WAGNER AND DOLLO: A Stochastic Duet by Composing Two Parsimonious Solos

Alexander V. Alekseyenko alexander.alekseyenko@ucla.edu

June 27, 2008

Classes of Parsimony Models

Wagner

- Main principle: If you can get from state a to state b, you can return at some point in the future
- Example: A nucleotide or an amino acid site
- Parsimony class: Wagner
- Stochastic counterpart: Continuous-time Markov chains (CTMC)

Dollo

- Main principle: Some states are hard to reach, and/or some states have no return.
- Example: Genomic content traits, e.g. an intron or an exon, a whole gene
- Parsimony class: Dollo
- Stochastic counterpart:
 Birth/Immigration-death
 process, absorbing CTMCs

What If No Class Fits?

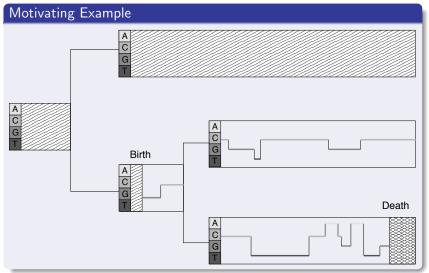
Allele gain-mutation-loss

- Several alleles at a locus: A₁, A₂, A₃, A_{*}
- A* denotes absence of the marker at the locus
- Gain and loss of marker operates on different scale from mutation
- Loss of a marker is irreversible

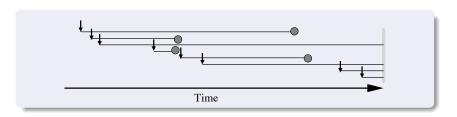
An exon sequence and splice-sites

- Mutations in the splice sites are easy to observe in sequences (frequent)
- Gain and loss of homologous exon sequence is a more complex process

Multi-State Stochastic Dollo



Gain-Loss Process



Parameters

- λ rate of gain
- μ per capita rate of loss
- *t* time before present

Number of characters observed N(t)

- $N(t) \sim \text{Poisson}(\Omega_t)$
- Expected number of characters

$$\Omega_t = \int_0^t \lambda e^{-(t-s)\mu} ds$$
$$= \frac{\lambda}{\mu} (1 - e^{-\mu t}).$$

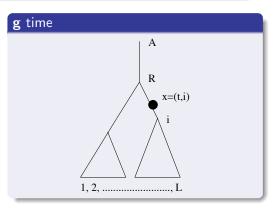
Tree-time Definition

Tree

Let $\mathbf{g} = (\mathcal{V}, E)$ be a phylogenetic tree, directed acyclic

Nodes, \mathcal{V}

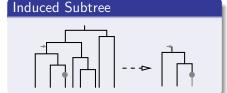
- L tip nodes;
- R root node;
- A "Adam" node, ancestral to the root;
- internal nodes, such that **g** is connected.
- [g] is collection of all time points on g



CTMC Likelihood

Data

- Observed data $D = \left\{ C^{(j)} \right\}_{1 < j < N};$
- Patterns $C = (c_1, \dots, c_L)$ in L tip species.



Main idea

- Condition on gain times
- Integrate out the gain times

$$P(D|\mathbf{g}, \mu, \lambda) = \int_{\mathbf{X} \in [\mathbf{g}]^N} P(D|\mathbf{X}, \mathbf{g}, \mu, S(\mathbf{X})) f(\mathbf{X}|\mathbf{g}, \mu, \lambda) d\mathbf{X}.$$

More on Likelihood

Joint Density of Gains

Joint gain density is given by Poisson point process with intensity $\omega_{\mathbf{g}}(x) = \lambda \ \sigma_{\mathbf{g}}(x)$,

$$f(\mathbf{X}|\mathbf{g},\mu,\lambda) = \frac{1}{N!}e^{-\Omega_{\mathbf{g}}}\prod_{c=1}^{N}\omega_{\mathbf{g}}(x_{c})dx_{c}.$$

Likelihood Expression After Integration

Sum of partial likelihoods at each node weighted by the probability of gain above that node.

$$P(D|\cdot) \propto \left(\frac{\lambda}{\mu}\right)^N e^{-\Omega_{\mathbf{g}}} \prod_{c=1}^N \sum_{\langle i,j \rangle \in E} P(C^{(c)}|(t_i,i),\mathbf{g},\mu) (1-e^{-\mu(t_j-t_i)}).$$

Embedded process

Embedding the mutation process Q

If \mathbf{Q} is a standard mutation process (e.g. HKY), then to account for trait loss we extend it with an absorbing death state to arrive at \mathbf{Q}' .

$$\mathbf{Q}' = \left(egin{array}{ccc} \mathbf{Q} - \mathbf{I}\mu & \mathbf{1}\mu \\ \mathbf{0}^T & 0 \end{array}
ight) \quad \mathbf{Q}'(t) = \left(egin{array}{ccc} \mathbf{Q}(t) imes e^{-\mu t} & \mathbf{1}(1 - e^{-\mu t}) \\ \mathbf{0}^T & 1 \end{array}
ight)$$

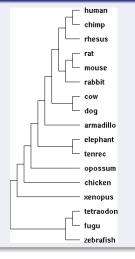
Integrating transitions of the mutation process

Using detailed balance identity we write the partial likelihoods at node i in terms of conditionals of the state in which the trait realizes.

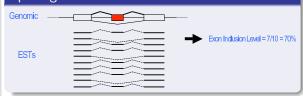
$$P(C^{(c)}|(\tau,i),\mathbf{g},\mu) = \sum_{l} \pi_{l} P(C^{(c)}|(t_{i},i),l,\mathbf{g},\mu)$$

Vertebrate Exon Evolution

17-Species Phylogeny



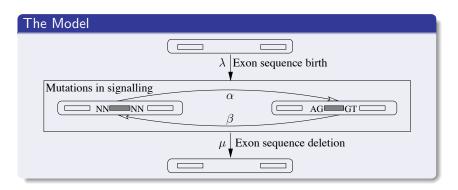
Splicing and Inclusion Rates



Basic Dataset Description

- Exons are ascertained in Human as Constitutive, Alternative (major, medium, minor inclusion)
- Genomic searches for exon sequence conservation in UCSC genomic alignments
- Splice site mutations are monitored

Alternative Splicing Model

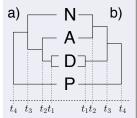


The Results							
		(a) Constitutive	(b) Major	(c) Medium	(d) Minor		
	μ	0.458 (0.451 - 0.465)	0.568 (0.543 - 0.594)	1.63 (1.58 - 1.68)	6.42 (6.27 – 6.57)		
	α	17.7 (17.2 - 18.2)	17.2 (15.6 - 18.9)	4.20 (3.80 - 4.63)	4.87 (4.23 - 5.55)		
	β	2.79 (2.75 – 2.84)	2.69 (2.56 – 2.83)	6.95 (6.75 – 7.14)	24.9 (23.9 – 25.9)		
	π	0.864 (0.861 - 0.866)	0.865 (0.856 - 0.873)	0.377 (0.355 - 0.399)	0.164 (0.148 - 0.180)		

Topology Inference Based on Intron Conservation

Which Phylogeny?

- a) Coelomata
- b) Ecdysozoa



- A, arthropod;
- D, deuterostome;
- N, nematode;
- P, plant (outgroup).

Bayes Factor Test

$$B_{ij} = \frac{P(\mathbf{g}_i|D)}{P(\mathbf{g}_i)} / \frac{P(\mathbf{g}_j|D)}{P(\mathbf{g}_j)} = \frac{P(D|\mathbf{g}_i)}{P(D|\mathbf{g}_j)}.$$

Marginal Likelihood

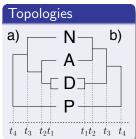
$$P(D|\mathbf{g}_i) = \int P_{\mathbf{g}_i}(D|\theta) f(\theta) d\theta.$$

Harmonic Mean Marginal Likelihood Estimator

$$P(D|\mathbf{g}_i) pprox \left[rac{1}{B} \sum_{b=1}^{B} rac{1}{P(D|\mathbf{g}_i, \Theta^{(b)})}
ight]^{-1}.$$

"Ecdysozoa" is Supported by the Data Under MSSD

Results			
	(a) "ecdysozoa"	(b) "coelomata"	(c) "complement"
t_1	0.128 (0.117 - 0.140)	0.133 (0.121 - 0.145)	0.134 (0.122 – 0.146)
t_2	0.513 (0.480 - 0.548)	0.712(0.683 - 0.740)	0.718 (0.690 – 0.747)
t_3	0.704 (0.678 - 0.730)	0.729(0.701 - 0.757)	0.724 (0.695 – 0.753)
t ₄	0.856 (0.828 – 0.886)	0.876 (0.848 – 0.905)	0.876 (0.847 – 0.905)
$\log_{10} P(D)$	-36.62	-65.47	-64.87



Acknowledgments

Intellectual Contributions

- Geoff Nicholls;
- Marc Suchard;
- Igor Rogozin (intron conservation dataset);
- Christopher Lee (alternative splicing).

Material Contributions

- Microsoft Research Gift to Marc Suchard;
- NIH Systems and Integrative Biology training grant.