Context-dependent substitution models, molecular clocks, and the arrow of time

Gerton Lunter

Budapest, June 2008

Evidence for a High Frequency of Simultaneous Double-Nucleotide Substitutions

Michalis Averof,¹* Antonis Rokas,² Kenneth H. Wolfe,³ Paul M. Sharp⁴*

Adv. Appl. Prob. 32, 499–517 (2000) Printed in Northern Ireland © Applied Probability Trust 2000

PROBABILISTIC MODELS OF DNA SEQUENCE EVOLUTION WITH CONTEXT DEPENDENT RATES OF SUBSTITUTION

JENS LEDET JENSEN,* Aarhus University ANNE-METTE KRABBE PEDERSEN,** Aarhus University

Model:

nnnnabcnnnn \rightarrow nnnnab'cnnnn: Rate $\lambda(a,b,b',c)$

Proposition:

The process is reversible, with a stationary distribution that has a (first order) Markov structure, iff λ can be written as

 $\lambda(a,b,b',c) = \exp [\phi(a,b',c) + \Psi(a,b,b',c)]$

with Ψ symmetric in **b** and **b**'.

Phylogenetic Estimation of Context-Dependent Substitution Rates by Maximum Likelihood

Adam Siepel* and David Haussler*†

Mol. Biol. Evol. 21(3):468-488. 2004

Model: Rates depend on both neighbouring nucleotides Double mutations forbidden

Inference: "sliding window" approximation

$$P(x_{\bullet} \mid \boldsymbol{\psi}) = \prod_{i=N}^{L} P(x_{\bullet,i} \mid x_{\bullet,i-N+1}, \dots, x_{\bullet,i-1}, \boldsymbol{\psi})$$
$$P(x_{\bullet,i} \mid x_{\bullet,i-N+1}, \dots, x_{\bullet,i-1}, \boldsymbol{\psi}) = \frac{P(x_{\bullet,i-N+1}, \dots, x_{\bullet,i-1}, x_{\bullet,i} \mid \boldsymbol{\psi})}{\sum_{\tilde{x}_{\bullet,i}} P(x_{\bullet,i-N+1}, \dots, x_{\bullet,i-1}, \tilde{x}_{\bullet,i} \mid \boldsymbol{\psi})}$$

Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution

Dick G. Hwang*[†] and Phil Green*^{†‡}

- Model: Rates depend on both neighbouring nucleotides Double mutations forbidden
- Inference: Bayesian MCMC Discretized time; one mutation per time-slice

Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution

Dick G. Hwang*[†] and Phil Green*^{†‡}

(switch to PDF)

Context dependent effects: Should We Bother?

Yes:

CpG effects are real, and strong (15 x mean background) CpG mutations are implicated in genetic disorders Cause of mutational inhomogeneity, particularly at short distances Possibly most clock-like signal we have for mammals?

No:

Inclusion complicates model tremendously

Makes very small difference in likelihood: don't bother for alignments! Does it influence gene finding; motif evolution; phylogenetic inferences?