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Galton and Watson

Sir Francis Galton
1822–1911

Henry William Watson
1827–1903

What’s the probability for an English aristocratic family name to
die out?



Galton Watson Trees Insertion-Deletion Models Multiple Alignments Challenges/Problems

Galton Watson Tree
t = 0

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Galton Watson Tree

t = 1

t = 0

t = 2

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Galton Watson Tree

t = 1

t = 0

t = 2

t = 3 Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Galton Watson Tree

t = 1

t = 0

t = 2

t = 3

t = 4

t = 5

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Galton Watson Tree

t = 1

t = 0
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t = 3

t = 4

t = 5

t = 6

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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at node k
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Galton Watson Tree

t = 1

t = 0

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Galton Watson Tree

t = 1
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t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
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Galton Watson Tree

t = 1

t = 0

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

Xk := number of offsprings
at node k

X1, X2, X3, . . . i.i.d. random
variables
EXk < 1 : “subcritical”
EXk = 1 : “critical”
EXk > 1 : “supercritical”
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Galton-Watson Process in continuous time

Time
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Binary Branching GW Process in cont. time

Time
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Theorem
If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2, . . . }) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on
{1,2,3, . . . }).
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Theorem
If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2, . . . }) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on
{1,2,3, . . . }).

on {0,1,2, . . . }: Pr(X = k) = (1− p)k · p



Galton Watson Trees Insertion-Deletion Models Multiple Alignments Challenges/Problems

Theorem
If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2, . . . }) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on
{1,2,3, . . . }).

on {0,1,2, . . . }: Pr(X = k) = (1− p)k · p
on {1,2, . . . }: Pr(X = k) = (1− p)k−1 · p
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Theorem
If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2, . . . }) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on
{1,2,3, . . . }).

on {0,1,2, . . . }: Pr(X = k) = (1− p)k · p , E(X ) = (1− p)/p
on {1,2, . . . }: Pr(X = k) = (1− p)k−1 · p
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Theorem
If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2, . . . }) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on
{1,2,3, . . . }).

on {0,1,2, . . . }: Pr(X = k) = (1− p)k · p , E(X ) = (1− p)/p
on {1,2, . . . }: Pr(X = k) = (1− p)k−1 · p , E(X ) = 1/p
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Theorem
If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2, . . . }) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on
{1,2,3, . . . }).

on {0,1,2, . . . }: Pr(X = k) = (1− p)k · p , E(X ) = (1− p)/p
on {1,2, . . . }: Pr(X = k) = (1− p)k−1 · p , E(X ) = 1/p

The geometric distribution is the only one on {(0, )1,2,3, . . . }
without memory: Pr(X = n + k | X > n) = Pr(X = k)
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Model of Sequence Evolution
Thorne, Kishino, Felsenstein (1991):

Deletions with rate µ at each site.
Insertions with rate λ right of each site & at the very left.
Substitutions with Rate s at each site.

A

A

C

CCC GG

T

TT

C GG CT

time
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TKF alignment convention:
like this:

ACGT_TC_GC_
A_TTG_CC_CG

not like this:

ACGT_TCG_C_
A_TTG_C_CCG

A

A

C

CCC GG

T

TT

C GG CT

time
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Reversibility?

reversed
time

time
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Consequence of TKF convention

The bare alignment

BBBB_BB_BB_
B_BBB_BB_BB

is generated by a Markov
chain:

Start EndeB
B

B
_

_
B
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Consequence of TKF convention

The bare alignment

BBBB_BB_BB_
B_BBB_BB_BB

is generated by a Markov
chain:

Start EndeB
B

B
_

_
B

from \ to B
B

B
_

_
B

B
B (1− λβ) λ

µ
e−µ (1− λβ) λ

µ
(1− e−µ) λβ

B
_ λβ e−µ

1−e−µ λβ
1−e−µ

−µβ

1−e−µ
_
B (1− λβ) λ

µ
e−µ (1− λβ) λ

µ
(1− e−µ) λβ

transition probabilies im (model: TKF’91), β = 1−eλ−µ

µ−λeλ−µ
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The Markov chain (the alignment) is hidden, observable is the
pair of sequences emitted by the alignment.

A C G T T C G C

A T T G C C C G

BB
BB

BB
BB

BB
B

B
BBB

B
-

-
-

-
-

-

pair Hidden Markov Model (pair HMM)
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Why Markov?

B B B B

B B B B B B B

X

X

X

B

BB

X

B

B
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Why Geometric Distribution?

B _

_ B

0

t

???

???

???
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Why Geometric Distribution?

B _ _

B B_ ???

0

t

???

???
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Why Geometric Distribution?

B ___

_ B B B
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???

0

t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1
Pr(X = k | X > 0) =
(1− p)k−1 · p

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1
Pr(X = k | X > 0) =
(1− p)k−1 · p
1
p = E(X | X > 0)= 1+ t · λ

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1
Pr(X = k | X > 0) =
(1− p)k−1 · p
1
p = E(X | X > 0)= 1+ t · λ
⇒ p = 1/(1+ t · λ)

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1
Pr(X = k | X > 0) =
(1− p)k−1 · p
1
p = E(X | X > 0)= 1+ t · λ
⇒ p = 1/(1+ t · λ)

1 = E(X )

= Pr(X = 0) · E(X | X = 0)
+ Pr(X > 0) · E(X | X > 0)

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1
Pr(X = k | X > 0) =
(1− p)k−1 · p
1
p = E(X | X > 0)= 1+ t · λ
⇒ p = 1/(1+ t · λ)

1 = E(X )

= Pr(X = 0) · E(X | X = 0)
+ Pr(X > 0) · E(X | X > 0)

= Pr(X > 0) · (1+ t · λ)

X := number of survivors at time t
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Computing transition probabilies

Simplification: λ = µ

B _

_ B

0

t

???

???

???

E(X ) = 1
Pr(X = k | X > 0) =
(1− p)k−1 · p
1
p = E(X | X > 0)= 1+ t · λ
⇒ p = 1/(1+ t · λ)

1 = E(X )

= Pr(X = 0) · E(X | X = 0)
+ Pr(X > 0) · E(X | X > 0)

= Pr(X > 0) · (1+ t · λ)

⇒ Pr(X > 0) = 1/(1+ t · λ)

X := number of survivors at time t
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InDels are usually longer than 1 position

A

A

A AT

T

T T

G

GG GA

A

CC C

CG

C C time
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J.L. Thorne, H. Kishino, J. Felsenstein (1992) Inching towards reality:
an improved likelihood model for sequence evolution. J. Mol. Evol.,
34, 3-16.
D. Metzler (2003) Statistical alignment based on fragment insertion
and deletion models, Bioinformatics 19:490-499.

FID Model (also a pairHMM):

instead of single nucleotides, fragments are inserted an deleted
with rate λ.
Length of the fragments: geometrically distributed, mean length:
γ.

Pr(L = k) =
1
γ

(

1− 1
γ

)k
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forbidden in TKF92 and FID:

B B B

B B B B B B B

B B B B B BB

time

GID Model:
↑ this is allowed
no hidden Markov structure

Use GID to simulate data
and test robustness of FID
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How good are FID-based methods when GID/“Long Indel
Model” is true?

no problem for parameter estimations (Metzler, 2003)
alignment accuracy can be decreased (Miklos, Lunter,
Holmes, 2004)
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How good are FID-based methods when GID/“Long Indel
Model” is true?

no problem for parameter estimations (Metzler, 2003)
alignment accuracy can be decreased (Miklos, Lunter,
Holmes, 2004)

Maybe generate mixed-geometric gap-length with different
types of fragments.
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How good are FID-based methods when GID/“Long Indel
Model” is true?

no problem for parameter estimations (Metzler, 2003)
alignment accuracy can be decreased (Miklos, Lunter,
Holmes, 2004)

Maybe generate mixed-geometric gap-length with different
types of fragments.
Along a tree fragmentation may change from edge to edge.
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InDel Model for detecting conserved regions

A. Arribas-Gil, D. Metzler, J.-L. Plouhinec (2007)
slow fast TKF92 slow fast TKF92 slow fast TKF92

BB BBBB B BBBB BBB B BBBB BB BBBB BBBBBBBB BBB BBB
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I. Holmes, W. J. Bruno (2001) Evolutionary HMMs: a Bayesian
approach to multiple alignment, Bioinformatics 17:803-820.

R. Fleißner, D. Metzler, A. von Haeseler (2005) Simultaneous
statistical multiple alignment and phylogeny reconstruction.
Systematic Biology 54(4):548-61.
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multiple HMM for sampling a sequence given its neighbours
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G.A. Lunter, I. Miklós, Y.S. Song, J. Hein (2003) An efficient
algorithm for statistical multiple alignment on arbitrary
phylogenetic trees. J. Comp. Biol. 10(6):869-889.

B B B H B E E HB B NN H B B

time

r r r r r r r

s s s s s s s s s s s s

5
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HNBHHH HHBNHBE

HHHEEN HHHHEN HHHEHN HHHHHE

1

6

21 4 5

7

3 6

time

3

7

4 52
A T A T A C G C G A G GC A A CA T T
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HNBHHH HHBNHBE

HHHEEN HHHHEN HHHEHN HHHHHE
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TKF91: states of hidden Markov chain are the Sets Of Active
Nodes (soans).

PS(k) =
∑

(R,e) : S=[R,e]

p(e)q(e)PR(k − ve)ϑ(e, k)

where
k : Multi-index of Positions in sequences at leaves

S = [R, e] : tihl e turns soan S into soanR
PS(k) : Pr(sequences up to k are generated and end there)

p(e) = Pr(indel history of e)

q(e) = Pr(no inserts at nodes in e)

ϑ(e, k) = Pr(e emits base given in data types at k)

ve ∈ {0,1}n : indicates postions in leaf-sequences to which e emits
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TKF91: states of hidden Markov chain are the Sets Of Active
Nodes (soans).

Transfer this to FID or TKF92 (fragmentation may change from
edge to edge)

D. Metzler, R. Fleißner, A. Wakolbinger, A. von Haeseler
(2005) Stochastic insertion-deletion processes and
statistical sequence alignment.
D. Metzler, R. Fleißner (2007) Sequence Evolution Models
for Simultaneous Alignment and Phylogeny
Reconstruction.
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state space: edge-labellings with {B, H, e, b, h}.
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state space: edge-labellings with {B, H, e, b, h}.
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tihl = tree indexed heirs line

Example: 3-leaved tree
TKF91: 23 = 8 possible sets of active nodes
TKF92/FID: 53 = 125 possible labellings, 41 of them are
relevant
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Outline

1 Galton Watson Trees

2 Insertion-Deletion Models

3 Multiple Alignments

4 Challenges/Problems: Bayesian Sampling of Multiple Alignments
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re-sample alignments of 3-star subtrees (like J.L. Jensen
and J. Hein, 2005, do for TKF91)
do this only for limited parts of the sequences
Can non-emitting tihls be ignored?
assing sequences to internal nodes or use nucleotide (or
AA) distributions?
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When changing the tree topology...
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When changing the tree topology...

...keep alignments of exterior sequences fixed.
(TKF91: 32 SOANS; FID: 437 relevant labellings)
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Conclusions

We need multiple-alignment sampling to assess the full
uncertainty in phylogeny estimation
Let’s write the software and try if it works!
THANK YOU!
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