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Abstract: We consider one-dimensional, locally finite interacting particle sys-
tems with two conservation laws which under Eulerian hydrodynamic limit lead
to two-by-two systems of conservation laws:

Op+ 0¥ (p,u) =0
Opu + 0, P(p,u) =0,

with (p,u) € D C R?, where D is a convex compact polygon in R2. The system
is typically strictly hyperbolic in the interior of D with possible non-hyperbolic
degeneracies on the boundary 0D. We consider the case of isolated singular (i.e.
non hyperbolic) point on the interior of one of the edges of D, call it (pg, ug). We
investigate the propagation of small nonequilibrium perturbations of the steady
state of the microscopic interacting particle system, corresponding to the den-
sities (po,uo) of the conserved quantities. We prove that for a very rich class
of systems, under proper hydrodynamic limit the propagation of these small
perturbations are universally driven by the two-by-two system

Orp+ Oy (pu) =0
du+ 9 (p+yu?) =0

where the parameter «y is the only trace of the microscopic structure.

The proof relies on the relative entropy method and thus, it is valid only in the
regime of smooth solutions of the pde. But there are essentially new elements:
in order to control the fluctuations of the terms with Poissonian (rather than
Gaussian) decay coming from the low density approximations we have to apply
refined pde estimates. In particular Lax entropies of these pde systems play a
not merely technical key role in the main part of the proof.

Key words. hydrodynamic limit,relative entropy, hyperbolic conservation laws,
Lax entropy pairs
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1. Introduction

1.1. The PDE to be derived and some facts about it. We consider the pde

{atp + 05 (pu) =0

1.1
atu+8w(p+'yu2):0 (L)
for (t,z) € [0,00) x (—00,00) where p = p(t,z) € Ry, u = u(t,z) € R are
density, respectively, velocity field and v € R is a fixed parameter. For any fixed
~ this is a hyperbolic system of conservation laws in the domain (p,u) € Ry x R.
Phenomenologically, the pde describes a deposition/domain growth — or, in
biological term: chemotaxis — mechanism: p(¢, ) is the density of population
performing the deposition and h(t, z) is the height of the deposition. Let

u(t, z) == —0zh(t, x).
The physics of the phenomenon is contained in the following two rules:

(a) The velocity field of the population is proportional to the negative gradient
of the height of the deposition. That is, the population is pushed towards
the local decrease of the deposition height. This rule, together with the
conservation of total mass of the population leads to the continuity equation
(the first equation in our system).

(b) The deposition rate is

Oth =p+ 7(5‘mh)2.

The first term on the right hand side is just saying that deposition is done
additively by the population. The second term is a self-generating deposition,
introduced and phenomenologically motivated by Kardar-Parisi-Zhang [9]
and commonly accepted in the literature. Differentiating this last equation
with respect to the space variable x results in the second equation of our
system.

The pde (1.1) is invariant under the following scaling, if p(¢, ), u(t,x) is a so-
lution then

pt, x) = AP p(AYFPt, Ax), u(t,x) == APu(APt, Ax),

is also a solution, where A > 0 and # € R are arbitrarily fixed. The choice
B = 0 gives the straightforward hyperbolic scale invariance, valid for any system
of conservation laws. More interesting is the 8 = 1/2 case. This is the natural
scale invariance of the system, since the physical variables (density and velocity
fields) change covariantly under this scaling. This is the (presumed, but never
rigorously proved) asymptotic scale invariance of the Kardar-Parisi-Zhang de-
position phenomena. The nontrivial scale invariance of the pde (1.1) suggests its
universality in some sense. Our main result indeed states its validity in a very
wide context.

It is also clear that the pde is invariant under the left-right reflection symme-
try x — —ux:

p(t, z) = p(t,—x), u(t,x) = —u(t,—x)
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also satisfies (1.1).

The parameter 7 of the pde (1.1) is of crucial importance: different values

of v lead to completely different behavior. Here are listed some particular cases
which arose in the past in various contexts:

The pde (1.1) with v = 0 arose in the context of the ‘true self-repelling motion’
constructed by Téth and Werner in [23]. For a survey of this case see also
[24]. The same equation, with viscosity terms added, appear in mathematical
biology under the name of (negative) chemotaxis equations (see e.g. [17], [15],
[14]).

Taking v = 1/2 we get the ‘shallow water equation’. See [3], [13]. This is the
only value of the parameter v when m = pu is conserved and as a consequence
the pde (1.1) can be interpreted as gas dynamics equation.

With v = 1 the pde is called ‘Leroux’s equation’ which is of Temple class
and for this reason much investigated. For many details about this equation
see [19]. In the recent paper [6] Leroux’s system has been derived as hydro-
dynamic limit under Eulerian scaling for a two-component lattice gas, going
even beyond the appearance of shocks.

The main facts about the pde (1.1) are presented in Subsection 10.1 in the

Appendix. Here we only mention that

1.

U

For any v € R the system (1.1) is strictly hyperbolic in (p,u) € (0,00) X R,
with hyperbolicity marginally lost at (p,u) = (0,0) for v # 1/2 and at p =0
for vy =1/2.

The Riemann invariants (or characteristic coordinates) are explicitly com-
puted in section 10.1, for a first impression see Figure 1 of the Appendix
where the level lines of the Riemann invariants are shown. It turns out that
the picture changes qualitatively at the critical values v = 1/2, v = 3/4 and
v = 1. It is of crucial importance for our later problem that the level curves,
expressed as u — p(u) are convex for v < 1, linear for v = 1 and concave for
v > 1.

For any v > 0 the system (1.1) is genuinely nonlinear in (p,u) € (0,00) x R,
with genuine nonlinearity marginally lost at (p,u) = (0,0) for v # 0,1/2 and
at p=0for~y=0,1/2.

The system is sufficiently rich in Laz entropies.

For v > 0 the system (1.1) satisfies the conditions of the Lax-Chuey-Conley-
Smoller Mazimum Principle (see [11], [12], [19]). However, this maximum
principle yields a priori bounds for entropy solutions with bounded initial
data only for v > 1.

The goal of the present paper is to derive the two-by-two hyperbolic system

of conservation laws (1.1) as decent hydrodynamic limit of some systems of
interacting particles with two conserved quantities.

We consider one-dimensional, locally finite interacting particle systems with

two conservation laws with periodic boundary conditions which under Fulerian
hydrodynamic limit lead to two-by-two systems of conservation laws

Op + 0¥ (p,u) =0
Ort+ 0,8(p,u) =0,
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with (t,z) € [0,00) x T, (p,u) € D C R?. Here T = R/Z is the unit torus and D
is a convex compact polygon in R2. The system is typically strictly hyperbolic
in the interior of D with possible non-hyperbolic degeneracies on the boundary
OD. We consider the case of isolated singular (i.e. non hyperbolic) point on the
interior of one of the edges of D, call it (pg, ug) = (0,0) and assume D C {p >
0} (otherwise we apply an appropriate linear transformation on the conserved
quantities). We investigate the propagation of small nonequilibrium perturbations
of the steady state of the microscopic interacting particle system, corresponding
to the densities (pg,ug) of the conserved quantities. We prove that for a very
rich class of systems, under proper hydrodynamic limit the propagation of these
small perturbations are universally driven by the system (1.1) on the unit torus,
where the parameter v := %@uu(po, up) (with a proper choice of space and time
scale) is the only trace of the microscopic structure. The proof is valid for the
cases with v > 1.

The proof essentially relies on H-T. Yau’s relative entropy method and thus,
it is valid only in the regime of smooth solutions of the pde (1.1).

We should emphasize here the essential new ideas of the proof. Since we con-
sider a low density limit, the distribution of particle numbers in blocks of meso-
scopic size will have a Poissonian rather than Gaussian tail. The fluctuations of
the other conserved quantity will be Gaussian, as usual. It follows that when con-
trolling the fluctuations of the empirical block averages the usual large deviation
approach would lead us to the disastrous estimate E( exp{e GAU - POI}) = cc.
It turns out that some very special cutoff must be applied. Since the large fluctu-
ations which are cut off can not be estimated by robust methods (i.e. by applying
entropy inequality), only some cancellation due to martingales can help. This
is the reason why the cutoff function must be chosen in a very special way, in
terms of a particular Lax entropy of the Euler equation. In this way the proof
becomes an interesting mixture of probabilistic and pde arguments. The fine
properties of the limiting pde, in particular the global behavior of Riemann in-
variants and some particular Lax entropies, play an essential role in the proof.
The radical difference between the v > 1 vs. v < 1 cases, in particular applicabil-
ity vs. non-applicability of the Lax-Chuey-Conley-Smoller maximum principle,
manifests itself on the microscopic, probabilistic level.

1.2. The structure of the paper. In Section 2 we define the class of models to
which our main theorem applies: we formulate the conditions to be satisfied by
the interacting particle systems to be considered, we compute the steady state
measures and the fluxes corresponding to the conserved quantities. At the end
of this section we formulate the Eulerian hydrodynamic limit, for later reference.

In Section 3 first we perform asymptotic analysis of the Euler equations close
to the singular point considered, then we formulate our main result, Theorem 1,
and its immediate consequences.

In Section 4 we perform the necessary preliminary computations for the proof.
After introducing the minimum necessary notation we apply some standard
procedures in the context of relative entropy method. Empirical block aver-
ages are introduced, numerical error terms are separated and estimated. In this
first estimates only straightforward numerical approximations (Taylor expansion
bounds) and the most direct entropy inequality is applied.
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Section 5 is of crucial importance: here it is shown why the traditional ap-
proach of the relative entropy method fails to apply. Here it becomes appar-
ent that in the fluctuation bound (usually referred to as large deviation es-
timate) instead of the tame E(exp{e GAU?}) we would run into the wild

E(exp{e GAU - POI}) which is, of course, infinite. Here we describe our special
cutoff function and we state its main properties in Lemma 2. The construction of
the cutoff is outlined in the Appendix. The proof, that the constructed functions
indeed possess the properties described in Lemma 2 is pure classical pde theory.
It is a straightforward, although quite lengthy (and not entirely trivial) calcu-
lation. Since the detailed proof would lengthen our paper considerably and also
because it would stick out a bit from the framework of the paper, it is omitted
completely. The interested reader may look up the detailed proof in [25]. At the
end of the section the outline of the further steps is presented.

In Section 6 all the necessary probabilistic ingredients of the forthcoming
steps are gathered. These are: fixed time large deviation bounds and fixed time
fluctuation bounds, the time averaged block replacement bounds (one block es-
timates) and the time averaged gradient bounds (closely related to the so-called
two block estimates). The proof of these last two rely on Varadhan’s large de-
viation bound cited in that section and on some probability lemmas stated and
proved in section 9. We should mention here that these proofs, in particular the
probability lemmas involved also contain some new and instructive elements.

Sections 7 and 8 conclude the proof: the various terms arising in Section 5 are
estimated using all the tools (probabilistic and pde) described in earlier sections.
One can see that these estimates rely heavily on the fine properties of the Lax
entropy used in the cutoff procedure.

As we already mentioned Section 9 is devoted to proofs of various lemmas
stated in earlier parts.

In the first subsection of the Appendix we give some details about the pde
(1.1). This is included for sake of completeness and in order to let the reader
have some more information about these, certainly interesting, pde-s. Strictly
technically speaking this is not used in the proof. In the second subsection we
outline the construction of the cutoff function.

2. Microscopic models

Our interacting particle systems to be defined in the present section model on a
microscopic level the same deposition phenomena as the pde (1.1). There will be
two conserved physical quantities: the particle number n; € N and the (discrete)
negative gradient of the deposition height (; € Z.

The dynamical driving mechanism is of such nature that

(i) The deposition height growth is influenced by the local particle density.
Typically: growth is enhanced by higher particle densities.

(ii) The particle motion is itself influenced by the deposition profile. Typically:
particles are pushed in the direction of the negative gradient of the depo-
sition height.

2.1. State space, conserved quantities. Throughout this paper we denote by T"
the discrete tori Z/nZ, n € N, and by T the continuous torus R/Z. We will
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denote the local spin state by {2, we only consider the case when (2 is finite. The
state space of the interacting particle system of size n is

on =0
Configurations will be denoted
w = (wj)jem € 2%,

For sake of simplicity we consider discrete (integer valued) conserved quantities
only. The two conserved quantities are

n:2—N, ¢: 02— vZ or vo(Z +1/2). (2.1)

The trivial scaling factor vy will be conveniently chosen later (see (2.4)). We also
use the notations 7; = n(w;), (; = ((w;). This means that the sums } . n; and
> ; Gj are conserved by the dynamics. We assume that the conserved quantities
are different and non-trivial, i.e. the functions (,n and the constant function 1
on {2 are linearly independent.

The left-right reflection symmetry of the model is implemented by an involu-
tion

R: 02— 0 RoR=1d

which acts on the conserved quantities as follows:

n(Rw) =n(w),  ((Rw) = —((w). (2.2)

2.2. Rate functions, infinitesimal generators, stationary measures. Consider a
(fixed) probability measure 7 on (2, which is invariant under the action of the
involution R, i.e. m(Rw) = m(w) and puts positive measure on every w € {2.
Since eventually we consider low densities of 1, in order to exclude trivial cases
we assume that

m(¢=0|n=0)<1 (2.3)

The scaling factor vy in (2.1) is chosen so that
Var((|n=0) =1. (2.4)
This choice simplifies some formulas (fixing a recurring constant to be equal

to 1, see (3.4)) but does not restrict generality. For later use we introduce the
notations

* = = .= .
p = maxn(w), u” = max ((w), U = max ((w)
n(w)=0

For 7,0 € R let G(7,0) be the moment generating function defined below:

G(1,0) :=log Z eTN@IHIC(W) (),
wen?
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In thermodynamic terms G(7, #) corresponds to the Gibbs free energy. We define
the probability measures
mr0(w) = m(w) exp(tn(w) + 0¢(w) — G(7,0)) (2.5)

on (2. We are going to define dynamics which conserve the quantities i1 and
> ; Gj» posses no other (hidden) conserved quantities and for which the product

measures
g = H Tr0
jetrn
are stationary.

We need to separate a symmetric (reversible) part of the dynamics which
will be speeded up sufficiently in order to enhance convergence to local equilib-
rium and thus help estimating some error terms in the hydrodynamic limiting
procedure. So we consider two rate functions r : 2 x 2 x 2 x 2 — Ry and
5 2x02xN2x 2 — Ry, rwill define the asymmetric component of the dynamics,
while s will define the reversible component. The dynamics of the system consists
of elementary jumps affecting nearest neighbor spins, (wj,w;1) — (W}, wj )
performed with rate

NP5, 1500 84 ) 8005, 0541301,

where A, k > 0 are speed-up factors, depending on the size of the system in the
limiting procedure.
We require that the rate functions r and s satisfy the following conditions.

(A) Conservation laws: If r(wy, we; wi,wh) > 0 or s(wy,ws;w),wh) > 0 then
n(wi) +n(w2) = n(wi) + n(ws).
C(w1) + Cwz) = ¢(wh) + ((w)),
B) Irreducibility: For every N € [0,np*], Z € [—nu*, nu*| the set
p

Qo g=Qwe": > n=N,> (=2
JET™ jET™

is an irreducible component of 27, i.e. if w,w’ € (2} 7 then there exists a
series of elementary jumps with positive rates transforming w into w’.

(C) Left-right symmetry: The jump rates are invariant under left-right reflection
and the action of the involution R (jointly):

r(Rwa, Rwy; Rwh, Rwy) = (w1, ws; w),ws).

s(Rway, Rwi; Rw), Rw)) = s(wy, wa;w}, wh).
(D) Stationarity of the asymmetric part: For any wy,ws, w3 € 2

Q(w1,w2) + Qwe, w3) + Qws,wr) =0,

where

Qwr,wa) 1= Z {Wr(wiawé§w17w2) - r(whwz;wi,w’z)} :

wiwhen ﬂ-(wl)ﬂ-(a&)
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(E) Reversibility of the symmetric part: For any wy,ws,w],w) € §2
7(w1)m(we)s(wr, wa; wh,wh) = m(w))m(wh)s(wy, wh; wi, wa).

For a precise formulation of the infinitesimal generator on 2" we first define
the map O ¢ : 2" — Q" for every w',w” € 2, j € T™
Wit =3y
(@wg)‘: Wit =41
Yo les iAol

The infinitesimal generators defined by these rates will be denoted:

L'fw)=Y Y rw,wie, ") (05 w) - fw).

JET™ W W€

E'fw)=>" > swjwiw, ") (f(07 w) - fw)).

JET” W’ W' eN

We denote by X" the Markov process on the state space 2" with infinitesimal
generator

G™ = An)L" + k(n)K™ (2.6)

with speed-up factors A(n) and k(n) to be specified later. Let uf} be a probability
distribution on 2™ which is the initial distribution of the microscopic system of
size n, and

= e (2.7)

the distribution of the system at (macroscopic) time t.

Remarks:

(1) Conditions (A) and (B) together imply that >, n; and ; (; are indeed the
only conserved quantities of the dynamics.

(2) Condition (C) together with (2.2) is the implementation of the left-right
symmetry of the pde (1.1) on a microscopic level. Actually, our main result,
Theorem 1, is valid without this assumption but some of the arguments
would be more technical.

(3) Condition (D) implies that the product measures 7!, are indeed stationary
for the dynamics defined by the asymmetric rates r. This is seen by applying
similar computations to those of [1], [2], [18] or [22]. Mind that this is not a
detailed balance condition for the rates r.

(4) Condition (E) is a straightforward detailed balance condition. It implies
that the product measures 7", are reversible for the dynamics defined by
the symmetric rates s. 7
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We will refer to the measures 77", as the canonical measures. Since ), (;
:
and >, n; are conserved the canonical measures on 2" are not ergodic. The
conditioned measures defined on {23 , by:

(W) Hw € 2F 4}

77?,9(917\17,2)

T, z(W) =77 (W] Z n; =N, Z G=2)=

jET™ jET™

are also stationary and due to condition (B) satisfied by the rate functions they
are ergodic. We shall call these measures the microcanonical measures of our
system. (It is easy to see that the measure T,z does not depend on the choice
of the values of 7 and 6 in the previous definition.)

The assumptions are by no means excessively restrictive. Here follow some
concrete examples of interacting particle systems which belong to the class spec-
ified by conditions (A)-(E) and also satisfy the further conditions (F), (G), (H),
(I) to be formulated later.

{—1,0,+1}-model The model is described and analyzed in full detail in [22]
and [6]. The one spin state space is 2 = {—1,0,+1} . The left-right reflection
symmetry is implemented by R : {2 — {2, Rw = —w. The dynamics consists of
nearest neighbor spin exchanges and the two conserved quantities are n(w) =
1 — |w| and ((w) = w. The jump rates are

r(l,-1;-1,1) =0,  r(-1,1;1,-1) =2,
r(0,—1;—-1,0) =0, r(=1,0;0,-1) =1,
r(1,0;0,1) = 0, r(0,1;1,0) = 1.
and

oy 1 if (w,we) = (Wh,w]) and wy # we
s(wi, w3 wy, wy) = {O otherwise.

The one dimensional marginals of the stationary measures are

l—-pxu
2

with the domain of variables D = {(p,u) € Ry xR : p+ |u| < 1}.

Two-lane models The following family of examples are finite state space ver-
sions of the bricklayers models introduced in [24]. Let 2 = {0,1,...,7} x
{-z,-z+1,...,2—1,z}, where n € Nand z € {%, 1, %,2...}. The elements
of £2 will be denoted w := ({). Naturally enough, >-;m; and 3, ¢; will be the
conserved quantities of the dynamics. Left-right reflection symmetry is imple-
mented as R: 2 — 2, R (Z) = (_"C). We allow only the following elementary
changes to occur at neighboring sites j,j + 1:

M5 Mt M M M5 it n; F1 77;'+1i1)
(CJ'7CJ'+1) - (Cj :Fl’cjﬂil) ’ (Cj’CHl) - ( G o7 S
with appropriate rates. Beside the conditions already imposed we also assume
that the one dimensional marginals of the steady state measures factorize as

follows:
m(w) =7 (&) = p(nq(¢).

Tpu(0) =p, 7pu(E£l) =
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The simplest case, with 7 = 1 and z = 1/2, that is with 2 = {0,1} x
{=1/2,+1/2}, was introduced and fully analyzed in [22] and [16]. For a full
description (i.e. identification of the rates which satisfy the imposed conditions,
Eulerian hydrodynamic limit, etc. see those papers.) It turns out that condi-
tions (A)-(E) impose some nontrivial combinatorial constraints on the rates
which are satisfied by a finite parameter family of models. The number of free
parameters increases with 7 and Z. Since the concrete expressions of the rates
are not relevant for our further presentation we omit the lengthy computations.

2.8. Fxpectations. Expectation, variance, covariance with respect to the mea-
sures 7!y will be denoted by E; ¢(.), Var:(.), Covy(.).

We compute the expectations of the conserved quantities with respect to the
canonical measures, as functions of the parameters 7 and 6:

p(T, 9) = ET,0(77) = Z U(w)ﬁr,o(w) = GT(T’ 9)

wes?

u(r,0) :==E;4(¢) = Z C(W)mrp(w) = Go(T,0),

we

Elementary calculations show, that the matrix-valued function

T GTT GT
<,0 pa) = < 9) =:G"(1,0)
Ur Up Gor Gog

is equal to the covariance matrix Cov, (7, () and therefore it is strictly positive
definite. It follows that the function (7,60) — (p(7,0),u(r,0)) is invertible. We
denote the inverse function by (p,u) — (7(p,u),0(p,u)). Denote by (p,u) —
S(p, u) the convex conjugate (Legendre transform) of the strictly convex function
(1,0) — G(1,0):

S(p,u) = su(g) (p7 +ub — G(7,0)), (2.8)

and

D :={(p,u) e Ry xR:S5(p,u) < oo} (2.9)
= co{(n, () : 7(w) > 0},

where co stands for convex hull and A is the closure of A. The nondegeneracy
condition (2.3) implies that 9D N {p = 0} = {(0,u) : |u| < u.}. For (p,u) € D
we have

r(pu) = Sp(pou)s B(pou) = Sulp,u).

In probabilistic terms: S(p,u) is the rate function of joint large deviations of
(22 M55 25 ¢G)- In thermodynamic terms: S(p, u) corresponds to the equilibrium
thermodynamic entropy. Let

(7Y = (55
9p eu Sup Suu - e
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It is obvious that the matrices G”(7,0) and S”(p, u) are strictly positive definite
and are inverse of each other:

G"(7,0)8" (p,u) = I = " (p, )G (7.,0), (2.10)
where either (7,0) = (7(p,u),0(p,u)) or (p,u) = (p(7,0),u(r,0)). With slight
abuse of notation we shall denote:

Tr(pu),0(pu) = Tpus 71-:'I(p,u),é(p,u) = ﬂ-g,uv ET(p,u),O(p,u) = Ep,ua etc.
As a general convention, if £ : 2" — R is a local function then its expectation

with respect to the canonical measure 7", is denoted by

Epu) =Epu@) = DY &wie s wm)Tpulwi) Tpu(wm).

W1 yeeny Wiy €02™

2.4. Fluzes. We introduce the fluxes of the conserved quantities. The infinites-
imal generators L™ and K™ act on the conserved quantities as follows (mind
condition (A) on the rates):

Ly = —Y(wi,wit1) +P(wimt,wi) =1 =i + i1,
LG = —(wi, wit1) + ¢(wi—1,wi) =t —¢; + ¢i—1,
K" = = (wi,wig1) + 9% (wim1, wi) =0 =97 + 974,
K"G = —¢*(wi, wi1) + ¢°(wim1,wi) =1 —¢7 + ¢7_1,

where
Plwr,we) = Y r(wrwaswh, wh) (n(wh) — n(ws))
wi when

dlwi,ws) = Z r(w17w2§wiawé)(C(W§) - C(wz))

’ /7
wi,wHESN

P (wr,we) = Y s(wr,wasef, wh) (n(wh) — niws))

’ ’
w1 ,ws €N

¢8(w1>w2) = Z S(wlvw%w/lvw;)(C(wé) 7<(W2))

’ ’
wi,ws €N

(2.11)

(2.12)

Note that due to the left-right symmetry and conservations, i.e. (2.2) and con-
ditions (A) and (C), the microscopic fluxes have the following symmetries:

d(wr,w2) =  (Rwa, Rwy), Y(wr,w2) = —¢Y(Rws, Rw).

In order to simplify some of our further arguments we impose one more mi-
croscopic condition

(F) Gradient condition on symmetric fluzes: The microscopic fluxes of the sym-
metric part, defined in (2.12) satisfy the following gradient conditions

¥ (wr,wa) = K(wr) — K(wz) =: K1 — ke (2.13)

#° (w1, w2) = x(w1) — x(w2) =1 X1 — X2-
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Remark: (1) This is a technical assumption (referring actually to the measure
m) which simplifies considerably the arguments of section 7. The symmetric part
K™ has the role of enhancing convergence to local equilibrium. Its effect is not
seen in the limit, so in principle we can choose it conveniently. Without this
assumption we would be forced to use all the non-gradient technology developed
in [26] (see also [10]), which would make the paper even longer.
(2) Tt is easy to see that n(w1) = n(w2) = 0 implies ¥* (w1, ws) = 0 and thus (by
choosing a suitable additive constant) w — x(w) can be chosen so that
Nw)=0 = k(w)=0. (2.14)

The macroscopic fluxes are:

U(p,u) = Epu(1h) = Y (Wi, w2)mpu(wi)mpu(ws)

= 2.15
¢(p7 u) = Ep,u(¢) = Z ¢(W1;W2)7Tp,u(wl)7rp,u(w2) ( )

wi,w2

These are smooth regular functions of the variables (p,u) € D. Note that due to
reversibility of K™ (condition (E)), for any value of p and u

Ep,u(ws) =0= Ep,u(¢s)-
The following lemma is proved in [22].

Lemma 1. (Onsager reciprocity relation) Suppose we have a particle system
with two conserved quantities and rates satisfying conditions (A) and (D). Then
the following relation holds:

0¥ (p(7,0),u(r,0)) = 0-2(p(7,0),u(7,0)).
We will use the lemma in the following equivalent form:
W (p, u)Var, . (¢) = Pu(p, u)Cov,u(n, ¢) = (2.16)
P (pyu)Var (1) = ¥, (p,u)Cov,.u (1, ).

For the concrete examples presented at the end of subsection 2.2 the following
domains D and macroscopic fluxes are gotten:

{—1,0,+1}-model:

D={(pu) €Ry xR : pJu < 1}
U(p,u) = pu, D(p,u)=p+u’.
Two lane models with n = 1:
D={(p,u) eERy xR : p<1, |ul<Z}
¥ (p,u) = p(1 = p)p(u),  P(p,u) = po(u) + pp1(u),

where ¥ (u) is odd, while pg(u) and @1 (u) are even functions of u, determined
by the jump rates of the model. In the simplest particular case with z = 1/2

@ (p,u) =p(l—pu,  P(p,u)=(p—7)(1—u?),

where v € R is the only model dependent parameter which appears in the
macroscopic fluxes. For details see [22].
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2.5. The hydrodynamic limit under FEulerian scaling. Given a system of inter-
acting particles as defined in the previous subsections, under Eulerian scaling
the local densities of the conserved quantities p(¢, ), u(t, ) evolve according to
the system of partial differential equations:

{ Op + 0¥ (p,u) =0

(2.17)
atu + amgp(pv u) =0

where ¥(p,u) and @(p,u) are the macroscopic fluxes defined in (2.15).

The precise statement of the hydrodynamical limit is as follows: Consider
a microscopic system which satisfies conditions (A)-(E) of Subsection 2.2. Let
¥U(p,u) and @(p,u) be the macroscopic fluxes computed for this system and
p(t,z),u(t,z) x € T, t € [0,T] be smooth solution of the pde (2.17). Let the
microscopic system of size n be driven by the infinitesimal generator G™ defined
n (2.6) with A(n) = n and x(n) = n'*® where 6 € [0,1) is fixed. This means
that the main, asymmetric part of the generator is speeded up by n and the
additional symmetric part by n!'*°. Let u the distribution of the system on 27
at (macroscopic) time ¢ defined by (2.7). The local equilibrium measure v} (itself
a probability measure on §2") is defined by

Vi = H Tp(t, ) u(t, 2)
JET™

This measure mimics on a microscopic scale the macroscopic evolution driven
by the pde (2.17).

We denote by H(u}|n™), respectively, by H(up|v) the relative entropy of
the measure p* with respect to the absolute reference measure 7", respectively,
with respect to the local equilibrium measure v;*.

The precise statement of the Eulerian hydrodynamic limit is the following

Theorem. Assume conditions (A)-(E) and let § € [0,1) be fived. If
H (ug [vg) = o(n)
then

uniformly fort € [0,T).

The Theorem follows from direct application of Yau’s relative entropy method.
For the proof and its direct consequences see [10], [22] or [27]. For the main
consequences of this Theorem see e.g. Corollary 1 of [22].

3. Low density asymptotics and the main result: hydrodynamic limit
under intermediate scaling

3.1. General properties and low density asymptotics of the macroscopic fluzes.
The fluxes in the Euler equation (2.17) are regular smooth functions D.
From the left-right symmetry of the microscopic models it follows that

Qs(pv _u) = @(p7 u)’ {[/(p’ _u) = _W(p’ u) (31)
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It is also obvious that for u € [—u., u]
w(0,u) = 0. (3.2)

We make two assumptions about the low density asymptotics of the macro-
scopic fluxes. Here is the first one:

(G) We assume that ¥,,(0,0) # 0. Actually, by possibly redefining the time
scale and orientation of space, without loss of generality we assume

,,(0,0) = 1. (3.3)

Considering the Onsager relation (2.16) with u = 0 and taking the Taylor ex-
pansion around p = 0 it follows that

$,(0,0) = ¥,,(0,0)Vargo(¢) = 1, (3.4)

where in the second equality we used the choice (2.4) of the scaling factor vy in
(2.1). We denote

= %@uu(0,0). (3.5)

Our results will hold for v > 1 only.
From (3.1) and (3.3) it follows that

D, (0,u) — ¥, (0,u) = (27 — D)u+ O(|ul®). (3.6)

The second condition imposed on the low density asymptotics of the macroscopic
fluxes is:

(H) For u € [—us, us], u #0

@U(Oa u) - LDP(Ov u) 7é 0, (37)
qv)/)(ov u) 7& Ov q/;)u(oa U) 7é 0 (38)

Remarks: (1) (G) is a very natural nondegeneracy condition: if ¥,,(0,0) van-
ished then in the perturbation calculus to be performed, higher order terms
would be dominant and a different scaling limit should be taken.
(2) Due to (3.1), (3.3) and (3.6) conditions (3.7), (3.8) hold anyway in a neigh-
borhood of u = 0, and this would suffice, we assume condition (H) for technical
convenience only. Condition (3.7) amounts to forbidding other non-hyperbolic
points on 9D N {p = 0}, beside the point (p,u) = (0,0). Condition (3.8) reflects
the natural monotonicity requirements (i) and (ii) formulated about the micro-
scopic models at the beginning of Section 2. These conditions are used in the
proof of Lemma 2, for the details see [25].

We are interested in the behavior of the pde near the isolated non-hyperbolic
point (p,u) = (0,0). The asymptotic expansion for p+u? < 1 of the macroscopic
fluxes and their first partial derivatives is

U(p,u) = pu(l+O(p+u?)),  P(p,u)=(p+u’)(1+O(p+u?)),
Zy(p,0) = u(l+ O+ u2)),  Bylp,u) =14 Olp+u), (39)
Wy (p,u) = p(1+ O(p+ u?)), Dy (p,u) =2vu(1+ O(p + u?)).
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We are looking for “small solutions” of the pde (2.17): Let po(z) and ug(x) be
given profiles and assume that p®(¢, x), u®(t, ) is solution of the pde (2.17) with
initial condition

p7(0,2) = 2po(x), u(0,2) = e up().
Then, at least formally,
e 2% (e, x) — p(t,x), e tut(e7t,x) — u(t,x),
where p(t, x), u(t, x) is solution of the pde (1.1) with initial condition

p(oa I) = po(I), U(O,JJ) = U'O(m)

3.2. The main result. The asymptotic computations of subsection 3.1 suggest
the scaling under which we should derive the pde (1.1) as hydrodynamic limit:
fix a (small) positive 8 and choose the scaling

space time particle density ‘slope of the wall’
MICRO nx n'*ht n=2fp n= Py
MACRO x t P u

Ideally the result should be valid for 0 < 8 < 1/2 but we are able to prove much
less than that.

Choose a model satisfying the conditions (A)-(F) of Section 2 and conditions
(G), (H) of Subsection 3.1, and let v be given by (3.5), corresponding to the
microscopic system chosen. Let the microscopic system of size n (defined on the
discrete torus T") evolve on macroscopic time scale according to the infinitesimal
generator G (see (2.6)) with speed-up factors

A(n) =n'*h, K(n) = nitA+o

with 8 > 0 and some further conditions to be imposed on § and § (see (3.12)).
Denote by py the true distribution of the microscopic system at macroscopic
time ¢t with p{) is the initial distribution (see (2.7)).

We use the translation invariant product measure

=T s (3.10)

as absolute reference measure. Global entropy will be considered relative to this
measure, Radon-Nikodym derivatives of pf and the local equilibrium measure
v to be defined below, with respect to 7™ will be used.

Given a smooth solution (p(t,z),u(t,z)), (t,z) € [0,T] x T, of the pde (1.1)
define the local equilibrium measure vy on 2" as follows

l/? = H ﬂ-n’QGp(t,%),nfgu(t,%)' (311)
je’]]‘n

This time-dependent measure mimics on a microscopic level the macroscopic
evolution governed by the pde (1.1). Our main result is the following:
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Theorem 1. Assume that the microscopic system of interacting particles satis-
fies conditions (A)-(F) of Subsections 2.2, 2.4 and the uniform log-Sobolev con-
dition (I) of Subsection 6.2. Additionally, assume that the macroscopic fluzes
satisfy conditions (G), (H) of Subsection 3.1 and v > 1. Choose 8 € (0,1/2)
and § € (1/2,1) so that

26-83>1 and b6+38<1. (3.12)

Let (p(t,x),u(t,a:)), (t,z) € [0,T] x T, be smooth solution of the pde (1.1),
such that infyer p(0,2) > 0 and let v}, t € [0,T] be the corresponding local
equilibrium measure defined in (3.11).

Under these conditions, if

H(uy | v§) = o(n'~27) (3.13)
then

H(pp |vf) = o(n'=2P) (3.14)
uniformly for t € [0,T).

Remarks:
(i) From (3.13) via the identity (4.5) and the entropy inequality it also follows
that

H(pg | 7") = O(n'=29). (3.15)

See the beginning of subsection 4.2
(ii) If v > 3/4, in smooth solutions vacuum does not appear. That is

in%p(o, z)>0 implies p(t,z) > 0.
zE

inf
(t,z)€[0,T)xT

(iii) Although for the {—1,0,+1}-model we have v = 1, our proof can also be
extended to cover this model. Actually, in that case the proof is much simpler,
since the Eulerian pde is equal to the limit pde (1.1) and thus the cutoff function
(see Section 5) can be determined explicitly.

Corollary 1. Assume the conditions of Theorem 1. Let g,h : T — R be smooth
test functions. Then for any t € [0,T]

*1 E g *j n25 i + *j 7’7/6 i — ag\xr)p x)+ T)u ) dx

JET™
(i)
H(ug ’ 7r") — H(,u? ’ 77") = o(nl_Qﬂ).

Corollary 1 can be easily proved by the standard use of the entropy inequality.
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4. Notations and general preparatory computations

This section is completely standard in the context of the relative entropy method,
so we shall be sketchy.

4.1. Notation. We denote

h™(t) := n71+2ﬁH(u? |v), s"(t) :=n~1+2 (H(pg | 7™) — H(py | 7))

We know a priori that t — s™(t) is monotone increasing and due to (3.15)
s"(t) = O(1), uniformly for ¢ € [0, 00). (4.1)

In fact, from Theorem 1 it follows (see Corollary 1) that as long as the solution
p(t, z),u(t,z) of the pde (1.1) is smooth

s"(t) = o(1), uniformly for ¢ € [0, 7).
For (p,u) € (0,00) X (—00,00) denote
m(p,u) == 1(n"Fp,nPu) —r(n7%,0),  0"(p,u) :=n0(n">’p,n""u).

Note that, for symmetry reasons 6(n~2%,0) = 0. Mind that 7 is chemical poten-
tial rather than fugacity and for small densities the fugacity A\ := e scales like
p, ie. 7(n72%,0) ~ —2Blogn. If p > 0 and u € R are fixed then 7" (p,u) and
0" (p,u) stay of order 1, as n — oo.

Given the smooth solution p(t,x),u(t, ), with p(t,x) > 0 we shall use the
notations

7"t z) = 1" (p(t, x), ult, z)), 0" (t,x) := 0" (p(t, x),u(t,x)),
).

(
v(t, z) := log p(

The following asymptotics hold uniformly in (¢,z) € [0,T] x T:

)

T (t,z) = o(t,r) +O(n=?7), " (t,x) = wu(t,z)+ O(n=27)
0,7 (t, ) = Opu(t,z) + O(n~28),  0,0™(t,x) = Opu(t,x) + O(n~2P) (4.2)
Oy T (t,x) = Oy v(t,x) + O(n=27), 0, 0"(t,x) = s u(t,x) + O(n=2%)

The logarithm of the Radon-Nikodym derivative of the time dependent reference
measure v;* with respect to the absolute reference measure 7" is denoted by fi*:

(@) = log 7L ()
= > {400 L), (43)
jeTn

G D) 7,00, n7007 (1, L)) 4 Glr(n,0),0))
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4.2. Preparatory computations. In order to obtain the main estimate (3.14) our
aim is to get a Gronwall type inequality: we will prove that for every ¢ € [0, T

(¢ /8th" ds<C/ h"(s)ds + o(1), (4.4)

where the error term is uniform in ¢ € [0,7]. Since h™(0) = o(1) is assumed,
Theorem 1 follows.
We start with the identity

Apil) = Hpg|m") = = | S dui' (4.5)

From this identity, the explicit form of the Radon-Nikodym derivative (4.3), the

asymptotics (4.2), via the entropy inequality and (3.13) the a priori entropy

bound (3.15) follows indeed, as remarked after the formulation of Theorem 1.
Next we differentiate (4.5) to obtain

athn(t) _ 7/ (HSﬁLnfgz + n3ﬁ+5antn + n71+2ﬁatftn) du* — atsn(t).
(4.6)
Usually, an adjoint version of (4.6) is being used in form of an inequality. In
our case this form is needed. We emphasize that the term —d;s™(¢) on the right

hand side will be of crucial importance.
We compute the three terms under the integral using (4.3).

nP LM w) = = Z Dav(t, )30 4+ = Z Al t ynPp;  (4.7)

JE’JT" je']l‘"
+AT(t, w) + A5 (t,w) + A% (t,w) + A} (t,w),

where A?(t,w), i =1,...,4 are error terms which will be easy to estimate:

() = 5 3 (00 = Dp(t. ),
A (t,w) = — Z d,0" (¢ ' — d,ult, f))n2ﬂ¢j,
AR (t,w) == = Z (Vrr( ' — 0, 7" (t, )) n3ep,;

A (t,w) ;:fz (Vo (t | — 9,0™(t, f)) n* ;.

JET™

Here and in the sequel V™ denotes the discrete gradient:

V™ f(z) = n(f(z+1/n) = f(z)).
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See subsection 4.4 for the estimate of the error terms A} (t,w), j = 1,...,12.
Next, using the gradient condition (F) of the symmetric fluxes,

PN @) = 0L ST () )+ (V20 D))

jeTn
= A3 (tw) (48)
is itself a numerical error term. Finally
n?ﬂ 1 . .
ot =+ 3 {ae ) - pe D)+ ouie )G~ ue D) |
n n o n n
+A§ (t,w) + A7 (t, w), (4.9)
where
n 1 nep J J J
A6 (LQ) = % Z (atT (tv ﬁ) - atv(ta E)) (nQﬁT’j - p(ta E))v
jET™
n 1 ney J J J
A7 (t,w) = o _GXT: (00" (t, ﬁ) — pu(t, 5))(”59 — u(t, 5))~
jeTn

are again easy-to-estimate error terms.

4.3. Blocks. We fix once and for all a weight function a : R — R. It is assumed
that:
(1) a(z) > 0 for x € (—1,1) and a(z) = 0 otherwise,
(2) it has total weight [a(z)dx =1,
(3) it is even: a(—z) = a(z), and
(4) it is smooth.
We choose a mesoscopic block size | = I(n) such that

1 <« nIH9H88 « 1(n) <« n®F < n. (4.10)

This can be done due to condition (3.12) imposed on § and 4.
Given a local variable (depending on m consecutive spins)

Ei = gl(g) = g(wia cee 7wi+m—1)7

its block average at macroscopic space coordinate x is defined as

£ (z) = £ (w, x) =7 Z (”x_]) & (4.11)

Since I = I(n), we do not denote explicitly dependence of the block average on
the mesoscopic block size [. Note that z +— £"(z) is smooth and

8355%(1‘):8905”(@;33):?% a<m )537
j
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and it is straightforward that

(4.12)

mA"(g,x)’ <C < max §(w1,...,wm)>

W1,y...Wm

n
!

weN™ zeT

We shall use the handy (but slightly abused) notation

~

gn(t’x) = gn(th’ '7;)

This is the empirical block average process of the local observable &;.
For the scaled block average of the two conserved quantities we shall also use
the notation

Pt x) =020t w),  at(ta) =Pt ). (4.13)

Note, that these block averages are expected to be of order 1 in the limit.
Introducing block averages the main terms on the right hand side of (4.7) and
(4.9) become:

fZav yn®ep; + = Z@utf 2P, = (4.14)
JET™ JeT"
—Z@vtf 3%” Zaut— 2%"()
JjeT™ ]ET"

+Ag(t,w) + Ag(t, w),

respectively
—Z&tvtf (n*n; — pl(t, Zatut* BCj_u(tvl)):
jETn " jern "
1 1
=37 0wt D) (L) — plt, D) 4+~ 3 dhult, 1) (0T (D) — ult, 1)
JjeT™ JjeT™

+AY (t,w) + AT, (t, w). (4.15)

The error terms A?(t,w) (i = 8,9,10,11) are of the form

A= 5 3 (it 2) = a5y,
Jje™ k

with w = 9,v, O,u, Oy, Opu and v = n3Pe, n?P ¢, n?Pn, nP¢ for i = 8,9, 10,11,
respectively. These error terms will be estimated in subsection 4.4.

Since [0,T] x T > (t,z) — (p(t,z),u(t,x)), is a smooth solution of the pde
(1.1), we have

0 = —udv — Oy u, Ot = —p0pv — 2yud, u.
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Inserting these expressions into the main terms of (4.15) eventually we obtain
for the integrand in (4.6)

nPLPfR (W) + 0K (W) + 0 P (w) = (4.16)

=3 dult, H {9 (L) - plt, Lyut, 1)

JET™

+57 Beult, {5 L) — (o(t, L) +utt, L77)

jetrn

12
+) ARt w),
k=1

where
1 .
ALt = 1S (@)t (00)(p+ 7)) (.2
jeTn
1 8l J
- - Z D (pu + gug)(t, %)
jeT
4.4. The error terms A}, k=1,...,12. We estimate these error terms with the

help of the entropy inequality with respect to the measure 7™. Note that the
variables n;, (j, ¥; or ¢; are bounded and by (3.9), (3.10) we also have

(B ()] < Cn7, Vare. (n;) < Cn=%, Bou(() =0, Varn.(¢) <,
Eq(¢;) =0, Var,. (1;) <Cn=28, |Eq(¢;)| < C, Varq(¢;) < C.

Applying the entropy inequality in a straightforward way and using the previous
bounds with the asymptotics (4.2) and uniform approximation of 9, of smooth
functions by their discrete derivative V" we get that

E,» (AZ(t)) < C(n‘ﬂ VT2 Bty n_H'ﬂl) =o(1)

for k = 1,...,11. The computational details are obvious. Finally, A%, (¢) is a
simple numerical error term (no probability involved):

AT (t) < Cn~t = o(1).
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4.5. Sumup. Thus, integrating (4.6), using (4.16) and the bounds of subsection
4.4 we obtain

h"(t) = /0 A" (s)ds + /0 B"(s)ds — s™(t) + o(1), (4.17)

where
) (4.18)
B (2 3 (@) 05— i) -} . ),
jern
B"(t) :=
E,; (% > { @) {(n¥6" = (p+yu?) = (57" = p) — 2yu(@ — w)} } (s, %))
Jjerr

The main difficulty is caused by A"(t). The term B™(t) is estimated exactly as
it is done in [21] for the one-component systems: since ®(p,u) = p+~yu? is linear
in p and quadratic in v no problem is caused by the low particle density. By
repeating the arguments of [21] we obtain

/ "B (s)ds < © / Ch(s)ds + o1). (4.19)
0 0

In the rest of the proof we concentrate on the essentially difficult term A™(t).

5. Cutoff
We define the rescaled macroscopic flures
U (p,u) = n*P(n=p,n"Pu), D" (p,u) :=n*d(n"p,n"Pu). (5.1)

defined on the scaled domain

D" .= {(p,u) : (n"*p,n"Pu) € D}. (5.2)
The first partial derivatives of the scaled fluxes are

v (p,u) = nfW,(n"2Pp,n"Pu),  Pr(p,u) = P,(n" p,n"Fu),

(5.3)
2 (p,u) =m0, (0= p nPu), (p,u) = 0B (n=2 p =),
For any (p,u) € Ry xR
lim ¥"(p,u) = pu, lim ¥ (p,u) = u, lim &} (p,u) = p,

lim &"(p,u) = p+~yu?,  lim D5 (p,u) =1, lim & (p,u) = 2vyu.
n—oo n—oo

n—00

The convergence is uniform in compact subsets of R, x R. Note that
UGt 2), W (¢, 7)) = 0P (" (@), Ot ),

(P (1, 2), @ (1, x)) = n* B (1, 2), (" (¢, @)
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5.1. The direct approach — why it fails?. The most natural thing is to write the
summand in A"(t) as

" = pu— (" = p) = pli" —u) = (5.5)
(" — w (i, C) + (P (") — 5" + (B — p)(@ — w).

By applying Varadhan’s one block estimate and controlling the error terms in
the Taylor expansion of ¥, the first two terms on the right hand side can be dealt
with. However, the last term causes serious problems: with proper normalization,
it is asymptotically distributed with respect to the local equilibrium measure v,
like a product of independent Poisson and Gaussian random variables, and thus
it does not have a finite exponential moment. Since the robust estimates heavily
rely on the entropy inequality where the finite exponential moment is needed,
we have to choose another approach for estimating A" (t).
Instead of writing plainly (5.5), we introduce a cutoff. We let

M > sup{p(t,z) V |u(t,z)| : (t,z) € [0,T] x T}.
Let I™,J™ : Ry x R — R be bounded functions so that I™ + J" =1 and
I"(p,u)=1 for pVu| <M,
I"(p,u) =0 for ‘large’ (p,u).

The last property will be specified later.
We split the right hand side of (5.5) in a most natural way, according to this
cutoff:

PP — pu — u(p" — p) — p(@" — u) = PP I (P, W) (5.6)
—(p"u 4 pu™ — pu) J(F, ") + 0P (" — W (i, ) (", T
H@ (R, A - P (P, A + (5" — p) (@ — uw) ™ (", a")

The second term on the right hand side is linear in the block averages, so it
does not cause any problem. The third term is estimated by use of Varadhan’s
one block estimate. The fourth term is Taylor approximation. Finally, the last
term can be handled with the entropy inequality if the cutoff I™(p,u) is strong
enough to tame the tail of the GaussianxPoisson random variable.

The main difficulty is caused by the first term on the right hand side. This
term certainly can not be estimated with the robust method, i.e. with entropy
inequality: we would run into the same problem we wanted to overcome by intro-
ducing the cutoff. The only way this term may be small is by some cancellation.
It turns out that the desired cancellations indeed occur (in form of a martingale
appearing in the space-time average) if and only if

J"(pyu) = S} (p,u), (5.7)
where S™(p,u) is a particular Laz entropy of the scaled Euler equation

Op + 09" (p,u) =0
(5.8)
Opu + 0, P™(p,u) = 0,
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with " (p, u) and 9" (p, u) defined in (5.1). This means that there exists a flux
function F™(p,u) with

Fl =w}S) + ®)S,, Fr=w S, + &5, (5.9)
or equivalently, the following pde holds
WSy, + (@Z — lI/;L)S;Lu — &7, = 0. (5.10)

5.2. The cutoff function. In the present subsection we describe the cutoff func-
tion (5.7) — or rather: the respective Lax entropies. In Lemma 2 we state some
related estimates which will be of paramount importance in our further proof.
The construction of the needed Lax entropies is outlined in Subsection 10.2 of
the Appendix. The proof that the Lax entropies described there indeed satisfy
the conditions of Lemma 2, is pure classical pde theory. It is a straightforward,
although quite lengthy (and not entirely trivial) calculation. Since the full proof
would lengthen our paper considerably, we omit these computations. The inter-
ested reader can find the detailed proof in [25].

Lemma 2. Let M > 0 and £ > 0 be fized arbitrary numbers. There exist twice-
differentiable Lax entropy/flux pairs S™(p,u), F"™(p,u) defined on D" for every
(large enough) n such that the following inequalities hold. The positive constants
A, B,C depend on M and e, but not on n.

155 (p,w) = Lp>atBluy] < CLim<pcatBlullul>M} (5.11)
IS0 (p,u)| < CUnr<pcAsBlul,jul>M}> (5.12)

1Sps(psu)| < ﬁ L nmr<p<A+Blul,ul>M} (5.13)

|57, (p, u)| < m (a2 pens Bl juloary, (5.14)

S (P )| < € Winr<pc At Blul Jul >0} (5.15)

[E™(p,w) =" (p,u) S} (p,u)| < C(1+u?) U ar<peat Blul jul> )} - (5.16)

It is easy to see that the function I" = 1 — 57 is indeed a cutoff: I" = 0 if
pV|ul < M and I™ =1 for ‘large’ values of (p,u), namely for p > A+ B |ul.

The choice of M will be specified by the large deviation bounds given in
Proposition 1 (via Lemma 6), the choice of e will be determined in Subsection
7.4 (see (7.16)).

5.3. Outline of the further steps of proof. In Section 7 we give an estimate for
the terms with ‘large’ values of (p, u), we prove that

/OtEug =S @) e an s, 2 | ds (5.17)

n
JETn

< h”(t)+;s”(t)—i—C/th”(s)ds—i—o(l).
0

N | =
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In Section 8 we estimate the terms with ’small” values of (p,u), the section is
divided into four subsections. In Subsection 8.1 we prove

E,» % > {(&cv) (P"u + pa" — pu) J”(ﬁ”,ﬂ”)}(s, Q) (5.18)

jET™

In Subsection 8.2 we prove the one block estimate

‘/O/E,l2 ES { @) n @ v, e e an s, 2y | ds| (5.19)

jET™
=o(1).
In Subsection 8.3 we control the Taylor approximation
1 . - P J
B | 2 {(0w) @ @) - ran) "G @) (s ) (5.20)
jeTn

< Ch™(s)+ o(1).

Finally, in Subsection 8.4 we control the fluctuations

B (-3 @) (7"~ )@ — ) 1) (s, ) (5.21)
jETn
< Ch™(s)+ o(1).

Having all these done, from (4.18), (5.6) and the bounds (5.17), (5.18), (5.19),
(5.20), (5.21) it follows that
/ A(s)ds < W' (1) + 5 57 (1) + C / Wi(s)ds +o(1).  (5.22)
0 0

Finally, from (4.17), (4.19), (5.22) and noting that s™(t) > 0 we get the desired
Gronwall inequality (4.4) and the Theorem follows. Note the importance of the
term —3;s™(t) on the right hand side of (4.6).

6. Tools

6.1. Fized time estimates. In the estimates with fixed time s € [0,T] we shall
use the notation

L =L(n) :=n"2Al (6.1)

Note that L > 1 as n — oo.
The following general entropy estimate will be exploited all over:
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Lemma 3. (Fixed time entropy inequality)
Letl < n, V: 2" — R and denote V;(w) = V(wj,...,wjti—1). Then for any
>0

1 n 1 n
Eun (n%;l V(& )) < ;h (s)+

11

’Yi - Z log E,n (exp {vLVJ—}).

Jjerr

(6.2)

This lemma is standard tool in the context of relative entropy method. For its
proof we refer the reader to the original paper [27] or the monograph [10].

Proposition 1. (Fixed time large deviation bounds)
(i) For any ¢ > 0 there exists M < oo such that for any s € [0,T]

B, (711%: {7+ D) U rvgarsnn } (5, 1)) < eh™(s) +0(1). (63

(i1) There exist C < oo and M < oo such that for any s € [0, T

1 “~n ‘ n
E,» (ﬁ S {1 Lgnvian s any s, %)) < Ch™(s) +o(1). (6.4)
JET™

The proof of Proposition 1 is postponed to Subsection 9.1. It relies on the
entropy inequality (6.2) of Lemma 3, the stochastic dominations formulated in
Lemma 5 (see Subsection 9.1) and standard large deviation bounds.

Proposition 2. (Fixed time fluctuation bounds)
For any M < oo there exists a C' < 0o such that the following bounds hold:

B (- Y0 10—l (5, 2)) < O (s) +o(1), (6.5)

jETn
1 .
Eur (= 3 {17 = o Lrcan }(5,2)) S CH7(s) +0(1). (66)
jETn

The proof of Proposition 2 is postponed to subsection 9.2. It relies on the
entropy inequality (6.2) of Lemma 3, and Gaussian fluctuation estimates.

6.2. Convergence to local equilibrium and a priori bounds. The hydrodynamic
limit relies on macroscopically fast convergence to (local) equilibrium in blocks
of mesoscopic size . Fix the block size I, N € [0,lmax 7], Z € [l min(,! max (]
and denote

l l
g ={we ) n=N> ¢ =72}
j=1 j=1

7 z(w) =7 g(w| Zm = N,Zéj =2).
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Naturally, we are only interested in the pairs (N, Z) for which va 5 s not
empty. Expectation with respect to the measure 71'5\,7 » is denoted by ElN Z( . )
For f: va,z — R let

-1
Ky z2f(w) = ‘ s(wj, wiysw, ") (051 w) — fw),

1 ’ "
Diy 4(f) == 3 STEN | YD st wi o W) (FO075 w) — flw)’

y— ’ 1"
j=1 w’w

In plain words: Qf\, , is the hyperplane of configurations w € 2! with fixed
values of the conserved quantities, 7T§V’ 4 is the microcanonical distribution on
this hyperplane, K f\, 4 is the symmetric infinitesimal generator restricted to the
hyperplane £2 ,, and finally DY , is the Dirichlet form associated to Kl .
Note, that Kf\,’ 5 is defined with free boundary conditions.

The convergence to local equilibrium is quantitatively controlled by the fol-
lowing uniform logarithmic Sobolev estimate, assumed to hold:

(I) Logarithmic Sobolev inequality: There exists a finite constant R such that for
any | € N, N € [0,lmaxn], Z € [lmin(,lmax(], and any h : va,z — R
with ElN 7(h) =1 the following bound holds:

Ely ,(hlogh) <Ni2DY , (\/E) . (6.7)

Remark: The uniform logarithmic Sobolev inequality (6.7) is expected to hold
for a very wide range of locally finite interacting particle systems, though we do
not know about a fully general proof. In [28] the logarithmic Sobolev inequality is
proved for symmetric K-exclusion processes. This implies that (6.7) holds for the
two lane models defined in Section 2. In [6] Yau’s method of proving logarithmic
Sobolev inequality is applied and the logarithmic Sobolev inequality is stated
for random stirring models with arbitrary number of colors. In particular, (6.7)
follows for the {—1,0, +1}-model defined in Section 2.

The following large deviation bound goes back to Varadhan [26]. See also the
monographs [10] and [4].

Lemma 4. (Time-averaged entropy inequality, local equilibrium)
Let1 <n, V: 02 — Ry and denote Vj(w) := V(wj,...,wj+i—1). Then for any
q>0

t
1 n
/0 By |~ S v | ds < (6.8)

jern
NE o oplssey l
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Remarks: (1) Since
p1+38+6

5 = oll),

in order to apply efficiently Lemma 4 one has to chose ¢ = ¢(n) so that

Ely z(exp{qV}) = O(1),

uniformly in the block size | = I(n) € N, and in N € [0,imaxn] and Z €
[l min ¢, ! max(].

(2) The proof of the bound (6.8) explicitly relies on the logarithmic Sobolev
inequality (6.7). It appears in [29] and it is reproduced in several places, see e.g.
[4], [5]. We do not repeat it here.

The main probabilistic ingredients of our proof are summarized in Proposition
3 which is consequence of Lemma 4. These are variants of the celebrated one
block estimate, respectively, two blocks estimate of Varadhan and co-authors.

Proposition 3. (Time-averaged block replacement and gradient bounds)
Given a local variable £ : 2™ — R there exists a constant C such that the
following bounds hold:

(i)
12

t o~ o~
[ B (L€ = 260} s de) ds < € s (570) +ot0).

(6.9)

(ii)

¢ = 2
/ | D (/ |8z§”(s,x)| dx) ds < Cn'=38—9 (s"(t) + o(1)). (6.10)
0 T

(iii) Further on, if £ : 2 — R (that is: it depends on a single spin) and {(w) = 0

whenever n(w) = 0 then the following stronger version of the gradient bound
holds:

! , ’awgn(s’x”Q v\ ds 13638 (gn o
/OE#; (/T ~(s.2) de | ds < C (s™(t) + o(1)). (6.11)

The proof of Proposition 3 is postponed to subsection 9.3. It relies on the
large deviation bound (6.8) and some elementary probability estimates stated in
Lemma 9 (see subsection 9.3).

We shall apply (6.9) to & = ¢ and £ = . From (6.10) it follows that

/Ot Eun (/T ‘&:an(s,x)fdx) ds < Cn' P70 (s™(t) + o(1)), (6.12)

/Ot Eyp (/T !é’zﬁ“(s,x)IQ dw) ds < Cn*™P70(s™(t) + o(1)). (6.13)

Using (6.11) the last bound is improved to

/OEM? (/T >(s.2) dr | ds < Cn (s"(t) +0(1)).  (6.14)
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The bound (6.11) will also be applied to £ = & (see (2.13) and (2.14)) to get

/ y (/ Wﬁa R (s, )| dx) ds < Cn'=B=3(s(t) + o(1)). (6.15)

7. Control of the large values of (p,u): proof of (5.17)

7.1. Preparations. In the present section we prove (5.17). First we replace the
sum % Dopnc by fT -+ dx. Note that given a smooth function F': T — R

Z e / Flz)dz| < % (/Tamp(x)? dx>1/2. (7.1)

JET”
Hence it follows that

/ > { (@) (0¥5m) 75 ) i)ds - (7.2)

JGT"

E(Aié{@%@(nwiﬂJ"@mﬂﬂ}@JNMda'¥A%7

where A5 is again a simple numerical error term:

|A%| < Cn®P {14 sup (
0<s<t
z€eT

00" (5,2)| + 027" (5. )| + |0, " (s, 2)])

= 0’171 = o(1).

In the last step we use the boundedness of the function 9,v(¢, z) and the most
straightforward gradient bound (4.12).

We have to prove that the main term on the right hand side of (7.2) is
negligible. Recall that J" = S7. We start with the application of the martingale
identity:

E,. </T {{vS”’(ﬁ”,ﬂ”)}(t,x) ~{uS" (A} (0,2)
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7.2. The left hand side of (7.3). From (5.11), (5.12) we conclude that

1S™(p,w)| < C (p+ |ul) Lipviu/>nrr-

Hence, using the large deviation bound (6.3) it follows that, for any fixed small
¢ > 0, by choosing M sufficiently large, we obtain

(!5

jeT™

S"(ﬁ”ﬂ")(s?fl)‘) < ch™(s) +of1).

Applying again (7.1), choosing an appropriately small ¢ in the previous bound
we get

[Lhis. of (7:3)] < 3 W (1) +C /O B (s) ds + o(1). (7.4)

Remark: Note that this is the point where M and thus the lower edge of the
cutoff is fixed. Also note the importance of the factor 1/2 in front of h™(t) on
the right hand side.

7.3. The right hand side of (7.3): first computations. First we compute how
the infinitesimal generators n'*#L™ and n'T#+t9K™ act on the function w —
S (" (), u" (w)):

W1 LS (57 (@), @ () = (7.5)
SP(E, ") (00 0,0) + 8P (P, ") (n200,0") }(x) + AN (w,2),
n! PO KTSM (p (2), U (x)) = (7.6)

e ar Sy (", an)(n%aiﬁn) + Sy (p",um) (nﬁaiﬁn) }(x) + Al (w, ),

where ATy (x) and A7;(z) are numerical error terms. These error terms are easily
estimated: using the fact that the second partial derivatives of S™ are uniformly
bounded, ¢ and n are bounded, by simple Taylor expansion after tedious but
otherwise straightforward computations we find:

sup sup (|AYy(w, )| + |ATs (w, 2)]) < C (n1+3ﬁl_2 + n1+55+5l_3) =o(1). (7.7)
weNR™ zeT

For similar computational details see [6] or [25].
Next we do some further transformations on the main terms coming from the
right hand sides of (7.5) and (7.6). Performing integrations by part, introducing



Perturbation of singular equilibria 31

the macroscopic fluxes and using (5.9) we obtain:

+ @ {n (53,73 0.57) + S5 (@) (0.7) (57 = 0. 8)
T

w02 (S, (7" ) (95" + Sk, (57, @) (0,3")) (8" = @(",C") () da

Note that, since J" = S, the first term on the right hand side is exactly the
expression in the main term on the right hand side of (7.2). Estimating the other
terms on the right hand side of (7.8) is the object of the next subsection. Also
note, that here we rely heavily on the fact that S™ is a Lax entropy of the pde
(5.8), without this we would not be able to carry out the needed calculations.

Now we turn to the main term on the right hand side of (7.6). Straightforward
integration by parts yields

- [ v {sp@an o) + 5@ (0087 o) do = (79)
T
/ 811)(96){5';‘(,5‘”, ") (n2P0,7") + ST (F", @) (9. %") }(:10) dz
T
no(pn gn no(on on " nQB wn
+ [ o@{ (557 0:7) + 557 0.7) (1270,7)

(ST (9:7") + St (77,7 (0:7)) (170, %) } () d

We will estimate the terms emerging from the right hand side in the next sub-
section.

7.4. The right hand side of (7.3): bounds. By (5.16)
|Fn /\‘n /\n) !pn("‘n /\n)Sn(Nn /\n)| < C(l + |/\n| )]l{;?’LV|1’I"|>M}

Hence, applying the large deviation bounds (6.3) and (6.4) we obtain
" / [y — o a5 i) s, o) | d (7.10)

< Ch"™(s)+ o(1).
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Next we use the bound (5.12) on S’ and the first block replacement bound (6.9)
to obtain:

B ([ [ |{s26m 2@ — 0t5.89) } .5 doas) (7.11)

< Cln 170402 — (1),

For the next terms we use the bounds on the second derivatives of S™, see
(5.13), (5.14), (5.15), and note that here we do not exploit the fact that the
constant factor € on the right hand side is actually small. Together with the block
replacement bounds (6.9), the gradient bounds (6.12), (6.14) and the bound (4.1)
on the relative entropy s"(t) we get the following four estimates:

E.»

/ / {"”5;‘,3(5’2@")(@5”)(«2"—wn”"f"))}\dxds) <Cinf,

=

E

e

(
o ( {nwsgu(,m, ) (9,am) (4 — W(ﬁ”,fn))}‘ dz ds) < Clnf9,
!

({5t 6,00 02) (3 — 06 | avas) < €

E,» (/Ot/T {nzﬁsgu(ﬁ”,a’“ﬁ(ama")(@” —di(ﬁ’”,f"))}‘dxds) <Clns,

where the upper bounds on the right are all o(1). Using the bounds (5.11) and
(5.12) on the first partial derivatives of S™, and the gradient bounds (6.12),
(6.13) we obtain the following two bounds:

n~HHE |, (/Ot/T Hsg(ﬁﬂ,a”)(axﬁ“)}(s,x)‘ dxds) (7.13)
< O+ (1),
nTIHAHE ( /0 t /T ’{Sﬁ(ﬁ”,ﬂ")(@xﬂ”)}(s,x)’ dz ds) (7.14)

< On(THHOHRZ — (1),

The following bounds are of crucial importance and they are sharp. We use
(5.13), (5.14) and (5.15) again and note that here we exploit them in their
full power: the constant factors on the right hand side is small. These and the
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gradient bounds (6.12) and (6.14) yield the following bounds:

e ([ s 05 oo )

< es™(t) +o(L),

nTIHOHE //‘ Sh.(pmut 695@”)(7125390@")}(3,3;)‘dxds)

< es™(t) + ofL),

(
n~IHBHE,, (//‘ 6mﬁ”)(n38z>?")}(s,x)‘d:pds> (7.15)
(

< es™(t) + ofL),

n AR, / /’ () (0,7) (0P 0,7 )}(s,x)‘ d:vds)

< es™(t) + o(1).

We choose € so small in Lemma 2 that

1
¢ sup lo(t, z)| < =. (7.16)
(t,)€[0,T]xT 2

7.5. Sumup. The identities (7.5), (7.6), (7.8), (7.9) and the bounds (7.7),(7.10),
(7.11), (7.12), (7.13), (7.15) yield

‘E#n < /0 t /T {(@a0) (00m) S5 @) } (s, ) d:vds) ~ (rhis. of (7.3))’

< t)+C/th”(s)ds+o(1). (7.17)
0

1
2

Finally, from (7.2), (7.3), (7.3), (7.4) and (7.17) we obtain (5.17).

8. Control of the small values of (p,u): proof of the bounds (5.18) to
(5.21)
8.1. Proof of (5.18). We exploit the inequality

[ )| = |Sp (", a")| < C Lipnviani>mys

see (5.11) and boundedness of the functions p(¢, z), u(t, z), Oyv(t,x). Applying
the large deviation bound (6.3) we readily obtain (5.18).
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8.2. Proof of (5.19). This is very similar to what has been done in various parts
of subsection 7.4. We use the block replacement bound (6.9) and the bound

(", u™)| = |1 = Sp(p", u")| < C (8.1)

which follows from (5.11). We get

E,. ( / t / {n? (@ = wi, &) |1 @)} (s, )| dsdz)

< Cln(7175+36)/2 _ 0(1)

)

which proves (5.19).

8.3. Proof of (5.20). We write

(", u") = Lignvjani<any + Lgnvian>an " (0", 0"), (8.2)
and note that, by Taylor expansion of the function (p,u) — ¥(p,u)

|![/n(i)\n7an) - ﬁnaﬂ ]].{i,‘n\/‘ﬁn‘SM} S Cn_zﬁ.
On the other hand
" (p™,u)| < Cp* [u”|
and
pror (p",ut)| < O+ [u")), (8.3)
see (5.11). Thus
@) — 5 < € (72 (04 [0 ) Lggrganoan ).

From this, using the large deviation bounds (6.3) and (6.4) we obtain (5.20).

8.4. Proof of (5.21). We use again (8.2) and (8.3) and get
(7" =p) (@ —w) "™ @) < (5" =) (@ = u)|[ Lpnviani<ary
+C (1 @] + ) Lipevianisany

Now the fluctuation bounds (6.5), (6.6), and the large deviation bounds (6.3),
(6.4) together yield (5.21).
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9. Proof of the “Tools”

9.1. Proof of the large deviation bounds (Proposition 1). Recall the definition
(6.1) of L. The following lemma follows from simple coupling arguments.

Lemma 5. (Stochastic dominations) There exists a constant C' depending only
on Max (s z)e(o,7]xT (5, %) V [u(s, z)| such that for any fized (s,x) € [0,T] x T
the following stochastic dominations hold:

P, (f)‘”(x) > z) < P(POI(L) > (Z/C)L), (9.1)

P, ( " (z)| > z) < P( IGAU| > ((2/C) — 1)@), (9.2)

where POI(L) is a Poissonian random variable with expectation L, and GAU is
a standard Gaussian random variable.

Lemma 6. (Large deviation bounds)
(i) For any q < oo there exists M < oo, such that for any n € N and j € T"
and s € [0,T]

J
tog Euy (exp {4 L7 ()W igacayin hoany ) < 1
(9.3)

tog Buy (exp {a L[a" (I iy vpancopoany}) < 1

(ii) Let C be the same as in Lemma 5. For any q € (0,1/(8C?)) there exists
M < oo, such that for anyn € N, j € T" and s € [0,T

~nJ )2
logE,.; (exp {g L[i )] L iianian }) < 1 (94)

Proof. The bounds of (9.3) follow from standard large deviation arguments using
the stochastic dominations (9.1), (9.2).

For the bound (9.4) we spell out the proof with {ﬁ"(%) > M} instead of
{ﬁ"(%) V |u"(£)| > M}, the latter follows similarly. Let Z7, be a POI(L)-distri-
buted and X be a standard Gaussian random variable. Using the stochastic

dominations (9.1) and (9.2) we obtain
logE,,g(exp {qL’ﬂ"(%)fl{ﬁn(%bM}})
< log (1+ B,z (exp {qL|an(%)|2}ﬂ{ﬁ"(%)>M}))
< Bur (ex0 (22l (D)) s (D) > 1)
< \/E(exp {4gC?(X? +L)}) \/P(ZL > (M/O)L)

< (1-800%) M exp {5 (4907 4 (O~ 1) — )},
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where « is arbitrary positive number and in the last step we used the Markov in-
equality. Given ¢ < 1/(8C?), we choose « sufficiently large and M > (Ca)/(In 2)
to obtain (9.4).

Now we turn to the proof of Proposition 1:
Proof. The bounds (6.3), respectively, (6.4) follow directly from the entropy

inequality (6.2) of Lemma 3 and the bounds (9.3), respectively, (9.4) of Lemma
6. Recall that L > 1, as n — oo.

9.2. Proof of the fluctuation bounds (Proposition 2). Within this proof we need
the notations

nP ne —
u"(s,x) := R a( 7 k) ((jk - n_ﬁu(s, fz)) =u"(z) — E,n (0" (),
k

2 2) ~ (s )| - | (s D) | <0 (F+ 1) = ot
1762 oD |- [ D) || <0 (4 1) =o)
it is enough to prove
E,ﬂ;(% 3 ’ﬂ"(s,%) ?) < Cnt(s) + o), 9.5)

jET™
respectively,
1 Jy2
Bur (5 2176 ) P pmetyican) SCHG) +o). (99
jETn

Lemma 7. (i) There exists qo > 0 (sufficiently small, but fized) such that for
allneN, jeT" and s € [0,T]

logEl,sn(exp {qOL’ﬂ"(s,%) |2}) <1 (9.7)

(ii) For any M < oo there exists qo > 0 (sufficiently small, but fized) such that
forallneN, j € T" and s € [0,T)

logE,n (exp {oo L | P (s, %) |2ﬂ{\5n(s,%)|§M}}> <1. (9.8)
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Proof. (i) Let X be a standard Gaussian random variable, which is independent
of the other random variables in question, and denote by (...) expectation with
respect to X.

log E,n (exp {oo L ’ a” % ) (9.9)
) (G~ Bur (@) [1})
k

=logE,x (exp qT

= log (B, exp{X\/% Z ) (G =B (@)} )-

Now, note that the random variables (; — E,=(¢x), & € T", are uniformly
bounded and under the distribution P,» they are independent and have zero
mean. Hence there exists a finite constant C' such that for any collection of real
numbers A\, k € T"

Eup (exp {30 (G~ Bur () }) exp{C DA}

Further on, there exists a finite constant C' such that for any [
1 k\ 2
72|a(7)‘ <C. (9.10)
k

From these it follows that for some finite constant C,
r.hus. of (9.9) < log(exp{q C X*}).

Choosing g sufficiently small in this last inequality we obtain (9.7).
(ii) Note first that, given M < oo fixed, there exists a zero mean bounded
random variable Y such that for any r € R

T2ﬂ{|r‘§M} < logE(exp{rY}).

Let Y7,Y5,... be i.i.d. copies of Y which are also independent of the other
random variables in question, and denote by (...) expectation with respect to
these. Then we have

log E,n (eXp {ao L|p" (s, %) }2]]'{|ﬁ"(s,%) | gM}}) (9.11)

Z(flo L] Y

< log (B, (exp {ZL ;a<ﬁf)<nk—Eyg<nk>>})>.

Next note that for any A < oo there exists a constant C' < oo such that for any
n €N, any s € [0, 7] and any collection of real numbers A\, € [-A, A], k € T

E,» <6Xp { Z Ak (e — B (1)) }) <exp {Cn~? Z A}
k

k
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Hence, using again (9.10),

r.hs. of (9.11) < log<exp {eC ((Y1 +oy Vg L])/\/W)Z }>

Now, since the i.i.d. random variables Y7, Y5,... are bounded and have zero
mean, choosing ¢y sufficiently small this last expression can be made arbitrarily
small, uniformly in L. Hence (9.8).

Now back to the proof of Proposition 2.

Proof. From (6.2) and (9.7), respectively, from (6.2) and (9.8) we deduce (9.5),
respectively, (9.6). Finally, these two bounds and the arguments at the beginning
of the present subsection imply (6.5), respectively, (6.6).

9.3. Proof of the block replacement and gradient bounds .

9.8.1. An elementary probability lemma. Let (£2,7) be a finite probability space
and w;, © € Z i.i.d. 2-valued random variables with distribution 7. Further on
let

C:QHRda Ci = C(wl>7 E:‘Qm_)R7 fi = §<u)i...,wi+m,1>.
For x € co(Ran(¢)) denote

E: (& exp{372 - ¢i})
E,r(exp{)\ ) Cﬂ’)m

E(x) :=

)

where co(-) stands for ‘convex hull’ and A € R? is chosen so that

B (GrexpiA-Gi})
E ( eXp{)‘ ! Cl})

For | € N we denote plain block averages by

15

N\,ﬁ

Finally, let b : [0,1] — R be a fixed piecewise continuous function, we define the
block averages weighted by b

l l
%Z (/D¢ lz (/D&
7=0 7=0

\ —

The following lemma relies on elementary probability arguments:
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Lemma 8. (Microcanonical exponential moments of block averages)

There exists a constant C < 0o, depending only on m, on the joint distribution
of (&,¢;) and on the function b, such that the following bounds hold uniformly
inl €N and x € (Ran(¢) + --- + Ran(¢))/I:

(i) If [, b(s)ds =0, then
Eq(exp {aVitb, €1} |G = 2) <exp{Cl@®+a/VD}.  (9.12)

(ii) If [; b(s)ds =1 then
E. (exp {aVi((b, €, = Z(b. )} |G = @) < exp{C(g® + a/VD}.(0.13)

Proof. We prove the lemma with m = 1, that is with (&-)ézl independent rather
than m-dependent. The m-dependent case follows by applying Jensen’s inequal-
ity in a rather straightforward way.

(i) In order to simplify the argument we make the assumption that the function
s+ b(s) is odd:

b(1 —s) = —b(s). (9.14)

The same argument works if the function s — b(s) can be rearranged (by per-
mutation of finitely many subintervals of [0,1]) into a piecewise continuous odd
function. This case is sufficient for our purposes. The proof of the fully general
case — which goes through induction on [ — is more tedious and it is left as an
exercise for the reader. Assuming (9.14) we have

[t/2]
VI, € =172 "b(i/1(& — &—;)
7=0

and hence

Eﬁ(eXp{q\mb, 3 ’Zz :w)
:EW(EW<eXp{q\ﬁ<b, §>l}‘cj+Cl_j: ij,...,l) ’El :m)

[1/2]
= B ([T Bx(exp {17200/ — &)} [ ¢+ ¢y ) | € = @)
§=0
(/2]
< exp {C’q2 Z l_lb(j/l)Q} = exp{C ¢*}.
j=1

In the second step we use the fact that the pairs (¢;,&-;), j =0,...,[l/2] are
independent, given ¢; +¢;_;, j = 0,...,[l/2]. In the third step we note that the

variables £; are bounded and E(fj - gl,j|gj + lej) =0.
(ii) Beside Z(x) we also introduce the functions

=1 : (Ran(¢) + - + Ran(¢))/l — R, Ei(x) == E(fl‘zz =x).
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We shall exploit the following facts

(1) The functions =(x) and =)(x) are uniformly bounded. This follows from the
boundedness of ;.

(2) The function & — =(x) is smooth with bounded first two derivatives. This
follows from direct computations.

(3) There exists a finite constant C, such that

15)(z) — E(x)] < CI7L

This follows from the so-called equivalence of ensembles (see e.g. Appendix 2 of
[10]).
We write

(b, &), ==, )= ((b,€),-&) + (&~ =:(C) (9.15)

+(Z21(¢) - 2(€) + (B —=((b, ¢n)) -

By applying Jensen’s inequality we conclude that it is enough to bound the
exponential moments of type (9.13), separately for the four terms. Bounding
the first and last terms reduces directly to (9.12), the third term is uniformly
O(I71), so we only have to bound the exponential moments of the second term
in (9.15). This is done by induction on I. Let C(I) be the best constant such that
for any ¢ € R

Eq (exp {qVi(& — 2/C))}[ ¢ = =) < exp{CO) ).

Clearly, C(1) < co. We prove that C(I) stays bounded as | — co. The following
identity holds:

Eq (exp {gVI+ 11 = Z1(C) } [ S = ) =
E- (En(exp {aVI+1(€1 — Z11(Ca0)) ‘Zz» Cz+1) ’Zl+1 = fﬂ) =

E. <E (exn { A= & - 5@} @)

E, (eXP {\/%(gl-&-l - Z1(¢111)) } ‘ Cl+1) X

exp { \/%(51(51) — Z141(Ci41)) } X

—_

exp {\/% (Z21(¢151) — Z41 () }

¢ = w) :
The terms

(El+l - = (El+1))v l(El(El) - 5z+1(fz+1)), (51 (Cl+1) - 5l+1(zl+1))

are uniformly bounded and
E (Ez-s-l - = (214—1) | Cz+1) =0, E; (El (Zl) - 5l+1(zl+1) |Zz+1) =0,

E-(E1(¢141) — S141(&41) | €iga) = 0.
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Using the induction hypothesis and the previous arguments, it follows that there
exists a finite constant B such that

z 1
RO

for every [ > 1. Hence, limsup,_, ., C(I) < B and the lemma follows.

Cll+1)< B,

Lemma 9. (Microcanonical Gaussian bounds)

There exists a qo > 0, depending only on m, on the joint distribution of (&, ¢;)
and on the function b, such that the following bounds hold uniformly in | € N
and x € (Ran(C) -+ Ran(())/!:

(i) If fo s)ds =0, then
logEﬂ(eXp{qOHb, )2} ’Zl - :c) <1. (9.16)
(i) If fo s)ds =1 then

1ogE,T(exp{qol(<b,5>l—5(<b ¢),) }‘Cl—w) <1. (9.17)

Proof. The bounds (9.16) and (9.17) follow from (9.12), respectively, (9.13) by
exponential Gaussian averaging (as in the proof of Lemma 7).

9.8.2. Proof of Proposition 3. (i) In order to prove (6.9) first note that by simple
numerical approximation (no probability bounds involved)

JIE -z ty@fae- 1 ¥ & -2 @d)P < 7

JET™

and also that [~! = 0( 12pn—1-36- ‘5) We apply Lemma 4 with

V= | {8 - 2@, }0) [ = | {a, & — Z((a, nh (@, O) |

We use the bound (9.17) of Lemma 9 with the function b = a. Note that ¢ = gl
can be chosen in (6.8) with a small, but fixed go. This yields the bound (6.9).
(ii) In order to prove (6.10) we start again with numerical approximation:

2
/](%gn | dx — — Z |a gn 2 < C% :O(nl_Sﬁ_é).

JeT"

We apply Lemma 4 with

R 2
= |00 = Tz [ o' &

We use now the bound (9.16) of Lemma 9 with the function b = a’. We can
choose q = qol®/n? with a small, but fixed gy and this yields the bound (6.10).
(iii) Next we prove (6.11). We apply Lemma 4 with

1080 P | Sed kD& n? | S kD& = 6n) [
7?“(0) B yak/lne 28y, (k/mnmn,k)
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where in the last equality we use the fact that the weighting function x — a(x)
is even. We will carry out similar computations as in the proofs of Lemma 8 and
9. We compute the exponential moment E2l+1(exp{qV}). Let X be a standard
Gaussian random variable, which is independent of the other random variables
in question and denote by (...) averaging with respect to it. We have

-~ _— a' (k/1) (& —

B (o {0v}) = BYZ (e {q213 ’ZZk (k;l)é:w ¥ . )
n 2 a (k/D(E =& k) }>>

132 /32 alk /1) (i + n-r)

- <E%}1(E§J,f;(exp {X\/al;;2 fia/(kk//lg(g;kjw }‘{n k) 0))>

< (s (e {007y SHCETESE)) < (o (000 ).

where we used the facts that the random variables 7, are non-negative, (2 is
finite and n(w) = 0 implies £(w) = 0. In the last step we used the inequality

d'(2)? < Cala),

which follows from the conditions on a(z), see Subsection 4.3.
From this bound it follows that in Lemma 4 we can choose ¢ = qol®/n?, with
a small but fixed ¢o, and hence the second bound in (6.11) follows.

= <E%:~'Z1 ( exp {X\/a

10. Appendix

10.1. Some details about the PDE (1.1).
Hyperbolicity: One has to analyze the Jacobian matrix

2t o)~ (1 o)
(p+vu?), (p+yu?)y 1 2yu

The eigenvalues with the corresponding right and left eigenvectors are:
Dr=Xr, Ds=pus, D=\ miD= ,umT,

(vt stands for the transpose of the column 2-vector v). The eigenvalues and
eigenvectors are

A
1

} = ﬁ:% {\/(27 —1)2u?+4p+ (297 + l)u}

and

ZI } = <; {:F\/(27 —1)2u? +4p— (2 - l)u} : 1) :

nl; } = (17 —é {im’r —1)%u? +4p — (27 - 1>u}) .
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We can conclude that the pde (1.1) is (strictly) hyperbolic in the domain

V£12: {(pu) €Ry xR (pyu) £ (0,0)),
vy=1/2: {(p,u) Ry xR:p#0}.

Riemann invariants: The Riemann invariants w = w(p,u), z = z(p,u) of the
pde are given by the relations

(Wp,wy) -8 =0= (25, 24) - T

That is, the level lines w = const., respectively z = const. are determined by the
ordinary differential equations

dp _ 1 — 122 _
du—jFQ{\/(%/ 1)2u +4p £ (2 1)u}

In our case the Riemann invariants can be found explicitly. For v # 3/4 we get

w(p,u) =

2v—1

F{<\/(27 S 126+ dp+ (27— 1)u) 2”’2(\/(27 “1)2u2 + dp— (2 — 2)u)}
z(p,u) = .
F{(\/m 1202+ dp— (2 — 1)u> m(\/m “ 1262+ dp+ (27— 2)u)}

Where F': R — R is an appropriately chosen bijection (mind, that only the level
sets of the Riemann invariants are determined).

Note that due to the changes of sign of 2y — 1 and 2y — 2, the above ex-
pression gives rise to qualitatively different behavior of the Riemann invariants.
The topology of the picture changes at the critical values v =1/2, v = 3/4 and
v = 1. In Fig. 1 we present the qualitative picture of the level lines of w(p,u)
and z(p,u) for 3/4 < v < 1, and vy > 1, respectively. In all cases the Riemann

(a) 3/4<y<1 (b) 1 <~

Fig. 1. Level lines of Riemann-invariants

invariants satisfy the convexity conditions

2 2
Wpp Wy, — 2Wp WoWy, + Wy W, >0, (10.1)
2 2 :

ZppZy — 2ZpuZptu + Zuu?Z,, >0,
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in Ry x R for all 4. (We have to choose the sign of the function F(-) appropri-
ately.) The inequalities are strict in the interior of R, x R, except for the v =1
case, when these expressions identically vanish. These conditions are equivalent
to saying that the level sets {(p,u) € [0,00) X (—o00,00) : w(p,u) < ¢} and
{(p,u) €]0,00) x (—00,00) : z(p,u) < ¢} be convex. See [11], [12] or [19] for the
importance of these convexity conditions.

It is of crucial importance for our problem that the level curves w(p,u) =
w = const. expressed as u — p(u,w) are convex for v < 1, linear for v = 1 and
concave for v > 1.

Genuine nonlinearity: Genuine nonlinearity holds if and only if

(Aps Au) =7 £ 0 F (php, fru) - 5.

in the interior of the domain R} x R. Elementary computations show that

(Aps Au) -7 =0 A2y 1), uw<0
(s 1) - 8 = 0 & /)——7@_'_1)2 u” and w>0" (10.2)

Thus, for v > 0, v # 0,1/2 the system is genuinely nonlinear on the closed
domain R4 x R; for v = 0,1/2 it is genuinely nonlinear in the interior of Ry x R
(with genuine nonlinearity marginally lost on the boundary, p = 0). For v < 0
genuine nonlinearity is lost in the interior of R} x R.

Laz entropies and entropy solutions: Lax entropies of the pde (1.1) are solutions
of the linear hyperbolic partial differential equation

pSpp + (27 — DuSpy — Suw = 0.

It turns out that the system is sufficiently rich in Lax entropies. In particular a
globally convex Lax entropy in Ry x R is

2

S(p,u) =plogp+ % (10.3)

The Mazimum Principle and positively invariant domains: For v > 0 our sys-
tems satisfy the conditions of the Lax’s Maximum Principle proved in [11],
namely:

(i) they do posses a globally strictly convex lax entropy bounded from below,
see (10.3);

(ii) the Riemann invariants w(p,u) and z(p,u) satisfy the convexity condition
(10.1);

(iii) they are genuinely nonlinear in the interior of D, see (10.2).

Therefore, convex domains bounded by level curves of w(p,u) and z(p,u) are
positively invariant for entropy solutions.

First we conclude, that D itself is positively invariant domain, as it should
be. Second, a very essential difference between the cases v < 1, v = 1 and
~ > 1 may be observed, which is of crucial importance for the main result of
the present paper. In the case v < 1 all convex domains bounded by level curves
of the Riemann invariants are unbounded (non-compact) and thus there is no
a priori bound on the solutions. Even starting with smooth initial data with
compact support nothing prevents the entropy solutions to blow up indefinitely
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after appearance of the shocks. On the other hand, if v > 1 any compact subset
of D is contained in a compact convex domain bounded by level sets of the
Riemann invariants, which fact yields a priori bounds on the entropy solutions,
given bounded initial data.

10.2. Construction of the cutoff. We start with the construction of some en-
tropy/flux pairs S(p,u), F(p,u) for the unscaled Euler equation (2.17). These
are the solutions of the system of pde-s

F,=,8,+®,5,,  F.,=W,S,+®,5,, (10.4)
defined on D. In particular the Lax entropy S(p, u) solves the pde:
VuSpp + (Pu — W,) Spu — PpSuu = 0, (10.5)

The linear pde (10.5) is hyperbolic in D. One family of its characteristic curves
are solutions of the following ODE, meant in the domain D:

dp _ \/(dsu - Wﬁ)z +40,0, — (Pu — )
du 20, ’

(10.6)

the other family is obtained by reflecting u to —u. The characteristic curves are
the same as the level lines of Riemann invariants for the pde (2.17).

First we conclude that the line segment D N {u = 0} is not characteristic
for the hyperbolic pde (10.5). That is: it intersects transversally the character-
istic lines defined by the differential equation (10.6). Indeed, from the Onsager
relation (2.16) and obvious parity considerations it follows, that the right hand

side of (10.6) restricted to {u = 0} becomes (Varr,o(n)/VaI'T’o(C))1/2 and this
expression is obviously finite for r € (0, p*). It follows that the Cauchy problem
(10.5), with the following initial condition:

S(r,0) =s(r), Su(r,0)=0, r € [0, p") (10.7)

is well posed.
In our concrete problem the function s(r) will be chosen as follows: we fix
0<r<7T<p* and define

0 if r €0,r),
rlog(r/r) — (r—r) . -

s(r) = log (/1) ifr€lr.m), (10.8)
r—m if r € [F, 00).

Note that s(r) and s'(r) are continuous. Due to the assumption (H) imposed on,
and regularity of the flux functions @ and ¥, there exists some py > 0 such that
the ODE (10.6) is regular in {(p,u) € D : p < po and (p,u) # (0,0)}. We shall
not be concerned about what happens outside this strip. Denote by o(u;r) the
solution of the ODE (10.6) with initial condition o(0;r) = r.
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For small enough ry > 0 we can partition the domain D in three parts for
any 0 < r < rq as follows
Di(r):={(p,u) € D: p <o(=|ul;r)}, Da(r) :={(p,u) € D:p>o([uf;r)},
Ds(r):=D\ (Dl(r) UDQ(T)) ={(p,u) € D:o(—|ul;r) < p <o(|ul;r)}.
See Fig. 2 for a sketch of the domains Dy (r), Dz (1), D3 ().

Fig. 2. D1,D2, D3

From now on rq is fized for ever and we denote D := D;(rg). This domain is
a rectangle in characteristic coordinates with diagonal D N {u = 0}, as opposed
to D which may not be a full characteristic rectangle. (Actually, choosing the
characteristic coordinates in a natural symmetric way, z(p,u) = w(p, —u), the
domain D is a square in characteristic coordinates.)

Next we turn to the construction of a particular family of Lax entropies which
will serve for obtaining the cutoff functions needed. We fix 0 < r < 7 < ry. and
define S : D — R as follows:

(i) In D: S(p,u) is solution of the Cauchy problem (10.5)+(10.7) with s(r)
given in (10.8). Note that

0 if (p,u) € Di(r) C D,

S(p,u) = For L (10.9)
p— Tog (/1) if (p,u) € Da(F) N D.

(11) In DQ (?):

rT—r

S(p,u):=p— W, if (p,u) € Da(F) (10.10)

Note that there is no contradiction: in D N Dy(r), (i) yields the same ex-
pression.
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(iii) In D3(F) \ D: S(p,u) is defined as solution of the Goursat problem for
(10.5) with boundary conditions on the characteristic lines 0D N D3(7),
respectively, 0Ds(T) \ D provided by (i), respectively, (ii).

Note that S(p,u) is solution of the pde (10.5), globally in D, and thus there
exists a flux function F'(p,w) which together with S(p, u) satisfies (10.5).

Now we are ready to define the scaled functions S™(p,u), F™(p,u) on the
scaled domain D" given in (5.2), as follows: fix 0 < r < 7 < co and define the
unscaled Lax entropy/flux pair as done in (i)-(iii), but with downscaled initial
conditions

S(r,0) =n"2Ps(n¥r), S,(r,0)=0. r € [0,p%), (10.11)

with the function r — s(r) given in (10.8). Now, define the pair of scaled func-
tions S™, F™ : D" — R as

S"(p,u) :=n*S(n"Pp,n"Pu), F"(p,u) :=n3F(n=pn"Pu). (10.12)

It is straightforward to check that S™, F™ form a Lax entropy/flux pair of the
pde (5.8):

Fl = wrSt 4 @usy,  Fl=wrST + ansT,

in particular S™ solves the pde (5.10). If v > 1 then for any fixed M > 0, & > 0
— choosing r and 7/r large enough — this choice of S™, F" will satisfy the bounds
(5.11)-(5.16) of Lemma 2. The spelled out proof can be found in [25].

Remark: As we mentioned in the remarks after Theorem 1, our result also
holds for the {—1,0,+1}-model, even though we v = 1 in that case. For this
model we have ¥(p,u) = pu, P(p,u) = p + u? which yields ¥"(p,u) = ¥(p,u),
" (p,u) = P(p,u). Thus our cutoff function does not depend on n and it has to
satisfy

PSpp + uSpu — Suu = 0.

This pde is explicitly solvable with initial conditions (10.7), (10.8), and it is not
hard to check that the bounds (5.11)-(5.16) are indeed satisfied.

Acknowledgement: It is our pleasure to thank Jézsef Fritz for the many
discussions on the content of this paper, his permanent interest and encourage-
ment. We also thank Peter Lax for a very inspirative consultation on hyperbolic
conservation laws.

The kind hospitality of Institut Henri Poincaré (Paris) and that of the Isaac New-
ton Institute (Cambridge), where parts of this work were completed, is gratefully
acknowledged.

The research work of the authors was partially supported by the Hungarian Sci-
entific Research Fund (OTKA) grant no. T037685. The second author was also
partially supported by OTKA grant no. TS40719.



48

Bélint Té6th, Benedek Valké

References

1.

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Balédzs: Growth fluctuations in interface models. Annales de I’Institut Henri Poincaré
— Probabilitées et Statistiques 39: 639-685 (2003)

C. Cocozza: Processus des misanthropes. Zeitschrift fiir Wahrscheinlichkeitstheorie und
verwandte Gebiete 70: 509-523 (1985)

L.C. Evans: Partial Differential Equations. Graduate Studies in Mathematics 19, AMS,
Providence RI, 1998

. J. Fritz: An Introduction to the Theory of Hydrodynamic Limits. Lectures in Mathematical

Sciences 18. Graduate School of Mathematics, Univ. Tokyo, 2001.

. J. Fritz: Entropy pairs and compensated compactness for weakly asymmetric systems.

Advanced Studies in Pure Mathematics 39: 143-171 (2004)

. J. Fritz, B. Téth: Derivation of the Leroux system as the hydrodynamic limit of a two-

component lattice gas. Commun. in Math. Phys. 249: 1-27 (2004)

P.R. Garabedian: Partial Differential Equations. AMS Chelsea, Providence RI, 1998

F. John: Partial Differential Equations. Applied Mathematical Sciences, vol. 1, Springer,
New York-Heidelberg-Berlin, 1971.

. M. Kardar, G. Parisi, Y.-C. Zhang: Dynamic scaling of growing interfaces. Physical Re-

views Letters 56: 889-892 (1986)

C. Kipnis, C. Landim: Scaling Limits of Interacting Particle Systems. Springer, 1999.

P. Lax: Shock waves and entropy. In: Contributions to Nonlinear Functional Analysis, ed.:
E.A. Zarantonello. Academic Press, 1971, pp. 603-634

P. Lax: Systems of Conservation Laws and the Mathematical Theory of Shock Waves.
SIAM, CBMS-NSF 11, 1973.

R.J. Leveque: Numerical Methods in Conservation Laws. Lectures In Mathematics, ETH
Zirich, Birkhduser Verlag Basel, 1990

H. A. Levine, B. D. Sleeman: A system of reaction diffusion equations arising in the theory
of reinforced random walks. SIAM Journal of Applied Mathematics 57 683-730 (1997)
H. G. Othmer, A. Stevens: Aggregation, blowup, and collapse: the abc’s of taxis in rein-
forced random walks. SIAM Journal of Applied Mathematics 57: 1044-1081 (1997)

V. Popkov, G.M. Schiitz: Shocks and excitation dynamics in driven diffusive two channel
systems. Journal of Statistical Physics 112: 523-540 (2003)

M. Rascle: On some “viscous” perurbations of quasi-linear first order hyperbolic systems
arising in biology. Contemporary Mathematics 17: 133-142 (1983)

F. Rezakhanlou: Microscopic structure of shocks in one conservation laws. Annales de
PInstitut Henri Poincaré — Analyse Non Lineaire 12: 119-153 (1995)

D. Serre: Systems of Conservation Laws. Vol 1-2. Cambridge University Press, 2000

J. Smoller: Shock Waves and Reaction Diffusion Equations, Second Edition, Springer,
1994.

B. Téth, B. Valké: Between equilibrium fluctuations and Eulerian scaling. Perturbation
of equilibrium for a class of deposition models. Journal of Statistical Physics 109: 177-205
2002

](3. T[‘c'))th7 B. Valké: Onsager relations and Eulerian hydrodynamic limit for systems with
several conservation laws. Journal of Statistical Physics 112: 497-521 (2003)

B. Téth, W. Werner: The true self-repelling motion. Probability Theory and Related Fields
111: 375-452 (1998)

B. Té6th, W. Werner: Hydrodynamic equation for a deposition model. In: In and out of
equilibrium. Probability with a physics flavor, V. Sidoravicius Ed., Progress in Probability
51, Birkhauser, 227-248 (2002)

B. Valké: Hydrodynamic behavior of hyperbolic two-component systems. PhD Thesis,
Institute of Mathematics, Budapest University of Technology and Economics, (2004)
http://wuw.renyi.hu/~valko

S.R.S. Varadhan: Nonlinear diffusion limit for a system with nearest neighbor interactions
II. In: Asymptotic Problems in Probability Theory, Sanda/Kyoto 1990 75-128. Longman,
Harlow 1993.

H.T. Yau: Relative entropy and hydrodynamics of Ginzburg-Landau models. Letters in
Mathematical Physics 22: 63-80 (1991)

H.T. Yau: Logarithmic Sobolev inequality for generalized simple exclusion processes. Prob-
ability Theory and Related Fields 109: 507-538 (1997)

H.T. Yau: Scaling limit of particle systems, incompressible Navier-Stokes equations and
Boltzmann equation. In: Proceedings of the International Congress of Mathematics, Berlin
1998, vol 3, pp 193-205, Birkhauser (1999)

Communicated by H.T. Yau



