bayesian coalescent analysis (of viruses)

Alexei Drummond

Overview

- Introduction to the Coalescent
- Phylodynamics and the Bayesian skyline plot
- Molecular population genetics for viruses
- Testing model assumptions

The coalescent

- The coalescent is a model of the **ancestral relationships** of a small sample of individuals taken from a large background population.
- The coalescent describes a probability distribution on ancestral genealogies (trees) given a population history.
 - Therefore the coalescent can convert information from ancestral genealogies into information about population history and vice versa.
- The coalescent is a model of ancestral genealogies, not sequences, and its simplest form assumes **neutral evolution**.

Demographic history

Change in population size through time

Applications include

- Reconstructing infectious disease epidemics
- Investigating viral dynamics within hosts
- Identifying bottlenecks

Random mating in an ideal population

A constant population size of *N* individualsEach individual in the new generation "chooses" its parent from the previous generation at random

Why Bayesian?

- Probabilistic model-based inference
 Can make simple statements about the probability of alternative hypotheses given the data
- Markov chain Monte Carlo
 Convenient computational technique
 Allows for complex models: "if you can simulate you can sample"
- Incorporates prior probabilities $\begin{array}{l} P(\theta|D) \propto P(D|\; \theta)P(\theta) \\ \\ \text{Convenient means of assessing alternative sets of assumptions} \\ \text{Allows incorporation of independent sources of information} \end{array}$
- Easy to include sources of uncertainty
 Don't need to assume perfect knowledge of tree (for example)
 Can treat the tree and a nuisance parameter and focus on parameters of interes

Can treat the tree and a nuisance parameter and focus on parameters of interest (strength of selection, mutation rate, growth rate, etc)

Conclusions & cautionary remarks

• Bayesian MCMC has advantages

- a useful tool for exploring prior hypotheses
- Good for assessing levels of uncertainty
- · Complex models can be investigated on large datasets

• Bayesian MCMC has disadvantages

- Diagnostics are difficult, and it is essentially impossible to guarantee correctness
- Model comparison can be difficult
- Requires large programs that are difficult to optimize and debug.

Conclusions & cautionary remarks (2)

Population genetics has advantages

- > provides a framework for objective analysis of genetic data
- Allows interpretation of genetic data in terms of biological properties of virus
- · Can be extended to include selection, recombination et cetera
- Population genetics has disadvantages
 - Models are currently still too simple
 - Assumptions are too strong
 - Extending to complex models that include changing selection pressures and recombination are possible in MCMC but still very difficult!

But how good is our best model?

- We can use standard statistical model-choice criteria to choose between different models of substitution and demography, but are any of the models we consider any good at all?
- One way to look at this is ask the following question:
 - Does our real data look anything like what we would expect data
 from our model to look like?
 - So what aspect of the data should we look at?
 - And what should we expect?

Puerto Rican Dengue-4 gene trees: multivariate summary statistics

Results of test of neutrality

Table 2. The predictive probabilities (P_{τ}^*) for summary statistics on each of the example data sets are shown. Significant departures from neutrality are marked (*) and marginally significant departures (x < 0.05 or x > 0.95) are marked with (†). Significant departures on the best fitting model for each data set are in bold.

Dataset	Demographic model	Predictive probabilities					
		Т	t_{root}	D _{FL}	I _C	C _n	B ₁
Brown bear	Constant	0.739	0.815	0.863	0.693	0.163	0.103
(d-loop)	Exponential growth	0.615	0.623	0.800	0.679	0.163	0.111
RSVA	Constant	0.956†	0.964†	0.946	0.163	0.152	0.134
(g gene)	Exponential growth	0.693	0.656	0.884	0.206	0.149	0.134
Dengue-4	Constant	0.9574†	0.9958*	0.9997*	0.562	0.608	0.427
(E gene)	Exponential growth	0.745	0.809	0.9792*	0.559	0.653	0.505
Human influenza A	Constant	0.9510†	0.900	0.99999*	0.0462†	0.605	0.610
(HA)	Exponential growth	0.910	0.620	0.9995*	0.0866	0.575	0.677