Parallel Adaptations to High Temperatures in the Archean Eon

Bastien Boussau^{1*}, Samuel Blanquart^{2*}, Anamaria Necșulea¹, Nicolas Lartillot², Manolo Gouy¹

> ¹LBBE, CNRS, Lyon; ²LIRMM, CNRS, Montpellier *These authors contributed equally to this work.

> > Saturday, June 25th 2008

Thermophiles in the tree of life

Bastien Boussau (LBBE, CNRS, Lyon) Parallel Adaptations to High Temperatures

Pace, *Science* 1997.

Thermophiles in the tree of life

Bastien Boussau (LBBE, CNRS, Lyon) Parallel Adaptations to High Temperatures

Pace, *Science* 1997.

Thermophiles in the tree of life

Bastien Boussau (LBBE, CNRS, Lyon) Parallel Adaptations to High Temperatures

Pace, *Science* 1997.

Sequence composition and temperature

Sequence composition and temperature

06/25/08 3 / 23

Sequence composition and temperature

rRNA and protein compositions can be used as independent molecular thermometers

Ribosomal RNA

Galtier *et al.*, 1999: non-hyperthermophilic LUCA

Proteins

Di Giulio 2003, Brooks *et al.* 2004: hyperthermophilic LUCA Gaucher *et al.* 2003, 2008: hyperthermophilic bacterial ancestor

Gaucher et al. 2008

Gaucher *et al.* observe a decrease in optimal growth temperatures from the ancestor of Bacteria to extant organisms.

Ribosomal RNA

Galtier *et al.*, 1999: non-hyperthermophilic LUCA Proteins Di Giulio 2003, Brooks *et al.* 2004: hyperthermophilic LUCA Gaucher *et al.* 2003, 2008: hyperthermophilic bacterial ancestor

Ribosomal RNA

Galtier *et al.*, 1999: **non-hyperthermophilic** LUCA

Proteins Di Giulio 2003, Brooks *et al.* 2004: hyperthermophilic LUCA Gaucher *et al.* 2003, 2008: hyperthermophilic bacterial ancestor

Differences

Non-homogeneous model of evolution

Homogeneous or non-stationary models of evolution

Homogeneous model

Non-stationary model

Non-stationary model

06/25/08 7 / 23

rRNA evolution model: Galtier and Gouy model (1998)

- 1 model per branch
- each model is characterized by an equilibrium G+C content

Parameters

parameters	symbol	number
ancestral G+C %	ω	1
branch lengths	λί	2n - 3
root location	φ	1
Ts/Tv ratio	к	1
equilibrium G+C %	θι	2n - 2
		4n - 2

κ

Ability of the GG98 model to estimate the root G+C

Boussau and Gouy, Syst. Biol. 2006.

A protein alignment

Not all amino-acids are allowed at a given position in a protein

Profiles of amino-acids

profile of amino-acids = vector of amino-acid equilibrium frequencies.

CAT model

- Gamma model: mixture model over rates of evolution
- CAT model: mixture model over profiles of amino-acids

Blanquart and Lartillot, Mol. Biol. Evol., 2008.

Results

The evolution of Thermophily

06/25/08 14 / 23

The evolution of Thermophily

The evolution of Thermophily

06/25/08 14 / 23

The evidence for parallel adaptations

The evidence for parallel adaptations: models

• obtained in the Maximum Likelihood or Bayesian framework

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins
- obtained with several non-homogeneous models

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins
- obtained with several non-homogeneous models
- robust to changes in the topology

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins
- obtained with several non-homogeneous models
- robust to changes in the topology
- robust to changes in taxonomic sampling

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins
- obtained with several non-homogeneous models
- robust to changes in the topology
- robust to changes in taxonomic sampling
- robust to changes in prior distributions

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins
- obtained with several non-homogeneous models
- robust to changes in the topology
- robust to changes in taxonomic sampling
- robust to changes in prior distributions
- robust to the removal of fast-evolving rRNA sites

- obtained in the Maximum Likelihood or Bayesian framework
- obtained with rRNA and proteins
- obtained with several non-homogeneous models
- robust to changes in the topology
- robust to changes in taxonomic sampling
- robust to changes in prior distributions
- robust to the removal of fast-evolving rRNA sites
- robust to the removal of rare amino-acids

A pressure for parallel adaptations

Bastien Boussau (LBBE, CNRS, Lyon) Parallel Adaptations to High Temperatures

A pressure for parallel adaptations

A pressure for parallel adaptations

• Only non-homogeneous models can faithfully reconstruct the evolution of sequence composition

- Only non-homogeneous models can faithfully reconstruct the evolution of sequence composition
- Non-homogeneous models find evidence for two phases in the history of thermophily:

- Only non-homogeneous models can faithfully reconstruct the evolution of sequence composition
- Non-homogeneous models find evidence for two phases in the history of thermophily:
 - first an increase from LUCA to its direct descendants

- Only non-homogeneous models can faithfully reconstruct the evolution of sequence composition
- Non-homogeneous models find evidence for two phases in the history of thermophily:
 - first an increase from LUCA to its direct descendants
 - then a decrease from the bacterial ancestor to extant species

- Only non-homogeneous models can faithfully reconstruct the evolution of sequence composition
- Non-homogeneous models find evidence for two phases in the history of thermophily:
 - first an increase from LUCA to its direct descendants
 - then a decrease from the bacterial ancestor to extant species
- Such a scenario is in agreement with several hypotheses concerning the early evolution of the Earth and of life

Authors

Bastien Boussau*, Samuel Blanquart*, Anamaria Necșulea, Nicolas Lartillot, Manolo Gouy

* These authors contributed equally to this work.

Many thanks to ...

Céline Brochier-Armanet, David Bryant, Marc Chaussidon, Nicolas Galtier, Antonio Lazcano, Mathilde Paris, and members of the BBE Laboratory.

2 Materials and methods

Bastien Boussau (LBBE, CNRS, Lyon) Parallel Adaptations to High Temperatures

The evidence for parallel adaptations: roots

