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What's the probability for an English aristocratic family name to
die out?
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Galton Watson Trees

Galton Watson Tree

Xk := number of offsprings
at node k

X1, Xo, X3, ... ii.d. random
variables

EXk < 1 : “subcritical”
EXy = 1 : “critical”
EXk > 1 : “supercritical”



Galton Watson Trees
Galton-Watson Process in continuous time
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Binary Branching GW Process in cont. time
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Galton Watson Trees

If a Galton-Watson process with binary branching or geometric
offspring distribution (on {0,1,2,...}) is still alive at time t, then
the number of survivors at time t is geometrically distributed (on

{1,2,3,...1).

on{0,1,2,...}: PriX=k)=(1—-p)*-p,EX)=(1-p)/p
on{1,2,...}: PriX=k)=(1-p)*".-p ,EX)=1/p
The geometric distribution is the only one on {(0,)1,2,3,...}
without memory: Pr(X =n+k | X > n) = Pr(X =Kk)
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Insertion-Deletion Models

Model of Sequence Evolution
Thorne, Kishino, Felsenstein (1991):

Deletions with rate ;. at each site.
with rate ) right of each site & at the very left.
Substitutions with Rate s at each site.

A C G T T C G ¢C .
time




Insertion-Deletion Models

TKF alignment convention:

not like this:
ACGT TC_GC_ ACGT TCG C_
A TTG_CC_CG A TTG_C_CCG

time




Reversibility?
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Consequence of TKF convention
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Insertion-Deletion Models

The , is the
emitted by the alignment.

PEEE AN
VA S

pair Hidden Markov Model (pair HMM)
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Why Markov?
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Insertion-Deletion Models

Computing transition probabilies

Simplification: A\ = u

E(X) = 1
PriX =k | X >0) =
(1-p)'-p

F=EX[X>0)=1+t-2
=p=1/(1+t-N)

1 = E(X)
= Pr(X=0)-E(X |X =0)
+Pr(X >0)-E(X | X >0)
B = Pr(X>0)-(1+t-})
= Pr(X >0)=1/(1+t-X)

X := number of survivors at time t



Insertion-Deletion Models

InDels are usually longer than 1 position

A A T T A T A time

el |

A



Insertion-Deletion Models

J.L. Thorne, H. Kishino, J. Felsenstein (1992) Inching towards reality:
an improved likelihood model for sequence evolution. J. Mol. Evol.,
34, 3-16.

D. Metzler (2003) Statistical alignment based on fragment insertion
and deletion models, Bioinformatics 19:490-499.

FID Model (also a pairHMM):

@ instead of single nucleotides, fragments are inserted an deleted
with rate \.

@ Length of the fragments: geometrically distributed, mean length:
-



Insertion-Deletion Models

forbidden in TKF92 and FID:

B B B B B B B time
B B B
I |
B B B B B B B
GID Model:

=)
@ no hidden Markov structure

Use GID to simulate data
and test robustness of FID
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How good are FID-based methods when GID/“Long Indel
Model” is true?
@ no problem for parameter estimations (Metzler, 2003)

@ alignment accuracy can be decreased (Miklos, Lunter,
Holmes, 2004)
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Insertion-Deletion Models

How good are FID-based methods when GID/“Long Indel
Model” is true?
@ no problem for parameter estimations (Metzler, 2003)

@ alignment accuracy can be decreased (Miklos, Lunter,
Holmes, 2004)

Maybe generate mixed-geometric gap-length with different
types of fragments.
Along a tree fragmentation may change from edge to edge.



Insertion-Deletion Models

InDel Model for detecting conserved regions

A. Arribas-Gil, D. Metzler, J.-L. Plouhinec (2007)

slow fast TKF92 slow fast TKF92 slow fast TKF92

D’ [B8]|[BBBB [ 8] ‘[ BBBB ]’[ 888 |[ B |[ 8888 |[ 8 ][ BBBB | “ BBBBBBEB ]
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Multiple Alignments

I. Holmes, W. J. Bruno (2001) Evolutionary HMMs: a Bayesian
approach to multiple alignment, Bioinformatics 17:803-820.

R. FleiBner, D. Metzler, A. von Haeseler (2005) Simultaneous
statistical multiple alignment and phylogeny reconstruction.
Systematic Biology 54(4):548-61.

1<



multiple HMM for sampling a sequence given its neighbours




Multiple Alignments

G.A. Lunter, I. MiklGs, Y.S. Song, J. Hein (2003) An efficient
algorithm for statistical multiple alignment on arbitrary
phylogenetic trees. J. Comp. Biol. 10(6):869-889.
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Multiple Alignments

HHBNHBE

HNBHHH

ATAT ACATT ®GCGAG ®GCAAC



Multiple Alignments
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BBBB
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Multiple Alignments

TKF91: states of hidden Markov chain are the Sets Of Active
Nodes (soans).

p(e)a(e)Pr(k —ve)i(e k)
(R,e) : S=[R,e]

Multi-index of Positions in sequences at leaves

tihl e turns soan S into soanR

Pr(sequences up to k are generated and end there)
Pr(indel history of e)

Pr(no inserts at nodes in e)

Pr(e emits base given in data types at k)

indicates postions in leaf-sequences to which e emi
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Multiple Alignments

TKF91: states of hidden Markov chain are the Sets Of Active
Nodes (soans).

Transfer this to FID or TKF92 (fragmentation may change from
edge to edge)
@ D. Metzler, R. FleiBner, A. Wakolbinger, A. von Haeseler
(2005) Stochastic insertion-deletion processes and
statistical sequence alignment.

@ D. Metzler, R. FleiBner (2007) Sequence Evolution Models
for Simultaneous Alignment and Phylogeny
Reconstruction.
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Multiple Alignments

state space: edge-labellings with {B,H, e, b, h}.

tinl = tree indexed heirs line

Example: 3-leaved tree

TKF91: 23 = 8 possible sets of active nodes
TKF92/FID: 5% = 125 possible labellings, 41 of them are
relevant
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@ re-sample alignments of 3-star subtrees (like J.L. Jensen
and J. Hein, 2005, do for TKF91)

@ do this only for limited parts of the sequences
@ Can non-emitting tihls be ignored?

@ assing sequences to internal nodes or use nucleotide (or
AA) distributions?
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Challenges/Problems

When changing the tree topology...

...keep alignments of exterior sequences fixed.
(TKF91: 32 SOANS; FID: 437 relevant labellings)
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Challenges/Problems

Conclusions

@ We need multiple-alignment sampling to assess the full
uncertainty in phylogeny estimation

@ Let’s write the software and try if it works!

@ THANK YOU!



