) Challenges/Problems: Bayesian Sampling of Multiple Alignments

Model of Sequence Evolution

Thorne, Kishino, Felsenstein (1991):
Deletions with rate μ at each site.
Insertions with rate λ right of each site \& at the very left.
Substitutions with Rate s at each site.

TKF alignment convention:
like this:

Reversibility?

Consequence of TKF convention

The bare alignment

$\mathrm{BBBB} _\mathrm{BB} _\mathrm{BB}$
B_BBB_BB_BB
is generated by a Markov chain:

Consequence of TKF convention

The bare alignment

$\mathrm{BBBB} _\mathrm{BB} _\mathrm{BB}$
B_BBB_BB_BB
is generated by a Markov chain:

from \backslash to	${ }^{\mathrm{B}}$	B	$\overline{\mathrm{B}}$
${ }_{\mathrm{B}}^{\mathrm{B}}$	$(1-\lambda \beta) \frac{\lambda}{\mu} e^{-\mu}$	$(1-\lambda \beta) \frac{\lambda}{\mu}\left(1-e^{-\mu}\right)$	$\lambda \beta$
${ }_{\mathrm{B}}$	$\lambda \beta \frac{e^{-\mu}}{1-e^{-\mu}}$	$\lambda \beta$	$\frac{1-e^{-\mu}-\mu \beta}{1-e^{-\mu}}$
-	$(1-\lambda \beta) \frac{\lambda}{\mu} e^{-\mu}$	$(1-\lambda \beta) \frac{\lambda}{\mu}\left(1-e^{-\mu}\right)$	$\lambda \beta$

transition probabilies im (model: TKF'91), $\beta=\frac{1-e^{\lambda-\mu}}{\mu-\lambda e^{\lambda-\mu}}$

The Markov chain (the alignment) is hidden, observable is the pair of sequences emitted by the alignment.

pair Hidden Markov Model (pair HMM)

Why Markov?

Why Geometric Distribution?

Why Geometric Distribution?

Why Geometric Distribution?

Computing transition probabilies

Simplification: $\lambda=\mu$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\mathbb{E}(X)=1
$$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\begin{aligned}
& \mathbb{E}(X)=1 \\
& \operatorname{Pr}(X=k \mid X>0)= \\
& (1-p)^{k-1} \cdot p
\end{aligned}
$$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\begin{aligned}
& \mathbb{E}(X)=1 \\
& \operatorname{Pr}(X=k \mid X>0)= \\
& (1-p)^{k-1} \cdot p \\
& \frac{1}{p}=\mathbb{E}(X \mid X>0)=1+t \cdot \lambda
\end{aligned}
$$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\begin{aligned}
& \mathbb{E}(X)=1 \\
& \operatorname{Pr}(X=k \mid X>0)= \\
& (1-p)^{k-1} \cdot p \\
& \frac{1}{p}=\mathbb{E}(X \mid X>0)=1+t \cdot \lambda \\
& \Rightarrow p=1 /(1+t \cdot \lambda)
\end{aligned}
$$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\begin{aligned}
& \mathbb{E}(X)=1 \\
& \operatorname{Pr}(X=k \mid X>0)= \\
& (1-p)^{k-1} \cdot p \\
& \frac{1}{p}=\mathbb{E}(X \mid X>0)=1+t \cdot \lambda \\
& \Rightarrow p=1 /(1+t \cdot \lambda) \\
& \\
& \begin{aligned}
1= & \mathbb{E}(X) \\
= & \operatorname{Pr}(X=0) \cdot \mathbb{E}(X \mid X=0) \\
& \quad+\operatorname{Pr}(X>0) \cdot \mathbb{E}(X \mid X>0)
\end{aligned}
\end{aligned}
$$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\begin{aligned}
& \mathbb{E}(X)=1 \\
& \operatorname{Pr}(X=k \mid X>0)= \\
& (1-p)^{k-1} \cdot p \\
& \frac{1}{p}=\mathbb{E}(X \mid X>0)=1+t \cdot \lambda \\
& \Rightarrow p=1 /(1+t \cdot \lambda) \\
& \begin{aligned}
1 \Rightarrow & \mathbb{E}(X) \\
= & \operatorname{Pr}(X=0) \cdot \mathbb{E}(X \mid X=0) \\
& \quad+\operatorname{Pr}(X>0) \cdot \mathbb{E}(X \mid X>0) \\
= & \operatorname{Pr}(X>0) \cdot(1+t \cdot \lambda)
\end{aligned}
\end{aligned}
$$

$X:=$ number of survivors at time t

Computing transition probabilies

Simplification: $\lambda=\mu$

$$
\begin{aligned}
& \mathbb{E}(X)=1 \\
& \operatorname{Pr}(X=k \mid X>0)= \\
& (1-p)^{k-1} \cdot p \\
& \frac{1}{p}=\mathbb{E}(X \mid X>0)=1+t \cdot \lambda \\
& \Rightarrow p=1 /(1+t \cdot \lambda) \\
& 1=\mathbb{E}(X) \\
& =\operatorname{Pr}(X=0) \cdot \mathbb{E}(X \mid X=0) \\
& +\operatorname{Pr}(X>0) \cdot \mathbb{E}(X \mid X>0) \\
& =\operatorname{Pr}(X>0) \cdot(1+t \cdot \lambda) \\
& \Rightarrow \quad \operatorname{Pr}(X>0)=1 /(1+t \cdot \lambda)
\end{aligned}
$$

$X:=$ number of survivors at time t

InDels are usually longer than 1 position

J.L. Thorne, H. Kishino, J. Felsenstein (1992) Inching towards reality: an improved likelihood model for sequence evolution. J. Mol. Evol., 34, 3-16.
D. Metzler (2003) Statistical alignment based on fragment insertion and deletion models, Bioinformatics 19:490-499.

FID Model (also a pairHMM):

- instead of single nucleotides, fragments are inserted an deleted with rate λ.
- Length of the fragments: geometrically distributed, mean length: γ.

$$
\operatorname{Pr}(L=k)=\frac{1}{\gamma}\left(1-\frac{1}{\gamma}\right)^{k}
$$

forbidden in TKF92 and FID:

GID Model:

- \uparrow this is allowed
- no hidden Markov structure

Use GID to simulate data and test robustness of FID

How good are FID-based methods when GID/"Long Indel Model" is true?

- no problem for parameter estimations (Metzler, 2003)
- alignment accuracy can be decreased (Miklos, Lunter, Holmes, 2004)

How good are FID-based methods when GID/"Long Indel Model" is true?

- no problem for parameter estimations (Metzler, 2003)
- alignment accuracy can be decreased (Miklos, Lunter, Holmes, 2004)

Maybe generate mixed-geometric gap-length with different types of fragments.

How good are FID-based methods when GID/"Long Indel Model" is true?

- no problem for parameter estimations (Metzler, 2003)
- alignment accuracy can be decreased (Miklos, Lunter, Holmes, 2004)

Maybe generate mixed-geometric gap-length with different types of fragments.
Along a tree fragmentation may change from edge to edge.

InDel Model for detecting conserved regions

A. Arribas-Gil, D. Metzler, J.-L. Plouhinec (2007)

slow	fast TKF92			slow		fast TKF92				slow	fast TKF92	
	BB	BBBB	B	BBBB	BBB	B	BBBB	BB	BBBB	BBBBBBBBB	BBB	BBB

Outline

(1) Galton Watson Trees
 Insertion-Deletion Models

(3) Multiple Alignments
4) Challenges/Problems: Bayesian Sampling of Multiple Alignments
I. Holmes, W. J. Bruno (2001) Evolutionary HMMs: a Bayesian approach to multiple alignment, Bioinformatics 17:803-820.
R. Fleißner, D. Metzler, A. von Haeseler (2005) Simultaneous statistical multiple alignment and phylogeny reconstruction. Systematic Biology 54(4):548-61.

multiple HMM for sampling a sequence given its neighbours

G.A. Lunter, I. Miklós, Y.S. Song, J. Hein (2003) An efficient algorithm for statistical multiple alignment on arbitrary phylogenetic trees. J. Comp. Biol. 10(6):869-889.

Tree-Indexed Heirs Line $=$: TIHL

A

A

A
A

A
\mathbf{A}
-

A -
A C
-

A
AC

A -
A C

A $-G$
A $C G$
$-\quad-T$

A $-\mathbf{G}$
A C G
$-\quad-\mathbf{T}$

$\mathbf{A}-\mathbf{G} \mathbf{A}$
$\mathbf{A C G -}$
$-\quad \mathbf{T}-$

A G
ACG
TA

A-GA
AC G-
_ - T -

A G
ACG
TA

A-GA
AC G -
_ - T -

A-GA
AC G-

- - T -

A-GAA-
ACG-A-
_ - T - - T

AGA
ACGA
TAT

A-GAA-
ACG-A-

- - T- - T

A-GAA_T
ACG-A -
_ - T- - T -

AGAT
ACGA
TAT
$A_{-} G A A_{-} T$
ACG-A--

- - T- \mathbf{T} -

TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

$$
P_{\mathcal{S}}(k)=\sum_{(\mathcal{R}, e): \mathcal{S}=[\mathcal{R}, e]} p(e) q(e) P_{\mathcal{R}}\left(k-v_{e}\right) \vartheta(e, k)
$$

where
k : Multi-index of Positions in sequences at leaves
$\mathcal{S}=[\mathcal{R}, e] \quad: \quad$ tihl e turns soan \mathcal{S} into soan \mathcal{R}
$P_{\mathcal{S}}(k)$: Pr (sequences up to k are generated and end there)
$p(e)=\operatorname{Pr}($ indel history of $e)$
$q(e)=\operatorname{Pr}($ no inserts at nodes in $e)$
$\vartheta(e, k)=\operatorname{Pr}(e$ emits base given in data types at $k)$
$v_{e} \in\{0,1\}^{n} \quad: \quad$ indicates postions in leaf-sequences to which e emi

TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

TKF91: states of hidden Markov chain are the Sets Of Active Nodes (soans).

Transfer this to FID or TKF92 (fragmentation may change from edge to edge)

- D. Metzler, R. Fleißner, A. Wakolbinger, A. von Haeseler (2005) Stochastic insertion-deletion processes and statistical sequence alignment.
- D. Metzler, R. Fleißner (2007) Sequence Evolution Models for Simultaneous Alignment and Phylogeny Reconstruction.
state space: edge-labellings with $\{B, H, e, b, h\}$.

tihl $=$ tree indexed heirs line
state space: edge-labellings with $\{B, H, e, b, h\}$.

tihl $=$ tree indexed heirs line

Example: 3-leaved tree
TKF91: $2^{3}=8$ possible sets of active nodes
TKF92/FID: $5^{3}=125$ possible labellings, 41 of them are relevant

Outline

Galton Watson Trees

 Insertion-Deletion Models}(3) Multiple Alignments

4 Challenges/Problems: Bayesian Sampling of Multiple Alignments

- re-sample alignments of 3-star subtrees (like J.L. Jensen and J. Hein, 2005, do for TKF91)
- do this only for limited parts of the sequences
- Can non-emitting tihls be ignored?
- assing sequences to internal nodes or use nucleotide (or AA) distributions?

- re-sample alignments of 3-star subtrees (like J.L. Jensen and J. Hein, 2005, do for TKF91)
- do this only for limited parts of the sequences
- Can non-emitting tihls be ignored?
- assing sequences to internal nodes or use nucleotide (or AA) distributions?

When changing the tree topology...

When changing the tree topology...

When changing the tree topology...

When changing the tree topology...

...keep alignments of exterior sequences fixed.
(TKF91: 32 SOANS; FID: 437 relevant labellings)

Conclusions

- We need multiple-alignment sampling to assess the full uncertainty in phylogeny estimation
- Let's write the software and try if it works! - THANK YOU!

Conclusions

- We need multiple-alignment sampling to assess the full uncertainty in phylogeny estimation
- Let's write the software and try if it works!

Conclusions

- We need multiple-alignment sampling to assess the full uncertainty in phylogeny estimation
- Let's write the software and try if it works!
- THANK YOU!

