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bayesian coalescent analysis (of viruses)

Alexei Drummond

2

Overview

• Introduction to the Coalescent

• Phylodynamics and the Bayesian skyline plot

• Molecular population genetics for viruses

• Testing model assumptions
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The coalescent

• The coalescent is a model of the ancestral relationships of a
small sample of individuals taken from a large background
population.

• The coalescent describes a probability distribution on ancestral
genealogies (trees) given a population history.

‣ Therefore the coalescent can convert information from ancestral
genealogies into information about population history and vice versa.

• The coalescent is a model of ancestral genealogies, not
sequences, and its simplest form assumes neutral evolution.
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Randomly sample individuals from
population

Obtain gene sequences from
sampled individuals

Reconstruct tree / trees
 from sequences

Infer coalescent
results from tree / trees

Infer coalescent results
directly from sequences

Coalescent inference
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Demographic history

• Change in population size through time

• Applications include
‣ Reconstructing infectious disease epidemics

‣ Investigating viral dynamics within hosts

‣ Identifying bottlenecks
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Random mating in an ideal population

•A constant population size of N individuals
•Each individual in the new generation “chooses” its parent
from the previous generation at random
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Genetic drift: extinction and ancestry

If you trace the ancestry of a sample of individuals back in time you inevitably
reach a single most recent common ancestor.
If you pick a random individual and trace their descendents forward in time, all
the descendents of that individual will with high probability eventually die out.
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The coalescent: distributions and expectations on
a sample genealogy
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The coalescent: probability density distribution
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g = Eg ,t{ }
The genealogy is an
edge graph Eg and a
vector of times t.
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The coalescent: estimating population size from a
sample genealogy
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The coalescent: estimating population size
confidence limits via ML

Maximum likelihood can be used to estimate
population size by choosing a population size
that maximizes the probability of the
observed coalescent waiting times.

The confidence intervals are
calculated from the curvature of
the likelihood.

For a single parameter model
the 95% confidence limits are
defined by the points where the
log-likelihood drops 1.92 log-
units below the maximum log-
likelihood.
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Exponential growth Constant size

The coalescent: shapes of gene genealogies

The coalescent can be used to convert coalescent times into knowledge
about population size and its change though time.

14

smallsmall  NN00 large large NN00

timetime

Constant population size: N(t)=N0
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Coalescent and serial samples

Constant population Exponential growth
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Uncertainty in Genealogies

How similar are these two trees? Both of them are plausible given the
data.

We can use MCMC to get the average result over all plausible trees
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Virus population dynamics
Measles virus

Human influenza virus
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Population size changes
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The generalized skyline plot

• Visual framework for exploring the demographic history of
sampled DNA sequences

• Input: a single estimated ancestral genealogy (a tree)

• Output: nonparametric plot of the population size through time

Groups adjacent coalescent intervals

Converts information within these intervals to estimates of
population size
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Examples

• I: Constant population size

• N(t)=N(0)
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Skyline Plot

• I: Constant population size

• N(t)=N(0)
II: Exponential

growth

N(t)=N(0)e-rt
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Skyline Plot

• III: HIV-1 group M
• (tree estimated in Yusim et al

(2001) Phil. Trans. Roy. Soc. Lond. B
356: 855-866)

Black curve is a parametric
estimate obtained from the
same data under the
“expansion model”

Results follow accepted
demographic pattern for
the HIV pandemic
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The Bayesian skyline plot

Dengue-4 Bayesian skyline plot (15 epochs)
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Estimate a demographic
function that has a certain
fixed number of steps (in this
example 15) and then
integrate over all possible
positions of the break points.

Explains the Dengue data
quite well (test of neutrality do
not reject the data if we use
the Bayesian skyline plot to
describe the demographic
history.

Dengue-4 Bayesian skyline plot (15 epochs)
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Validating the Bayesian skyline plot (1)

Simulated data: Constant population Simulated data: Exponential growth
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Validating the Bayesian skyline plot (2)

Bayesian skyline (49 or 12 epochs)
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Comparison to parametric model
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Dengue-4: Modeling complex demography
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Hospital case data courtesy of Shannon Bennett

N(t) = N0exp(-rt): -10566.421
N(t) = scaled translated case data: -10478.572
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Comparing Bayesian skyline plot of Dengue-4 with
incidence data
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Extending the Bayesian skyline plot with stochastic
variable selection

30

EBSP versus BSP

31

Multiple loci

32

detecting evolutionary bottlenecks (1)
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Generally we don’t have multiple independent loci for viruses!

detecting evolutionary bottlenecks (2)
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But we do often have serial samples!

detecting evolutionary bottlenecks (3)
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Coalescent Summary

• The coalescent provides a theory of how population size is
related to the distribution of coalescent events in a tree.

• Big populations have old trees

• Exponentially growing populations have star-like trees

• Given a genealogy the most likely population size (function) can
be estimated.

• MCMC can be used to get a distribution of trees from which a
distribution of population sizes can be estimated.
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Molecular evolutionary model: Felsenstein’s likelihood
(1981)

GA

The probability of the sequence
alignment,                

can be efficiently calculated
given a tree and branch lengths
(T), and a probabilistic model of
mutation represented by an
instantaneous rate matrix (Q). In
phylogenetics, branch lengths
are usually unconstrained.
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Combining the coalescent with Felsenstein’s
likelihood
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The “molecular clock”
constraint

2n–3 branch lengths n–1 waiting times

! 

p(N,g,Q |D)"Pr{D |µg,Q} fG (g |N) fN (N) fQ (Q)

The joint posterior probability of the population history (N), the
genealogy (g) and the mutation matrix (Q) are estimated using
Markov chain Monte Carlo (Drummond et al, Genetics, 2002)
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Time structure via calibrations

timeContemporary sample
no calibrations

Contemporary sample
with calibrations

Now

5-10 Mya

20-25 Mya
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Time structure in samples themselves

timeContemporary sample
no time structure

Serial sample
with time structure

2000

1980

1990
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Molecular evolution and population genetics
of viruses

• Given sequence data that is
time-structured estimate true
values of:
substitution parameters
‣ Overall substitution rate and

relative rates of different
substitutions

population history: N(t)

Ancestral genealogy
‣ Topology

‣ Coalescent times



11

41

Full Bayesian Model

P(g, µ, Ne, Q | D)
Z

1
P(D | g, µ, Q)fG(g | Ne) fm(µ)fN(Ne )fQ(Q)

Probability (density)
of what we don’t
know given what we
do know.

Unknown
normalizing
constant

Likelihood function

coalescent prior

other priors

=

In the software package BEAST,
MCMC integration can be used to
provide a chain of samples from this
density.

Q = substitution parameters
Ne = population parameters
g = tree
µ = overall substitution rate
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Markov chain Monte Carlo (MCMC)
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http://evolve.zoo.ox.ac.uk/BEAST
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Why Bayesian?

• Probabilistic model-based inference
Can make simple statements about the probability of alternative hypotheses given the data

• Markov chain Monte Carlo
Convenient computational technique

Allows for complex models: “if you can simulate you can sample”

• Incorporates prior probabilities
P(θ|D) ∝ P(D| θ)P(θ)

Convenient means of assessing alternative sets of assumptions

Allows incorporation of independent sources of information

• Easy to include sources of uncertainty
Don’t need to assume perfect knowledge of tree (for example)

Can treat the tree and a nuisance parameter and focus on parameters of interest (strength of
selection, mutation rate, growth rate, etc)
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Conclusions & cautionary remarks

• Bayesian MCMC has advantages
‣ a useful tool for exploring prior hypotheses

‣ Good for assessing levels of uncertainty

‣ Complex models can be investigated on large datasets

• Bayesian MCMC has disadvantages
‣ Diagnostics are difficult, and it is essentially impossible to guarantee

correctness

‣ Model comparison can be difficult

‣ Requires large programs that are difficult to optimize and debug.
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Conclusions & cautionary remarks (2)

• Population genetics has advantages
‣ provides a framework for objective analysis of genetic data

‣ Allows interpretation of genetic data in terms of biological properties
of virus

‣ Can be extended to include selection, recombination et cetera

• Population genetics has disadvantages
‣ Models are currently still too simple

‣ Assumptions are too strong

‣ Extending to complex models that include changing selection
pressures and recombination are possible in MCMC but still very
difficult!

the end
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But how good is our best model?

• We can use standard statistical model-choice criteria to choose
between different models of substitution and demography, but
are any of the models we consider any good at all?

• One way to look at this is ask the following question:
‣ Does our real data look anything like what we would expect data

from our model to look like?

So what aspect of the data should we look at?

And what should we expect?
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We could look at branch length distributions…
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Tree imbalance measures might also be
interesting…

4 cherries 3 cherries 2 cherries
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Posterior predictive simulation

• A method of testing the goodness-of-fit of a Bayesian model.

Run a Bayesian MCMC analysis on the data
Calculate the value of your favourite summary statistic, T(.) from

the data, D
For each state in the chain

– Simulate a synthetic dataset, Di, using the parameter values of
state i.

– Calculate T(Di) from the simulated data set.

Compare the T(D) value with predictive distribution of T(Di)
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So we need some summary statistics

• Summary statistics that can
be measured directly from
sequence alignment:

‣ Mean pairwise distance (π)

‣ Tajima’s D

‣ Fu & Li’s D

‣ Number of segregating
sites (S)

‣ …

• Summary statistics that can
be measured directly from an
genealogy:

‣ Genealogical mean pairwise
distance (π)

‣ Genealogical Tajima’s D
‣ Genealogical Fu & Li’s D
‣ Tree-imbalance statistics
‣ Age of the root
‣ Length of the tree
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Posterior predictive simulation (2)

• Testing the goodness-of-fit of the neutral coalescent model under
variable demographic functions.

Run a Bayesian MCMC analysis on the data
For each state in the chain

– Simulate a coalescent genealogy (Gi
S) using the population parameter values of

state i.

– Calculate T(Gi
S) from the ith simulated genealogy

– Calculate T(Gi
P) from the ith posterior genealogy

Calculate the predictive probability by comparing the posterior
distribution of T(.) with predictive distribution of T(.):
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Human influenza A (HA gene) trees

Posterior genealogy Predictive simulations

State 5m

State 10m
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Human influenza A trees:
Genealogical Fu & Li’s D statistic
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Puerto Rican Dengue-4 gene trees: multivariate
summary statistics
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Results of test of neutrality

Table 2. The predictive probabilities (

! 

P
T

"
) for summary statistics on each of the example

data sets are shown. Significant departures from neutrality are marked (*) and marginally

significant departures (x < 0.05 or x > 0.95) are marked with (†). Significant departures

on the best fitting model for each data set are in bold.

Predictive probabilities

Dataset Demographic

model

T troot DFL IC Cn B1

Brown bear Constant 0.739 0.815 0.863 0.693 0.163 0.103

(d-loop) Exponential growth 0.615 0.623 0.800 0.679 0.163 0.111

RSVA Constant 0.956† 0.964† 0.946 0.163 0.152 0.134

(g gene) Exponential growth 0.693 0.656 0.884 0.206 0.149 0.134

Dengue-4 Constant 0.9574† 0.9958* 0.9997* 0.562 0.608 0.427

(E gene) Exponential growth 0.745 0.809 0.9792* 0.559 0.653 0.505

Human influenza A Constant 0.9510† 0.900 0.9999* 0.0462† 0.605 0.610

(HA) Exponential growth 0.910 0.620 0.9995* 0.0866 0.575 0.677


