DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Graph Entropy: A Survey

Gébor Simonyi

ABSTRACT. Graph entropy is a functional on a graph with a probability dis-
tribution on its vertex set. This survey article discusses its main properties, its
remarkable connections to well-investigated combinatorial objects, e.g., perfect
graphs, as well as several applications of its sub-additivity in different areas
including formula complexity and the design of sorting algorithms. Its origin
in information theory and its connections to graph capacity concepts are also
discussed.

1. Introduction

Graph entropy, H(G, P), is an information theoretic functional on a graph G
with a probability distribution P on its vertex set. It was introduced by Jénos
Korner in [34]. Here the concept appeared as the solution of a coding problem
formulated in information theory. Since then many connections with classical com-
binatorial objects have been found. By its sub-additivity graph entropy has become
a useful tool in proving lower bound results in computational complexity. The
search for conditions of exact additivity (in place of sub-additivity) has given rise
to the characterization of some combinatorial structures in graph entropy terms.
The remarkable phenomenon is that these structures were usually already known to
be relevant in other contexts. One such example is the characterization of perfect
graphs by the additivity of graph entropy (cf. Theorem 6.5 in Section 6).

The present survey tries to give an overview of what I know about graph entropy
at the time of the writing and think to be the most interesting. The paper is
organized as follows. In section 2 we sketch the information theory problem that led
to the introduction of the concept. The aim of this section is to give the reader some
intuitive understanding of the meaning of graph entropy. Section 3 is devoted to the
basic properties of graph entropy including its crucial character, sub-additivity. The
more general concepts of hypergraph entropy and of the entropy of convex corners
are introduced in Section 4. A non-linear optimization problem that is related
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to graph entropy is also mentioned in this section. Section 5 is a first round in
discussing applications. Section 6 contains theorems that give the characterization
of those structures on which graph entropy becomes additive. Kahn and Kim'’s
application to sorting is presented briefly in Section 7. Section 8 tries to show the
links to some closely related concepts that also have some information theoretic
character. Best known among these concepts is the Shannon capacity of graphs.

We end this introduction by defining graph entropy. There are three definitions
known which are equivalent but look somewhat different. The one below is probably
the easiest to remember. (It appears first in [16] both of the two other ones are
already there in [34] and they will be given in the next section.)

We need the concept of the vertex packing polytope. (Vertex packing refers to
independent sets of nodes, also called stable sets.)

DEFINITION 1.1. The vertezx packing polytope V P(G) of a graph G is the convex
hull of the characteristic vectors of stable sets of G.

Now we define graph entropy. Here and in the sequel, all logarithms are binary.

DEFINITION 1.2. Let G be a graph on vertex set V(G) = {1,...,n} and let
P = (p1,...,pn) be a probability distribution on V(G) (i.e., p1 + ... + p, = 1 and
p; > 0 for all 4). The entropy of G with respect to P is then defined as

i 1
H(G,P) = ' log —. 1
(G,P) aevggg;aw;pz og - (1)

REMARK . ([16]) Observe that the function to be minimized in (1) is convex,
it tends to infinity on the boundary of the non-negative orthant of R™ and it tends
monotonically to —oo along rays from the origin. This implies that the above
minimum is always achieved and finite and is assumed at the boundary of V P(QG)
but in the interior of the non-negative orthant. It also follows that each coordinate
a; of the minimizing vector a is uniquely determined provided p; > 0.

2. The information theory interpretation

The following problem was considered by Koérner in [34]. Assume we are given a
discrete, memoryless and stationary information source that emits symbols (letters),
belonging to a finite set V', one by one. This means that a probability distribution
P is given on V that governs the system in the following sense. At any given time
the probability of v € V' being emitted is the probability of v according to P. (The
meaning of the source being stationary and memoryless is that P is not changing
in time and it does not depend on previously emitted symbols.)

A special feature of our source is that the symbols it emits are not all distin-
guishable. In fact, distinguishability is an arbitrary (but fixed and known) binary
symmetric relation on V that tells us about every pair of letters in V' whether they
are distinguishable or not. We describe this relation of the letters by a graph G.
The vertex set of G is V and two nodes are adjacent if they are distinguishable.
(We remark that indistinguishability is not assumed to be a transitive relation.)

The task is to determine the performance of a best possible encoding of the
information emitted by our source. This encoding should be a mapping from the ¢-
length strings of the letters emitted to a finite number of different symbols (usually
some other fixed length strings of some other alphabet). The latter ones are called
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codewords. Now it is allowed that two strings that are not distinguishable be
mapped to the same codeword but the encoding is not proper if this happens with
distinguishable strings. (Two strings are distinguishable if they are distinguishable
at least at one coordinate.) We require proper encoding, however, only for “most”
strings. More precisely, a 0 < € < 1 is given and we are allowed to encode an
e-probability fraction of all strings without any restriction (just map them into a
single, meaningless symbol, for example). Here the probability of a string x is
given by P!(x) = H’;:l P(z;). The performance of our encoding is measured by
its rate defined by the ratio ligtﬁ where M stands for the number of different
codewords we are using and the smaller rate belongs to the better performance.
The best achievable rate R(G, P,t,¢) for some fixed ¢ and € is the infimum of the
set of all possible rates of codes satisfying the above requirements. The value of
importance is liminf,_,¢ liminf; ., R(G, P,t,€) which defines a functional on the
graph G with probability distribution P on its vertex set. The main goal of [34]
was to give some computable formula for this expression, thereby giving a kind
of complexity measure of the graph. It should be clear from the above that the
intuitive meaning of the resulting functional, denoted by H (G, P), is the following.
Assume our codewords are binary strings. Then the average number of bits we
need for an optimal encoding of the information coming in the form of a ¢-length
string from our source is approximately tH (G, P).

In what follows we will give the definition of the above mentioned quantity in
graph terms. This will provide one of the possible definitions of graph entropy. To
this end we first introduce the following graph exponentiation. It comes from what
is sometimes called the co-normal product of graphs.

DEFINITION 2.1. Given a graph G = (V(G), E(G)) the t-th co-normal power
G? of G is given by

V(G) =[V(O), EG") = {{x,y};3i: {zs,4:} € E(G)}.

Notice, that if the edges in G describe distinguishability of letters according to
our source then the edges of G describe distinguishability of the ¢-length sequences
of these letters by the same source. If we take any set U C V' then proper encoding
of all the sequences in U clearly needs at least as many different codewords as many
stable sets of Gt are needed to cover U, i.e., the number of codewords in the best
encoding is the chromatic number of the graph induced by G* on U. Since we do
not have to encode properly all sequences in V? we may optimize by the choice of
U C VU, requiring only that U has large probability. This leads to the following
formulation of the above mentioned quantity, that is actually the original definition
of graph entropy in [34].

For a graph F and Z C V(F) we denote by F(Z) the induced subgraph of F'
on Z. The chromatic number of F' is denoted by x(F).

DEFINITION 1.2°.

. . 1 :
H(G,P) = lim S 7 logx(G*(U)) (2)

where PY(U) = Y o, PH(x).

To show that the above definition is valid one has to prove that the limit
exists and is independent of € € (0,1). This was done by Kdrner [34] by showing
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that the above expression is equivalent to a computable formula we will present
as Definition 1.2”. To give this formula we need some elementary concepts from
information theory.

DEFINITION 2.2. Let P = (py,...,pn) be a probability distribution on a set of
n elements. The entropy of P is the function

n
1
H(P)= E pilog —.
i=1 bi

If X is a discrete random variable taking its values on a set of n elements according
to distribution P then the entropy of X is meant to be the entropy of its distribution.

Note that H(P) < logn with equality if and only if P is the uniform distribu-
tion.

DEFINITION 2.3. Let X and Y be two discrete random variables taking their
values on some (possibly different) finite sets and consider the random variable
formed by the pair (X,Y). The functional

IXANY)=HX)+HY)-H((X,Y))
is called the mutual information of the variables X and Y.

The entropy of a random variable can be interpreted as the content of infor-
mation in the variable. The intuitive meaning of mutual information, as the name
suggests, is the content of information in X about Y and vice versa. (These intu-
itive meanings are supported by so-called coding theorems. For more on information
theoretic functionals and their interpretation we refer the reader to [14] and [53].)
Now we give Korner’s formula for graph entropy.

DEFINITION 1.2”.
H(G,P) =minI(X AY) 3)

where the minimization is over pairs of random variables (X, Y") having the following
properties. The variable X is taking its values on the vertices of G, while Y on the
stable sets of G and their joint distribution is such that X € Y with probability
1. Furthermore, the marginal distribution of X on V(G) is identical to the given
distribution P.

We do not prove the equivalence of Definitions 1.2’ and 1.2” here, only refer
to [34] instead. We show, however, that Definition 1.2” is equivalent to Definition
1.2. This proof is from [16]. Below we denote the set of maximal stable sets of a
graph G by S(G).

PROOF OF EQUIVALENCE OF DEFINITIONS 1.2 AND 1.2”: First we prove that

i I(XAY) > i _ 1 N
e i TNV min = piloga

Let the minimum of the left hand side be achieved by a pair (X,Y"). Let dist(Y) = @
be the marginal distribution of Y for this pair. We know that dist(X) = P and
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denote the conditional distribution of ¥ given X by R. By the definition of mutual
information and some trivial identities we can write
n

I(X AY) Zp, > J|)log}§f]2 =Y pilog Y QW)

i=1  ieJeS(Q) i=1 i€JeS(G)

where the inequality follows from the concavity of the log function. Since the vector
defined by a; = 3 ;¢ jes5(0) Q(J) (@ = 1,...,n) is in VP(G) we have I(X AY) >
Minaey p(q) — 2ieq Pil0g ai.

To prove the reverse inequality let a be the minimizing vector in (1). Since a
is in VP(G) it can be represented as a; = } ;¢ je5(q) @'(J) where the vector of
coefficients Q'(J) can be regarded as a probability distribution on S(G). Define
the conditional probabilities R'(J|i) = % for ¢ € J and 0 otherwise. We define
another probability distribution on S(G) by Q*(J) = Y., p;R'(J|i). Having in
mind the pair (X,Y’) with dist(X) = P and dist(Y|X) = R’ (thereby dist(Y) = Q*)
we can write

( )

min I(XAY) p R'(J|i)log 4
By the concavity of the log function
!
J
> @ Wieg 2 <o,
JES(G) @*(J)
hence
_szRl J| log Q*( szRl Jli IOgQ( )-
i,J
Thereby we can continue (4) as
i I(X AY) R (J 1
xeyemm ;p li) log R, sz 0ga;
completing the proof. O

The coding interpretation of graph entropy suggests the following interesting
property, cf. [37]. Let us have an information source that belongs to the complete
graph. This means that all symbols emitted are distinguishable. Then the coding
problem becomes one of Shannon’s classical ones (cf. [61]) and so the quantity we
ask for should be equal to H(P). (It is easy to see also formally, as we will in the
next section, that graph entropy is, indeed, equal to H(P) if G is the complete
graph on V(G).) For some reason one may want to encode the information coming
from such an ambiguity-free source in two steps: first encode the information as if
there were some ambiguity described by a graph G and in the second step do the
same according to the complementary graph G. It is clear that putting the resulting
codewords of the two steps together we should obtain an encoding that contains
all the information we can have from a direct (one-step) encoding for the source
belonging to the complete graph. (This is simply because any two symbols are
distinguishable either for G or for G.) In other words, in the two steps we basically
use, in the average, t(H (G, P) + H(G, P)) bits instead of tH (P) bits for encoding
the information carried by t-length strings emitted from the source. This implies
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that the sum H(G, P) + H(G, P) cannot be less than H(P) and also suggests the
question, what are those graphs G for which we do not lose anything, that is, the
two quantities mentioned are just equal, whatever P is governing the system. We
will come back to this question in Section 6. The inequality mentioned above is a
special case of the sub-additivity of graph entropy, one of the basic properties to
be proved in the next section. (In fact, the above argument extends to a proof of
sub-additivity in general.)

3. Basic properties

We start this section by establishing three properties of graph entropy that
are crucial in most applications. These are its monotonicity, sub-additivity and
additivity under vertex substitution. (For the latter it is usually its Corollary 3.4
that is often used.)

Monotonicity. The monotonicity of graph entropy is quite obvious from any
of its definitions, still, because of its importance, we formulate it as

LEMMA 3.1. If F and G are two graphs with V(F) = V(G) and E(F) C E(G)
then for any probability distribution P we have H(F,P) < H(G, P).

PRrOOF. For graphs F' and G that are in the above relation we have VP(G) C
V P(F). This immediately implies the statement by Definition 1.2. O

Sub-additivity. At the end of the previous section we have seen that intu-
itively one expects graph entropy to be sub-additive. Here we show it formally.
(This property was first recognized by Korner [36], cf. also [37] for a special case.)

LEMMA 3.2. ([36]) Let F and G be two graphs on the same vertex set V and
F UG denote the graph on V with edge set E(F)U E(G). For any fized probability
distribution P we have

H(FUG,P) < H(F,P) + H(G, P) (5)

PRrOOF. Let a € VP(F) and b € VP(G) be the vectors achieving the minima,
in (1) for H(F,P) and H(G, P), respectively. Notice that the vector aob =
(a1b1,a2b2, .., apby) is in VP(FUQG), simply because the intersection of a stable set
of F' with a stable set of G is always a stable set in F'U G. Hence, we have

- 1 & 1 1
H(F,P)+ H(G,P) :Zpilog;+2pilogg = Zpilogﬁ > H(FUG,P).
i=1 toi=t b=t e

O

Additivity of substitution. The notion of substitution was defined in [46]
as follows. Let F' and G be two vertex disjoint graphs and v be a vertex of G.
By substituting F for v we mean deleting v and joining every vertex of F' to those
vertices of G which have been adjacent with v. We will denote the resulting graph
by Gv(—F .

We extend the above concept also to distributions. If we are given a probability
distribution P on V(@) and a probability distribution ) on V(F) then by P, ¢ we
denote the distribution on V(G,«r) given by P, ¢o(z) = P(z) if z € V(G) — {v}
and P, g(z) = P(v)Q(z) if z € V(F).
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Now we are ready to state

LEMMA 3.3. (Substitution Lemma) Let F' and G be two vertex disjoint graphs,
v a vertex of G, while P and Q) are probability distributions on V(G) and V(F),
respectively. Then we have

H(GIM—F)P’U(—Q) = H(GaP) +P(U)H(F5Q)

The proof of Lemma 3.3 can be found in [42]. (We remark that the lemma
called “Substitution Lemma” in [42] is formulated in a somewhat different way.
Still, its proof together with the trivial “Contraction Lemma” of the same paper
immediately gives the proof of our lemma above.)

Notice that the entropy of an empty graph (a graph with no edges) is always zero
(regardless of the distribution on its vertices). Keeping this in mind the following
statement (see as Lemma K* in [36]) is an easy consequence of the previous lemma.

COROLLARY 3.4. Let the connected components of the graph G be the subgraphs
G; and P be a probability distribution on V(G). Set

Pi(z) = P@)[P(V(G)]™,x € V(Gy).

Then
H(G,P) =) P(V(G))H(G;, P).

PRrROOF. Consider the empty graph on as many vertices as the number of con-
nected components of G. Let a distribution be given on its vertices by P(V(G;))
being the probability of the vertex corresponding to the ith component of G. Now
substituting each vertex by the component it belongs to and applying Lemma 3.3
the statement follows. O

Having seen these three properties of graph entropy, now we will calculate its
value in a few special cases.

3.1. The entropy of some special graphs. We noticed above that the
entropy of the empty graph is always zero. Next we look at the complete graph.

PROPOSITION 3.5. For K,,, the complete graph on n vertices, one has
H(K,,P)=H(P).

PRrOOF. By Definition 1.2 H(K,, P) has the form )" | p;log % where ¢; > 0
for all ¢ and )" | ¢; = 1. This expression is well known to take its minimum at
g; = p; (cf. [14] Lemma 1.3.2.(c)). Indeed, by the concavity of the log function

Y1 pilog L <log) 7t ¢i=0 O

PROPOSITION 3.6. Let G = Kpyy ms,...ms» €., 6 complete k-partite graph with
mazximal stable sets of size my,ma,..,my. Given a distribution P on V(G) let Q
be the distribution on S(G), the set of mazimal stable sets of G, given by Q(J) =
Y wcy P(x) for each J € S(G). Then H(G,P) = H(K, Q).

PROOF. The statement immediately follows from the Substitution Lemma by
applying it when substituting stable sets of size m;,ms,..,my for the vertices of
K. O
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We remark that the previous proposition is “even more immediate” from the
information theoretic Definition 1.2” of graph entropy. In fact, the restrictions for
the minimization in (3) ensure that (using the above notations) H(Y) = H(Q) and
H((X,Y)) = H(X), so the formula for (X AY) becomes H(X)+ H(Y)—H(X) =
H(Y)=H(Q).

A special case of the above proposition that is worthwhile to note is that the
entropy of a complete bipartite graph with equal probability measure on its two
stable sets equals to 1. By the properties of the binary entropy function h(z) =
—zlogz — (1 — z)log(1 — z) and the monotonicity of graph entropy it follows that
the entropy of any bipartite graph is at most 1. This latter statement is just a
special case of the following immediate consequence of the previous proposition
and the monotonicity of graph entropy. It is also obvious from Definition 1.2’ by
the sub-multiplicative nature of the chromatic number.

COROLLARY 3.7. For any G and P
H(G,P) <log x(G).
O

Let us go back to bipartite graphs for a while. Consider the complete bipartite
graph K, ,, with the uniform distribution on its vertices. We know its graph
entropy has value 1. Now consider a simple perfect matching on the same vertex
set with the same distribution. This graph with m components also has entropy
1 by Corollary 3.4 although (considering the number of edges) it is only a small
subgraph of K, . Korner and Marton [38] have shown how the entropy of an
arbitrary bipartite graph relates to the entropy of complete bipartite graphs. We
discuss this next.

Let G be a bipartite graph with color classes A and B. For aset D C Alet I'(A)
denote the “shadow” of A, i.e.,, I'(A) = {i € B: 3z € A,{i,z} € E(G)}. Given a
distribution P on V(G) we use the notation P(D) = .., p; for D € V(G). The
function h(zx) is the binary entropy function, i.e., h(z) = —zlogz—(1—z)log(1—z),
0 < z < 1. In the next theorem we exclude isolated points. This is only to avoid
some technicalities, by Corollary 3.4 it is not a real restriction. (We recall that for
a graph F and U C V(F') the subgraph induced on U by F is denoted by F(U).)

THEOREM 3.8. (Korner and Marton [38]) Let G be a bipartite graph with no
isolated points and P be a probability distribution on its vertex set. If we have

P(D) _ P(T(D))
P(4) = P(B)

for every D € A then
H(G,P) = h(P(A)).

If the above condition does not hold then one can find partitions A = D1U..UDy,
and B = Uy U ..UUy such that

k

H(G,P)=)_ P(D;uU Ui)h(%)-

i=1
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PRrROOF. First assume the above condition is satisfied. Then by the Gale-Ryser
theorem (cf. [44]) there exists a probability distribution @ (i.e., non-negative
weights that sum up to 1) on the edges of G such that

. B — _ b
Vie A:b; | > Qe PCA)
ice€E(Q)

and similarly for B in place of A. Since the vector b = {b; : i € V(G)} is an element

of VP(G) we have

_ 1
HG.P)< Y pilogy = H(P)— h(P(4))
iEV(Q) B
On the other hand we have H (G, P) < h(P(A)) by monotonicity and Proposition
3.6, and the latter two inequalities imply H(G, P) + H(G,P) < H(P). But here
we must have equality because of the sub-additivity of graph entropy. This ensures
that the two previous inequalities hold with equality, too. In particular, this means
H(G,P) = h(P(A)) which is what we wanted to prove.

For the second part, assume the condition stated is violated. Let D; C A be a
subset of A for which %(%)2 Pg((BD)l) is maximal. Now consider only the subgraph
of G on vertex set (A—D;)U (B —T'(D1)) and let Dy C A — D be a set for which
Pa?gl)/PgE(F%))l))) is maximal, etc., until we get to Dy, = A— (D, U...UDy_1) for
some k. Let us have U; = T'(D;)—T'(D,U..UD;_4) fori = 1, .., k. Consider the stable
sets of the form Jy = B, J, = D,UB-U,,...,J; = D;U..UD;UB-U;—..—-U;, ..., J, =

A. Set a(Jo) = by, i) = prmciploy — pipby for 1 <i <k -1, and

a(Jy) =1- %. By the choice of the D;’s, all the a(J;)’s are non-negative and

clearly they sum up to 1. This means that the vector a defined by a; = .. ; a(J;)

is an element of V P(G). Note that a; = % if j € D; and a; = % if
J € U;. By the choice of the D;’s and the Gale-Ryser theorem, again, one can find

a probability distribution @; of the edges going between vertices of D; and U; such

that D;
] Dz : = i = J
VieDi:bi= ), Q0= g
j€e€ E(G(D;UU;))
and similarly
. L — . — b
Vj €U : b | > Qie) Ak
jEe€E E(G(D;UU;))

Now let Q(e) = P(D; U U;)Q;(e) for all those edges joining some D; to U; and
set Q(e) = 0 for the remaining ones. Then @ is a probability distribution on the

edges of G and the vector b it defines in V. P(G) is given by b; = P(D; U U;)bj
for j € D; UU;. We claim that the above a € VP(G) and b € VP(G) are just
the minimizing vectors in the definition of H(G, P) and H(G, P). Indeed, by their
definition, 37 cy () i 108 o + Xjev(c) Pil08 o = X jev () Pilog ,; = H(P) that
is if they were not minimizing vectors the sub-additivity of graph entropy would
be violated. Now it is easy to see that the value of H(G, P) we obtain by this a is
exactly what it is claimed to be by the theorem. O

It may be worthwhile to note that the above formula given for the entropy of
a bipartite graph is just the same as it would be for the bipartite graph having k
complete bipartite components on the sets D; U U;. Let us also remark that the
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above proof gives something else, too, namely that graph entropy is always additive
(not only sub-additive) for a bipartite graph and its complement. (In fact, the goal
of Korner and Marton was to prove this in [38].) We will return to these kinds of
statements in Section 6.

The stable sets appearing in the proof of Theorem 3.8 represent a special case of
Kahn and Kim’s laminar decomposition, cf. [31]. This concerns about a special set
of stable sets of a comparability graph to be used when representing the a € VP(G)
achieving the minimum in (1).

Let G be the comparability graph of a poset T (i.e., V(G) = T and two vertices
are adjacent if they are comparable in T'). Let a(Gr) denote the a € VP(Gr)
achieving the minimum in (1). The laminar decomposition of a(Gr) is based on
Dilworth’s ordering on the set S(T") of maximal antichains of T' (cf. [19], [31]).
According to this ordering we have A < B for A, B € S(T) if for every v € A there
exists u € B such that u >7 v. (Or equivalently: for every u € B there exists v € A
satisfying u >7 v.) One can easily see that the above defines a partial order on
S(T). Kahn and Kim [31] observed the following.

PROPOSITION 3.9. (Kahn and Kim [31]) There is a unique representation of
the vector a(Gr) in the following form:

k
Gr) = Z aily,
i=1

with a; > 0, Zle a; =1 and Ay < ... < Ay distinct mazimal antichains of T. (1x
denotes the characteristic vector of X .)

For the proof that actually provides an algorithm to find the above represen-
tation of a(Gr), we refer to [31].

Finally in this section, we remark that for some important special cases H(G, P)
can be computed in polynomial time using the ellipsoid method. This requires
that VP(G) is “nice” which is the case, for example, if G is a perfect graph.
Computability of graph entropy then follows from the concavity of the objective
function in (1) (cf. [50], [27]).

4. Hypergraph entropy and the entropy of convex corners

The definition of graph entropy can naturally be generalized to hypergraphs.
This was done by Korner and Marton in [39] using Definition 1.2”. Since the proof
of equivalence literally applies here we use the analogue of Definition 1.2 instead.

A stable set in a hypergraph is a subset of the vertex set not containing any
edge. The vertex packing polytope V P(M) of a hypergraph M is the convex hull
of the characteristic vectors of its stable sets, just as it was for graphs. Now we can
practically just repeat Definition 1.2. (For basic concepts about hypergraphs see,

e.g. [2].)
DEFINITION 4.1. Let M be a hypergraph on vertex set V(M) = {1,...,n} and

let P = (p1,...,pn) be a probability distribution on V(M) (i.e., pr + ... + pp =1
and p; > 0 for all ). The entropy of M with respect to P is then defined as

H(M,P) = ;log —
( ae%?M)ZP o )



GRAPH ENTROPY: A SURVEY 11

As we shall see in the next section it may happen that hypergraph entropy
gives stronger results in applications than graph entropy does. Here we very briefly
review a few properties of hypergraph entropy analoguous to some of those of graph
entropy we have seen in the previous section. The proofs of these properties are
left to the reader, they are similar to those of the analoguous statements in Section
3.

The notion of substitution is defined for hypergraphs as a straightforward gen-
eralization of the same concept for graphs. Let L and M be two vertex disjoint
hypergraphs and v be a vertex of M. By substituting L for v we mean obtaining
the hypergraph M, j defined by

V(Myer) = V(M) = {v} UV(L),
E(My.r)={E€ E(M):v ¢ E}UE(L)U
U{E—{v}U{u}:ve E€ E(M),ueV(L)}.

Using the extension of this concept for distributions is the same as in the previous
section.

PROPOSITION 4.1.

(a) (Monotonicity)
If My and My are two hypergraphs with V(M) = V(Ms) and E(M,) C E(M,)
then for any probability distribution P we have

H(M,,P) < H(M,, P).

(b) (Sub-additivity)

If M1 and My are two hypergraphs on the same vertex set V. and My UM, is the
hypergraph on V with edge set E(M,)U E(Ms) then for any probability distribution
P we have

H(M,; U M,, P) < H(M;, P) + H(M>, P). (7)

(¢) (Substitution Lemma for hypergraphs)
Let L and M be two vertex disjoint hypergraphs, v a vertex of M, while P and
Q are probability distributions on V(M) and V (L), respectively. Then we have

H(Mm—L;PM—Q) = H(Ma P) + P(U)H(L; Q)
It is left to the reader to formulate the statement analoguous to Corollary 3.4.

4.1. The entropy of some special hypergraphs. Let K,(Lk) denote the com-

plete k-uniform hypergraph on n vertices. An explicit formula for H (K}(lk) , P) was
given independently by Gerards and Hochstattler [26] and by Delmestri, Fioretto,
and Sgarro [17]. (The latter authors’ “fractional entropy” is actually equivalent to
the hypergraph entropy of complete uniform hypergraphs.)

Delmestri, Fioretto, and Sgarro give their formula in entropy terms, as follows.
Assume (only for now) that whatever probability distribution is given to us, the
indices are given in a non-increasing order of the probability values involved. In
other words, when P is given on V(K,(Lk)) we assume that the vertices of KT(Lk)
are indexed so that p; > p2 > ... > p,. We do not lose the generality by this
assumption. Define the sets of distributions

Ri=1{Q:q> i +CIH}€1 +i--- +qn}
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for 1 < i < k — 2 and consider Ry as the set of all distributions. One can easily
check that Ry D R1 O ... D Rj_o. Now let

Pit1 + .-+ Pn Dit+1 +---+Pn)
k—i—1 777 k—i-—-1 7
a distribution with £ — 1 components.

THEOREM 4.2. (Delmestri, Fioretto, Sgarro [17]) If P belongs to R; — Rit1
then

Pi = (p17p27 -y Pi,

H(K® P)= H(P)— H(P))

For the proof we refer to the paper cited. The approach of Gerards and
Hochstéttler gives the same formula in a slightly different language.

We will need the following in the application presented in the next section. We
give it as a corollary of the previous theorem, though one can also get it directly in
a much easier way (cf. Corollary 2 in [39]).

COROLLARY 4.3. If P is the uniform distribution, then
H(K{P,P) = log -

Let K T(nkl) ,ms,..,m; denote the complete I-partite k-uniform hypergraph with “parts”
of size m;. The following lemma is also proved in [39].

LEMMA 4.4.

k
H(K7(n1),TH,2,..,ml7P) S log k _ 1 .

Hypergraph entropy can be further generalized by considering the minimization
in (6) over more general polyhedra. The following definitions are from [16].

DEFINITION 4.2. A set A € R} is called a conver corner if it is closed, convex,
has a non-empty interior, and satisfies the property that if 0 < a} < a;fori=1,..,n
then a € A implies a’ € A.

DErFINITION 4.3. For a convex corner A C R7 its entropy with respect to a
probability distribution P = (py, ..., py) is defined as

n
1
H 4(P) = mi log —. 8
A(P) ggﬁ?ﬂﬁ o8 - (8)

Clearly, H(G, P) = Hyp(g)(P). What was said in the Remark after the defi-
nition of graph entropy is generally true. Namely, for similar reasons as mentioned
there, the minimum in (8) is always achieved and finite and is assumed at the
boundary of A while in the interior of the non-negative orthant. Each coordinate
a; of the minimizing vector a is uniquely determined provided p; > 0.

The following lemma shows that a convex corner is completely determined by
its entropy function.

LEMMA 4.5. ([16]) For two convex corners A,B C R one has Hx(P) >
Hgp(P) for every P if and only if A C B.

For the proof we refer to [16]. Since the unit simplex is the vertex packing
polytope of K,, we already know from the previous section that its entropy is just
H(P) for every P. It is obvious that the entropy of the unit cube is zero for every
P, and thus the previous lemma implies
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COROLLARY 4.6. ([16]) We have 0 < H(P) < H(P) for every probability
distribution P if and only if A contains the unit simplex and is contained in the
unit cube.

For more about the entropy of convex corners we refer the reader to [16] and
[52]. In this survey this general notion will appear again in Sections 6 and 8.

We end this section by showing a non-linear optimization problem that has
surprising connections with the concept of graph entropy. It appears in the work
of Denardo, Hoffman, McKenzie, and Pulleyblank [18].

Let H = (V, E) be a hypergraph and A be the convex corner defined by the
characteristic vectors of the edges of H, i.e.,

A=conv{lsa: A€ E}.

(Note that A is actually the vertex packing polytope of the hypergraph con-
taining those minimal subsets of V' as edges that are not contained in any edge of

Our aim is to find w € A minimizing the value of
1
a(w) = max » —.
€Fiea i

In the example of [18] the elements of V' are the edges of an acyclic directed
graph, while E consists of its subsets that form directed paths from a given source
to a given sink. The graph describes a project, the edges are the single tasks that
should be done for having done the whole work. We have a number of workers and
each of the tasks would last for one time unit if all workers worked on that. The
project can obviously be finished in |V| time units if we let all workers work on each
task together for one time unit. This method may have, however, some practical
disadvantages. One of those is that each worker has to deal with each single task for
a while and another one is that sometimes the workers have to switch from one task
to another with no connection between the two. The authors of [18] show that the
work can be done in |V| time units also without these disadvantages. Let w; mean
the proportion of workers working on task 7. Then task ¢ will be done in wi time
units and the whole project will be finished in a(w) time units. The restriction to
w € A describes the condition that each worker should work on consecutive tasks.

THEOREM 4.7. (Denardo, Hoffman, McKenzie, Pulleyblank [18])
gvnelrjta(w) =|VI.

Furthermore, the above minimum is achieved by the w that achieves the minimum
in the definition of H4(P), where P is the uniform distribution on V.

PROOF. The direction a(w) > |V| for every feasible w is easy. Let w = a414
and consider the weighted mean
1
Yoyl

ACE  i€A
This sum is easily seen to be equal to |V|, therefore a(w) which (not considering
the coeflicients) is its largest member is not smaller than |V|.
Now consider the w achieving the minimum in the definition of H 4(P). Define

the vector b by b; = ‘VTW. It will follow from a result that is presented later
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in this survey (Theorem 6.4 of Section 6) that for this b and every A € E one
has ) ,c40; < 1. (With the terminology we will use in Section 6: b is in the
antiblocker of \A.) But this implies that 3, 4 wi < |V| for every A € E. Hence we
must have equality for all those A € E that appear with positive coefficient in the
representation of w. This also implies that w is the vector achieving the minimum

of a(w). O

The following remark I have learnt from L. Lovész.

REMARK . If all coordinates of the minimizing w are rational then the above
proof can be described in the following more combinatorial way. Let ¢ be a large
integer which ensures that W = tw is an integer vector. Then one can multiply
the edges of H in such a way that altogether we will have ¢ edges while W will be
the vector of degrees. Then the sum of reciprocals of the degrees in any edge with
positive weight will be % It would be interesting to see further applications of
this construction.

5. Applications I

In most applications of graph entropy the central role is played by the sub-
additivity inequality (5). A general framework of many of these applications is the
following. We have a combinatorial problem that is translated in some appropriate
way into a graph covering problem of the following type. Given a graph K and a
class of graphs G where each G; € G has the same vertex set as K. The task is to
cover (the edge set of) K with as few graphs from G as possible. The question is
the minimal number of G;’s needed for the covering. Using the sub-additivity of
graph entropy one can obtain non-existence bounds on this number. Indeed, if the
graphs G4, ..., Gy € G are such that Uzzl G; covers K then by Lemma 3.2 one has

t
H(K,P)< > H(G;,P)
i=1
for any fixed probability distribution P. This gives the bound
H(K,P)
~ maxgeg H(G, P)’

The real task when applying this method remains the technical problems of the ac-
tual calculation and bounding the graph entropy values involved. Of course, equally
important is to find the appropriate graph covering translation of the problem at
hand. In fact, since the bound above is valid for any fixed P, one can also maxi-
mize the right hand side over P. In most applications P is simply chosen to be the
uniform distribution.

Some other applications follow a somewhat different framework. There the
problem given concerns the complexity of some algorithm. As the algorithm pro-
ceeds it produces some object(s) with higher and higher complexity. (For instance,
taking the example according to Boppana [6] and Kahn and Kim [31], in the process
of sorting the elements of a finite set we have more and more “complex” partially
ordered sets as we proceed.) If these objects can be associated with some graph
with an appropriate distribution on its vertex set, then its graph entropy may be
used as a measure of complexity of the object corresponding to the graph. At the
end the algorithm should produce some specified type of our objects (like in case of
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sorting, it is the totally ordered set). If the association with graphs is appropriate,
this final object will correspond to a graph with high entropy. If we are able to
bound from above the possible increase of entropy at each single step of the algo-
rithm and also the entropy of the graph we initially had, then we obtain a lower
bound for the number of steps needed.

The prototype of the first kind of applications is Korner’s proof of Fredman
and Komlés’s bound concerning perfect hash functions. In this section first we will
discuss this proof and give its generalization due to Koérner and Marton that led
to an improvement of the Fredman-Komlds bound. Other examples of this kind of
application will also be mentioned.

As far as I know, the idea of the second kind of applications first appears
in Boppana’s paper [6]. (He used it to compare the power of different computa-
tion models. In the final version of his paper graph entropy is replaced by a less
sophisticated entropy-type functional that also gives the required result.) As an
illustration of this technique we will discuss Kahn and Kim’s sorting algorithm [31]
in Section 7. The current section ends with an application due to Newman, Ragde,
and Wigderson [54]. Their application may also be regarded as an example of those
of the second type.

5.1. Perfect hashing. The problem: Let B be a finite set of b elements, k
a positive integer satisfying k¥ < b and ¢ another integer. A set A C B!, (i.e., a
set of t-length sequences over B) is said to be k-separated if for every choice of k
sequences in A there exists a coordinate where all these k sequences differ. The
question is the cardinality N (b, k,t) of the largest k-separated A in BY.

In fact, it is not hard to see that N (b, k,t) is exponential in ¢, the value we are
interested in is the exponent, i.e.,

1
7 log N(b, k,t)

for large t.

REMARK . In the original formulation a sequence in B! is considered to be
the value of ¢ functions on a particular element of some finite set. This finite set
is the domain of those functions while their range is B. The family consisting of
these t functions is said to be a (b, k)-family of perfect hash functions if every k-
element subset of their domain is k-separated in the above sense. For more about
the computer science background of the problem we refer to [20] and its references.

The following theorem is due to Fredman and Komlés [20]. The proof we
present follows Korner [36], although, as also emphasized there, it is essentially the
same proof as that in [20]. The difference is that the use of graph entropy is made
explicit, thereby opening more room for generalizations and other applications of
the same method.

In what follows we use the notation (), = H;":_Ol(b —7)-

THEOREM 5.1. (Fredman and Komlds [20])

(D)1

bk—l

1
¥logN(b,k,t) =0 log(b — k + 2)).
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ProOF. Consider a set A C B which is k-separated and has cardinality N =
N(b,k,t). Let K be the following graph. The vertex set V(K) consists of all
possible pairs (D, z), where D is a k — 2-element subset of A and z is an element
from A — D. Two pairs (D,z) and (D', z') are adjacent in K if D = D" and z # z'.
Note that K has (,",) components each of which is a complete graph on N — k + 2
vertices. The edges of K correspond to k-element subsets D U {z} U {z'} of A.

Next we define the graphs G; that will describe the contribution of each single
coordinate to the k-separation of A. V(G;) = V(K) for every G;,i = 1,...,t, and
the vertices (D, z) and (D', ') are adjacent in G; if they are adjacent in K and the
k-element set DU{z}U{z'} is k-separated in the i-th coordinate, i.e., the sequences
in DU {z} U {z'} are all different in the i-th coordinate.

Since A is k-separated, we must have K C Ule G;. Then by the sub-additivity
(5) of graph entropy we have

H(K,P)

T maxg, H(G,, P) (9)

for any fixed distribution P. We choose P to be the uniform distribution on the
vertex set of our graphs, and now compute some bounds for the entropies involved
in (9).

Since K consists of vertex-disjoint complete subgraphs of size N — k + 2, it is
immediate from Proposition 3.5 and Corollary 3.4 that

H(K,P)=log(N — k +2). (10)

It remains to bound from above the H(G;, P)’s. First of all observe that all
the vertices (D, z) for which the ith coordinates of the sequences in DU {z} are not
all different form isolated points in G;. It is easy to check that the number of these
isolated points is the least if all elements of B appear the same number of times in
the ith coordinate of our sequences. It takes elementary calculation to show that
the number of non-isolated points in that case is

N\ (b Nk
(k-1 <k— 1)1"“%(1\%—1’

i.e., the total probability of non-isolated points is at most (Z?c’“_ll as t (and so N,
t00) goes to infinity. Further, these non-isolated points are arranged so that they
induce a graph with several components, each of which component is a complete
(b — k + 2)-partite graph. Using Corollaries 3.4 and 3.7 we have by the foregoing
that

b)k—
H(G;, P) < (bik_ll log(b — k + 2). (11)
From (9), (10) and (11) the theorem follows. O

Soon after Korner had rederived Fredman and Komlés’s proof of Theorem 5.1,
Koérner and Marton realized that for certain values of b and k& this bound can be
improved by using essentially the same method but substituting graph entropy by
hypergraph entropy.
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THEOREM 5.2. (Kérner and Marton [39])

1 _ o (B)j41 b—j
7 log N (b, k,t) = O(ogrjnglgfz B log - 1). (12)

PROOF. As in the proof of the previous theorem consider a set A C Bt which is
k-separated and has cardinality N = N (b, k,t). Fix an integer j, 0 < j < k—2. Let
L be the following (k — j)-uniform hypergraph. The vertex set V(L) consists of all
the pairs (D, z) where D is a j-element subset of A and z is an element from A —D.
The pairs (D1,z1), (D2, z2), ..., (Dr—j, xr—j) form a hyperedge if Dy = Dy = ... =
Dy_j and 1,2, ..., 7y are pairwise different. Note that L has (IJV) components,
each of which is a complete (k — j)—uniform hypergraph on N — j vertices. Each
edge of L corresponds to a k-element subset D Uz U ...U xp_; of A.

Next we define the hypergraphs F;. V(F;) = V(L) for each F;,i = 1,...,t, and
the vertices (D1, z1), (D2, %2), ..., (Dg—j,zr—;) form a hyperedge in F; if they form
a hyperedge in L and the k—element set D Uz, U...Uxy_; is k-separated in the ith
coordinate.

Since A is k-separated, we must have L C U§:1 F;. Then by the sub-additivity
of hypergraph entropy (7) we have

H(L, P)
~ maxy, H(F;, P)
for any fixed distribution P. Again, we choose P to be the uniform distribution on
the vertex set of our hypergraphs.
Since L consists of vertex-disjoint complete sub-hypergraphs of size N — j, it
is immediate from Corollary 4.3 and the hypergraph version of Corollary 3.4 that

(13)

H(L,P) =log (14)
It remains to bound H(F;, P) from above. All those vertices (D, ) for which
the ith coordinates of the j + 1 sequences they represent are not all different stand
as isolated points in F;. As in the previous proof, we conclude that the total
probability of the non-isolated points is at most
(0)j+1
pi+l

as the length ¢ of our sequences goes to infinity. Further, these non-isolated points
are arranged so that they induce a hypergraph with several components, each of
which is a complete (b—j)-partite (k—j)-uniform hypergraph. Using the hypergraph
version of Corollary 3.4 and Lemma 4.4 we have by the foregoing that

b—j

H(F;,P) < (B)j+1 log

bt 1 (13)
From (13), (14) and (15) the theorem follows. O

To see that Theorem 5.2 is really stronger than Theorem 5.1 observe that the
two bounds are the same if the minimum in (12) is achieved for j = k — 2. If
this is not so, then (12) gives an improvement. For an analysis about cases when
this happens see the discussion at the end of Koérner and Marton’s paper [39].
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In the special case when b = k = 4 Arikan improved on the above bound in his
recent paper [1]. (Korner noticed that Arikan’s proof can also be interpreted as
an application of graph entropy of graphs with a non-uniform distribution on their
common vertex set. Although the use of this language would make only unnecessary
complications in Arikan’s case, this observation may hint the possibility of more
subtle applications.) For more about perfect hashing and graph entropy, cf. also
[40], [41], and [57].

5.2. Boolean formulae. Applications of graph entropy for obtaining lower
bounds on the size of Boolean formulae or Boolean circuits were developed by
Newman, Ragde, Wigderson [54] and Radhakrishnan [55], [56]. One of the most
powerful results of this kind is Radhakrishnan’s [56] lower bound on the size of a
YIIY formula computing the Boolean function Th}, called threshold k. This is the
function of n binary variables that takes the value 1 if at least k of its inputs are 1.
The size of a formula is the number of variables appearing in it. (For more precise
definitions concerning circuit and formula complexity, see the cited papers.)

The idea is to define a suitable graph for each Boolean function that appears
at the gates of the appropriate Boolean circuit and then measure the complexity of
these functions with the help of the entropy of the corresponding graphs. For ex-
ample, in Radhakrishnan’s paper [56], the author defines a graph for each Boolean
function computed at the “II” i.e., “AND” gates of a “XII¥” formula computing
Thy. This is done in such a way that the union of these graphs is required to cover
a similar graph corresponding to T'h. Then the sub-additivity of graph entropy
can be used in the same way as we have seen it in the previous application. It is
interesting to note that the same graph, he calls “Fredman-Komlés graph”, appears
in Radhakrishnan’s argument that we have seen as graph K in the proof of The-
orem 5.1. Much more technical work is needed, however, to bound the entropies
of the graphs covering the arising Fredman-Komlés graph here. For details of the
argument and also for the actual result we refer to the paper [56].

The idea of using graph entropy for obtaining lower bounds on formula size
appears first in Newman, Ragde, and Wigderson’s paper [54]. Here we show one
of their proofs in more detail. This is a new proof of an earlier result due to
Krichevskii [43] (cf. also [30]). Even if the power of the technique were better
demonstrated by the proof of some new result, I think the cuteness and simplicity
of this example may justify the choice. The paper [54] gives the proof below in a
more general setting and applies it to obtain some new results as well. It is for the
sake of simplicity that we concentrate on one particular application only.

The problem: Let V be a finite set, its elements interpreted as Boolean variables.
A formula is a rooted tree, its leaves are labelled with variables (elements of V')
or their negations, while every inner node is labelled with an AND or OR gate.
Applying the operations at the inner nodes a Boolean function f : {0,1}" — {0,1}
is computed at the root. The size of the formula is the number of leaves of the tree.
The question we are looking at is this: What is the minimum size of a formula
computing the function Thj?

A formula is called monotone if no negated variables appear at the leaves. A
function is monotone if it can be computed by a monotone formula. Still, it is
possible that the minimum formula size for some monotone function is achieved by
some non-monotone formula. The following argument will prove a lower bound on
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the formula size of monotone formulas computing Th%. Applying another result of
Krichevskii [43], however, it also gives a lower bound in general.
We denote the minimum size of a monotone formula computing the function f

by Lar(f)-
THEOREM 5.3. (Krichevskii [43])
Ly (Th) > nlogn

Proor. (Newman, Ragde, Wigderson [54]) First we consider any monotone
Boolean function f and define a cost function v(f) of f. Let (f); denote the set
of those i-element subsets I of our variable set V' that has the following property.
If all the variables in I are set to 1 then the value of f is 1 regardless of the other
variables. Furthermore, no proper subset of I has this property. We need the
definition of the following graph G(f). The vertex set of G(f) consists of V', and
its edge-set is identical to (f)2. Let P be the uniform distribution on V' and define

up) = @), P+ 1L

It is clear that v(ThY) = logn. It is also clear that for the functions identical

to one of the variables (i.e., those “computed” at the leaves) v takes the value %

We will show that the cost function v is sub-additive with respect to the Boolean
operations AND and OR, i.e., for g = f1 V fo and h = fi A fo we have

v(g) <v(fr) +v(f2) (16)

and
v(h) < v(fi) +v(f2). (17)

This already implies Las(Th3)L > logn which is equivalent to the statement.

To prove (16) observe that (g)1 = (fl)l U (f2)1 and (9)2 - (f1)2 U (f2)2, ie.,
G(9) C G(f1) UG(f2). Using the sub-additivity of graph entropy this implies

vg) = 914 116), ) <

W + H(G(f1), P) + H(G(f2), P) = v(f1) + v(fy).

The proof of (17) is only a little bit more complicated. Here we have (h); =
(fu)1N(f2)1 and (h)2 C (fi)2U(f2)2U{{z,y} 1z € (fi)1—(f2)1,y € (f2)1 —(fi)r }.
This means that G(h) C G(f1) UG(f2) UU(t,),,(f), Where Ugg,), (£,), denotes the
graph on V with E(U) = {{z,y} : = € (fi)1 — (f2)1,y € (fo)1 — (fi)1}. By
Theorem 3.8 and Corollary 3.4 (or in fact, it would be enough to refer to just
Corollaries 3.4 and 3.7) we have H (U, P) < W1OUah=(Ah0lahl - Then, again,
by the sub-additivity of graph entropy we have

v(h) = W;ﬂ + H(G(h),P) <

|(f1)1 2 (f2)1] +H(G), P) + HG(), P) + |(f)1 U (f2)1 ; (f1)10 (f2)1] <
v(f1) +v(fa).
This completes the proof. O
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It is not difficult to see that the bound of Theorem 5.3 is actually tight.

As we have already remarked Newman, Ragde, and Wigderson give the above
proof in a more general setting. Namely, they prove that using the same cost func-
tion v as in the proof above, nv(f) is always a lower bound of the monotone formula
size of any monotone function f. The above proof is one of their applications of
this more general statement, for others the reader is referred to their paper [54].

6. Structural theorems - additivity

This section is devoted to investigations concerning the conditions of equality in
the fundamental inequality (5) that expresses the sub-additivity of graph entropy.
We will present structural theorems that give necessary and sufficient conditions
of additivity. Most of these theorems hold under the assumption that additivity is
required for every probability distribution P. First we are dealing with the special
case of two complementary graphs. The more general result we will see as Theorem
6.10 suggests that a separate consideration of this case was indeed necessary. We
also present the structural conditions that are necessary and sufficient for exact
additivity in (7) for complementary uniform hypergraphs, or more generally, for
(perhaps more than two) hypergraphs, the union of which is the complete uniform
hypergraph.

These kinds of investigations were initiated in [37]. Most of the material of
this section can be found in the papers [38], [16], [42] and [63].

6.1. Concepts: weak and strong additivity. Following definitions in [37]
we say that (hyper)graph entropy is additive in the weak sense for two (hyper)graphs
F and G on the same vertex set V if there exists a nowhere vanishing probability
distribution P satisfying

H(FUG,P)=H(F,P)+ H(G,P). (18)

We speak about additivity in the strong sense if (18) holds for every probability
distribution P on V.
The following lemma will be useful.

LEMMA 6.1. Let F and G be two (hyper)graphs on the same vertex set V and
P an everywhere positive distribution on V. Let ¢ € VP(F UQG) be the vector
achieving the minimum in the definition of H(F UG, P) according to (1).

The equation (18) holds for our F', G and P if and only if there exista € V P(F)
and b € VP(QG) satisfying c =aob = (a1by, ..., anby).

ProoF. If the a and b specified in the statement exist then H(F UG, P) =
=Y piloge; ==Y piloga;— >, pilogb; > H(F, P)+ H(G, P). But then
by the sub-additivity of graph entropy we must have equality.

On the other hand, if a and b are the vectors achieving H(F, P) and H(G, P),
respectively, and the equality (18) holds then — > " p;loge; = H(F UG, P) =
H(F,P)+ H(G,P) = =% piloga; — Y i, pilogb;, and by the uniqueness of
the minimizing vector (cf. the remark at the end of the Introduction), and the fact
that aob € VP(F UG), we must have c =aob. O

6.2. Complementary graphs. Originally motivated by the information the-
oretic interpretation of graph entropy Koérner and Longo gave the following defini-
tion. (Their motivation is explained briefly at the end of section 2.)
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DEFINITION 6.1. A graph G is called strongly splitting if for every probability
distribution P on its vertex set

H(G,P) + H(G,P) = H(P) (19)

where G is the complementary graph of G.
A graph G is called weakly splitting if there exists a nowhere vanishing proba-
bility distribution P on V(G) satisfying (19).

Note that (19) is a special case of (18) by Proposition 3.5.

As we shall see, the characterization of the above classes of graphs is interest-
ing independently of the information theory interpretation. The easier task is to
characterize weakly splitting graphs. We start with this.

The following definition is needed.

DEFINITION 6.2. A graph G is called normal if it has a family of stable sets .4
and a family of cliques B with the properties that

(i) the sets in A (B) cover all vertices
(ii) for every A € A and B € B we have AN B # (.

PROPOSITION 6.2. ([38], ¢f. also [37]) A graph G is weakly splitting if and
only if it is normal.

PROOF. Assume G is normal and take two families A and B as in the statement.
Put arbitrary nowhere vanishing probability distributions Q and R on A and B,
respectively. Let P be defined by

pi=(Y_ QM) Y R(MB).
icAcA icBeB
Now the statement will easily follow by applying Lemma 6.1. We have K, as
the union graph and ¢; = p; by Proposition 3.5. Choosing a; = > ;. 4. 4 Q(4)
and b; = Y, pcp R(i) Lemma 6.1 implies the first part of the statement by the
definition of the p;’s.

Now assume G is weakly splitting. (We recall that the set of maximal stable
sets of a graph Z is denoted by S(Z).) Let a and b be the vectors achieving the
minima in the definition of H(G,P) and H(G, P), respectively, and let Q and R
be vectors of convex combination coefficients giving a and b, respectively. More
precisely, we have a; = > ;c qes(q) Q(A4) and by = } ;e peg(g) R(B). Having (18)
implies by Lemma 6.1 that

pi=abi=( Y, QM) >, R(B)),

i€AES(Q) i€eBES(G)
i.e,
DUAC DY QAN > RMB) =) pi=1
i j€AeS(Q) i€BES(G) i

But since a clique and a stable set of a graph may have at most one point in

common, the left hand side above cannot be 1 if any A € S(G) and B € S(G) with
positive coefficients have empty intersection. Now let A = {A € S(G) : Q(4) > 0}

and B ={B € S(G) : R(B) > 0}. These two families satisfy the requirements, so
the proof is complete. O
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A thorough investigation of strongly splitting graphs started in [38]. In that
paper Korner and Marton proved that all bipartite graphs are strongly splitting
(cf. Theorem 3.8) and no odd cycle of length at least five is strongly splitting.
They formulated the conjecture that the strongly splitting property is actually a
characterization of perfectness. This was later proved in [16].

DEFINITION 6.3. A graph G is perfect if for every induced subgraph G' C G
one has x(G') = w(@), i.e., the chromatic number equals the clique number.

Perfect graphs have been introduced by Berge [3] who formulated two famous
conjectures concerning this class of graphs. The first of these, proved by Lovasz
in [46], says that a graph and its complement are either both perfect or both
imperfect. (Later we refer to this theorem as the Perfect Graph Theorem, the way
it is generally called.) The still open Strong Perfect Graph Conjecture states that a
graph G is perfect if and only if neither G nor its complement contains a chordless
odd cycle of length at least five. Perfect graphs appear in many different contexts,
for more about them, see [48].

To present the theorem characterizing strongly splitting graphs we need the
following preliminaries. (We remind the reader that convex corners were defined in
Section 4, see Definition 4.2.)

DEFINITION 6.4. (Fulkerson [21]) Let A € R? be a convex corner. The an-
tiblocker A* of A is defined as

A*={be R} :b"-a<1vVae A}

REMARK . It is a well-known fact (cf. Fulkerson [21]) that (A4*)* = A. If
B = A* then (A, B) is called an antiblocking pair.

DEFINITION 6.5. The fractional vertex packing polytope FV P(G) of a graph G

on n vertices is the antiblocker of V. P(G), i.e.,
FVP@G)={beR}: > b <1¥BeS(@G)}
i€BES(G)
It is immediate from the above definition that V P(G) C FV P(G) for any graph
G. The notion of antiblocking pairs is related to perfect graphs via the following

theorem.

THEOREM 6.3. (Fulkerson [22], Chvdtal [10]) VP(G) = FVP(Q) if and only
if G is a perfect graph.

The following definition is needed to relate antiblocking pairs to the strongly
splitting property of graphs.

DEFINITION 6.6. The pair of convex corners A,B C %7 is said to form a gen-
erating pair if for every probability distribution P = (py, .., p,) there exist a € A
and b € B satisfying a;b; = p; for (i =1,..,n).

The result behind the characterization of strongly splitting graphs is the fol-
lowing theorem.

THEOREM 6.4. ([16]) For convex corners A,B € R} the following three state-
ments are equivalent:
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(i) A CB
(ii) (A,B) is a generating pair
(iii) H(P) > H4(P) + Hp(P) for every probability distribution P.

We have learnt from B. Bollobds and I. Leader that a result giving (i) (ii)
was already known in functional analysis due to Lozanovskii [51]. (See also in [5]
as Lemma, 5.1.) The equivalence of (ii) and (iii) should be more or less clear from
Lemma 6.1. For a complete proof of the above theorem we refer to [16].

Now it is already easy to prove Kérner and Marton’s conjecture.

THEOREM 6.5. (Csiszdr, Korner, Lovdsz, Marton, Simonyi [16]) A graph G is
strongly splitting if and only if it is perfect.

PRrROOF. By its definition combined with the sub-additivity of graph entropy,
the strongly splitting property means that

Hy pg)(P) + Hy pia)(P) < H(P)

for every P. By Theorem 6.4 this is equivalent to saying that FV P(G) = [V P(G)]* C
VP(G). This is, however, equivalent to FVP(G) = VP(G), since VP(Q) c
FV P(QG), in general. But this is equivalent to G being perfect by Theorem 6.3. O

We show a slight strengthening of one direction of the above theorem, the one
saying that imperfect graphs are not strongly splitting. This needs the following
result of Lovész about perfect graphs. (a(F') and w(F') denote the maximum size
of a stable set and of a clique of the graph F', respectively.)

THEOREM 6.6. (Lovdsz [47]) A graph G is perfect if and only if for every in-
duced subgraph G' C G one has a(G"w(G') > |[V(G")].

Note the immediate implication of Theorem 6.6 that for any minimal imperfect
graph G, a(G)w(GQ) < |V(GQ)|.

PROPOSITION 6.7. Let Py be the uniform distribution on the vertices of a min-
imal imperfect graph G. Then

H(G,PU) + H(G’,PU) > H(PU)

REMARK . The above statement implies that no imperfect graph is strongly
splitting because we can always concentrate a uniform distribution on the vertex
set of a minimal imperfect subgraph of an imperfect graph.

PROOF. Let a and b be the vectors from VP(G) and VP(G) achieving the
entropy of G and G, respectively, with respect to Py. Clearly, ). a; < a(G) and
> bi <w(G). So we have

_ 1 1 1 1 1
H(G,Py) + H(G, Py) Zzﬁlog;-i-ZElOgg = log La );(H bi)s 2
log —ray oty > logm:

where the first inequality follows from the relation of the arithmetic and geometric
mean and the second from Theorem 6.6. O
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It is an immediate consequence of Theorem 6.5 and Proposition 6.2 that all
perfect graphs are normal. This was proved earlier by Korner [35]. A generalization
of this statement resulted from the investigations in [16].

THEOREM 6.8. ([16]) Let G be a perfect graph. Then G contains o family A
of independent sets and a family B of cliques with the following properties:

(a) |[Al+ Bl =n+1;

(b) the sets in A(B) cover all vertices;

(c) the incidence vectors of sets in A(B) are linearly independent;

(d) every A € A intersects every B € B.

For the proof and an example of an imperfect graph with similar properties we
refer to [16].

A very interesting concept in connection with perfectness is the Py-structure of
a graph. It was introduced by Chvétal [11] along with a conjecture, later proved
by Reed [58]. This became known as the Semi-strong Perfect Graph Theorem.

DEFINITION 6.7. The Py-structure of a graph G is the 4-uniform hypergraph
on its vertex set in which the edges are those four-tuples of vertices that induce a
path of length three (i.e., a path with three edges) in G.

THEOREM 6.9. (Reed [58]) If two graphs on the same vertex set have the same
Py-structure, then they are either both perfect or both imperfect.

For a while I was tempted to believe in the following

False Conjecture. If two graphs F' and F' have the same Py-structure then
the two sets of probability distributions for which H(G,P) + H(G,P) = H(P)
holds for G = F and for G = F' are the same.

Apart from its consistency with Theorems 6.5 and 6.9 some slight evidence
seemed to follow from the Substitution Lemma together with the observation that
substituting a graph or its complement for a vertex of another graph results in
the same Pj-structure. Were the above conjecture true it would be an immediate
consequence that the normality of a graph is determined by its Ps-structure just
as it is the case with perfectness by Reed’s Theorem 6.9. However, this is false as
shown by the following simple counterexample. Let F' be a graph on six vertices,
five of which span a C; while the sixth vertex is connected to two neighbouring
nodes of the C5 and nothing else. Let F' be the following other graph on six
vertices. Five of the vertices span a Cs again and the sixth vertex is now connected
to exactly one of the other five nodes. It is easy to check that F' and F' have
isomorphic Py-structures, while F is normal and F' is not.

6.3. Arbitrary pairs of graphs. The following theorem gives structural
characterization of those couples of graphs that satisfy (18) for every P.

THEOREM 6.10. (Kérner, Simonyi, Tuza [42]) For two graphs F and G on the
same vertex set V one has
H(FUG,P)=H(F,P)+ H(G,P)

for every P if and only if the following three conditions are satisfied.
(a) E(F) N E(G) = 0;
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(b) if FUG induces a cligue on some U C V then the graphs induced by F' and
G on U are perfect;
(¢) no Ps (path on 3 vertices) of F'UG has one edge in F' and one edge in G.

For the proof of this theorem we refer to [42], here we only make some remarks
about the necessity of the conditions. First of all, observe, that the necessity of
condition (a) is completely trivial. Indeed, were E(F') and E(G) not disjoint we
could concentrate a distribution on the two endpoints of a common edge resulting
in the same positive value of the entropies H(F, P), H(G,P), and H(F UG, P),
thereby making additivity impossible. Condition (b) is a direct consequence of
Theorem 6.5 by considering distributions concentrated on U. It is interesting to
note that the appearance of this condition suggests that the separate treatment of
complementary graphs cannot be avoided. At least the known proof of Theorem
6.10 relies on Theorem 6.5 although the original reason of singling out this special
case was not the realization of its necessity but simply the natural appearance of
this case in Korner and Longo’s information theoretic paper [37].

An immediate consequence of Theorem 6.10 is the following.

COROLLARY 6.11. ([42]) Let G1,Ga, ..., G, be edge-disjoint graphs on the same
verter set V, having the complete graph as their union. We have

k
S H(G;, P) = H(P)

for every probability distribution P on 'V if and only if all G;’s are perfect and there
is no triangle of K|y| that has all of its three edges in different G;’s. O

Corollary 6.11 is related to the following result of K. Cameron, J. Edmonds,
and L. Lovész [9].

THEOREM 6.12. (Cameron, Edmonds, Lovdsz [9]) If the edges of a complete
graph are three-colored (with red, blue, and green, say) in such a way that no three-
colored triangle occurs and the graph formed by the red edges, and the graph formed
by the blue edges are both perfect then so is the graph formed by the green edges.

We continue by showing an application of Theorem 6.10 to prove a result with
no entropy in its statement. It is related to the previous theorem of Cameron,
Edmonds, and Lovész.

Cameron and Edmonds [8] give what they call a “partial converse” of a slight
modification of Theorem 6.12.

They say that edges uv and vw of a graph G are A-related if they form a two-
length path (a “A”), that is, vw is not in G. A subset A of the edges of G is a
A-subset if every A of G has either both or neither of its edges in A. A A-subset
together with the vertices it meets is a A-subgraph. A prime-A-subgraph consists
of a minimal non-empty A-subset plus the nodes it meets. (Cf. the edge-classes of
Gallai in [23].)

In view of the Perfect Graph Theorem, Theorem 6.12 says that if a graph is
the union of two edge-disjoint perfect A-subgraphs, then it is perfect. This implies
that if every A-subgraph of a graph is perfect then the graph is perfect. (Cameron
and Edmonds mentions that Theorem 6.12 is implied by the statement: “If a graph
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is the union of perfect A-subgraphs then it is perfect.” They refer to this statement
as the one they reverse.) Their partial converse is the following.

Partial Converse about A-subgraphs ([8]) Every prime-A-subgraph of a
perfect graph is perfect.

As Cameron and Edmonds remark the above converse is “partial” because of
its restriction to prime-A-subgraphs, but without the word “prime” its statement
would not be true. Indeed, every (not necessarily induced) subgraph of a complete
graph is a A-subgraph, the complete graph is perfect while many of its subgraphs
are not. As a corollary of Theorem 6.10 we show that actually this is the only case
to exclude.

COROLLARY 6.13. ([42]) If a A-subgraph of a perfect graph T is not perfect
then it induces an imperfect graph on some cliqgue of T'.

PRrROOF. Let G' be the imperfect A-subgraph of the perfect graph T. Let G be
the graph with vertex set V(T') and edge set E(G') and F be the graph on V(T
with edge set E(T) — E(G). Observe that F and G satisfy conditions (a) and (c¢) of
Theorem 6.10. Suppose indirectly that G' (and so G, too) induces a perfect graph
on each clique of T, and so condition (b) of Theorem 6.10 is also satisfied. Then for
every probability distribution P on V(T') we have H(F, P) + H(G,P) = H(T, P).
However, since T is perfect, we also have H(T, P) + H(T,P) = H(P) by Theorem
6.5 and so

H(F,P)+ H(G,P)+ H(T,P) = H(P)

for every probability distribution P. On the other hand, by the sub-additivity of
graph entropy and observing that FFUT = G we have

H(F,P)+H(G,P)+H(T,P)> H(G,P)+ H(G,P) > H(P).
We have seen we must have equality here, so in particular,
H(G,P)+ H(G,P)=H(P)

for every probability distribution P, i.e., G must be perfect by Theorem 6.5. Then
G’ should also be perfect, a contradiction. O

The conditions of weak additivity are less investigated, some partial results can
be found in [42].

6.4. Uniform hypergraphs. The question answered by Theorem 6.5 can be
generalized in several ways. One way was to look at arbitrary pairs of graphs that
led to Theorem 6.10. Another possibility is to consider uniform hypergraphs with
similar additivity properties. This is what we are doing next.

DEFINITION 6.8. The complement of a k-uniform hypergraph F' is the k-uniform
hypergraph F with V(F) = V/(F) = V and E(F) = (}) — E(F), where (}) denotes
the set of all k-element subsets of V.

DEFINITION 6.9. A k-uniform hypergraph F' on n vertices is called strongly
splitting if for every probability distribution P on its vertex set, we have

H(F,P)+ H(F,P)=H(K® P). (20)
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It was shown in [63] that for & > 4 no k-uniform hypergraph is strongly split-
ting except the trivial ones, Kﬁk) and K'T(Lk) . The strongly splitting 3-uniform hyper-
graphs, however, form a non-trivial class of hypergraphs. This class of hypergraphs
already appears in [29].

DEFINITION 6.10. Let T be an arbitrary tree. Color its inner vertices with two
colors, 0 and 1. Let F' be the following 3-uniform hypergraph. The vertex set of
F' is the set of leaves of T'. Three leaves of T, z,y, and z, form an edge in F' if
the unique point where the unique paths zy, yz, and zz in T meet each other is
colored with 1. The hypergraph F given this way is called the leaf-pattern of the
two-colored tree T'.

A 3-uniform hypergraph F' is called a leaf-pattern if there exists some two-
colored tree T for which F' is its leaf-pattern.

REMARK . We could assume in the above definition that 7" has no degree two
vertices, and also that its two-coloration is such that neighbouring nodes get differ-
ent color. Vertices violating these two assumptions could always be eliminated. The
correspondence between leaf-patterns and two-colored trees becomes a bijection if
we add these extra requirements.

Notice that if F' is a leaf-pattern then so is its complement, which is the leaf-
pattern of the same tree with a complementary two-coloration.

Leaf patterns were investigated by Gurvich [29] who proved a characterization
of leaf-patterns by excluded configurations.

DEFINITION 6.11. The following uniform hypergraph W will be called flower.
V(W) =4{0,1,2,3,4} and E(W) consists of the five triples of consecutive nodes in
the cyclic order.

Notice that the flower is a self-complementary 3-uniform hypergraph.

THEOREM 6.14. (Gurvich [29]) A 3-uniform hypergraph is o leaf-pattern if and
only if it induces an even number of edges on every 4-element subset of its vertex
set, and does not contain an induced flower.

By duplicating a vertex of a hypergraph we mean substituting for it the empty
hypergraph on two points (cf. Section 4).

DEFINITION 6.12. A k-uniform hypergraph is reducible if it can be obtained
from one single edge on k points by successive and iterative use of the following
two operations:

(a) duplicating a vertex

(b) complementation.

The 2-uniform reducible hypergraphs (i.e., reducible graphs) are widely investi-
gated under different names. Most often they are called cographs. They are shown
to be equivalent to Py-free graphs, i.e., graphs with no induced Py. For references,
see, for example, [13], [29], [33], [45], [60].

It is more or less trivial that 3-uniform reducible hypergraphs are equivalent
to leaf-patterns. The characterization of strongly splitting 3-uniform hypergraphs
is given by the following theorem.
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THEOREM 6.15. ([63]) A 3-uniform hypergraph is strongly splitting iff it is a
leaf-pattern.

The natural way to prove this theorem is to use the two different characteri-
zations of leaf-patterns: the one by forbidden configurations and the other saying
they are equivalent to reducible 3-uniform hypergraphs. For one direction one can
show that the forbidden configurations characterizing leaf-patterns in Theorem 6.14
are not strongly splitting. This implies that all strongly splitting 3-uniform hyper-
graphs are leaf-patterns. For the other direction one can prove by induction that
all reducible 3-uniform hypergraphs are strongly splitting. For details of the proof
we refer to [63].

In view of Theorems 6.5 and 6.15, and what we have already said about the
case k > 3, the following corollary can be formulated.

COROLLARY 6.16. A k-uniform hypergraph F is strongly splitting if and only
if one of the following cases holds:

(a) k=2 and F is a perfect graph;

(b) k=3 and F is a leaf-pattern;

(¢c) F = Kr(bk) or K}(bk).

Since all cographs are perfect (cf. Seinsche [60]) and leaf-patterns belong to
cographs in some sense, the above corollary shows a certain continuity as we increase

k.

In [29] Gurvich proved more than Theorem 6.14. He has the following gener-
alization that we can use to formulate an analogue to Corollary 6.11 for 3-uniform
hypergraphs. To state his result the following generalization of the concept of
leaf-patterns is needed.

DEFINITION 6.13. Let T be a tree with a coloring of its inner nodes with &
colors. Consider the 3-uniform hypergraph F; for ¢ = 1, ..k, defined as follows. The
vertex set of F; is the set of leaves of T' while z,y,2z € V(F;) form an edge if the
unique common point of the paths zy,yz, and zz in T is colored by the ith color.
The collection Fi, ..., F}, is called the leaf-factorization of the k-colored tree T'.

In general, a collection of edge-disjoint hypergraphs Fi, ..., F}, is called a leaf-
factorization if there exists a k-colored tree T for which it is the leaf-factorization
of T.

REMARK . As it was the case for leaf-patterns we may assume that 7" has no
degree two vertices and no neighbouring vertices get the same color in the above
definition.

THEOREM 6.17. (Gurvich [29]) A collection of edge-disjoint 3-uniform hyper-
graphs Fi, ..., Fy, with Ule F; = K,(f) is a leaf-factorization if and only if each F;
is a leaf-pattern.

COROLLARY 6.18. Let F1, F>, ..., F}, be edge-disjoint 3-uniform hypergraphs on
the same vertex set V', having the complete 3-uniform hypergraph as their union.

We have
k

> H(F,P)=H(KS),P)
=1
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for every probability distribution P on V if and only if all F;’s are leaf-patterns.

Sketch of proof

It is clear by Theorem 6.15 that all F; being a leaf-pattern is a necessary
condition for the above equality. But if every F; is a leaf-pattern then Gurvich’s
Theorem 6.17 implies that they actually form a leaf-factorization. On the other
hand, it is not hard to prove by induction that the desired equality holds indeed
for leaf-factorizations. O

We end this section by mentioning that very little is known about possible “er-
ror terms” when we do not have exact additivity of (hyper)graph entropy. Finding
such terms might prove to be very useful for applications.

7. Applications II

This section is devoted to a brief review of Kahn and Kim’s sorting algorithm
based on graph entropy. The entire section is based on their fine paper [31].

The problem: Let S be a partial order on an n-element set V. Find (adaptively)
a sequence of comparisons (questions of the form “z < y?”) that sorts (V,9), i.e.,
finds an unknown linear extension of S on V', using O(loge(S)) comparisons in the
worst case, where e(S) is the total number of linear extensions of S on V.

Apart from the above Kahn and Kim [31] consider two other computational
problems, too. One of these is to find answers that force an algorithm to use
Q(loge(S)) comparisons. The other is to give an estimate of e(S) within a factor
exponential in n. Whether or not solving this task was possible had not been known
either. (The authors attribute this latter question to G. Miller and refer to [64].)

The status of the sorting problem before Kahn and Kim’s work was the follow-
ing. (For references, see [31].) It was known that there always exist comparisons
that split the number of all possible extensions into “relatively equal” parts. By
“relatively equal” we mean that the proportion of the two parts is within some €
and 1—e. This already proves that sorting with O(log e(S)) comparisons is actually
possible. It was not known, however, how to pick the right comparisons, except
in the case when randomization is allowed. It is considered a breakthrough that
with their new approach Kahn and Kim can make the sorting within the required
time in a deterministic way. Their results are summarized in the following three
theorems.

Let Gs denote the comparability graph of (V,S), i.e., the graph on V with
two vertices adjacent if they are comparable in S. For two elements x,y, that are
incomparable in S, let S(z < y) denote the partial order on V induced by S and
the relation z < y. Let Py denote the uniform distribution on V.

THEOREM 7.1. (Kahn and Kim [31]) For any partial order S on the n-element
setV,

n(logn — H(Gs, Py)) >
loge(S) > max{log(n!) — nH(Gs, Py),Cn(logn — H(Gs, Py))},
where C = (1+ Tloge)~! ~ 0.09.
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THEOREM 7.2. (Kahn and Kim [31]) For any partial order S that is not a
complete order there exist x,y € V such that

min{H(GS(w<y)aPU)aH(GS(y<z)7PU)} > H(G57PU) + % (2]-)

where ¢ =log(1 + £%) ~ 0.2 .

THEOREM 7.3. (Kahn and Kim [31]) For any partial order S and z,y € V
that are incomparable according to S one has

. 2
mln{H(GS(m<y);PU);H(GS(y<z);PU)} < H(Gs,PU) + H (22)

Notice that Theorems 7.1 and 7.2 provide the algorithm we are looking for.
Indeed, Theorem 7.2 ensures that if we always ask the comparison of the pair
specified by (21) then after at most ¢ 'n(logn — H(Gs, Py)) steps we arrive at a
partial order S with H (Gg, Py) = logn. But, by the properties of graph entropy,
this means that Gg is the complete graph, that is S is a linear order. Because
of Theorem 7.1 this number of steps is indeed O(loge(S)). The only question is
how to find the pair specified in (21). Since graph entropy can be computed in
polynomial time for perfect graphs ([27], [50]) and all the graphs occurring here
are comparability graphs that are known to be perfect, this question is easy to
answer. We are actually allowed to take all possible pairs (there are at most about
n? of them only) and compute the left hand side of (21) for each. Then simply
choose the pair for which this quantity is the largest.

The third theorem (Theorem 7.3) is needed only when we are against someone
who makes the sorting and want to answer his/her questions in such a way that
(s)he is forced to use Q(loge(S)) comparisons. The theorem ensures that what we
have to do is just to calculate the left hand side of (22) and choose the answer that
achieves this minimum.

Notice, that Theorem 7.1 provides a way to compute an estimation of e(S)
within a factor exponential in n, thereby solving the third computational problem
mentioned.

For the proofs of the above theorems we refer to [31]. Let us, however, mention
one technical detail of the proof of Theorem 7.2. Here the authors have to show that
for a well chosen pair the graph entropies appearing on the left hand side of (21)
are not less than some specified value. Remember, that graph entropy is defined as
a minimum, hence it is much easier to show it is not more than something than to
show it is not less. (This is because for the former it is enough to demonstrate one
feasible solution that gives a right value.) However, if we know for example, that
H(G,P) + H(G,P) = H(P) for our graph G and distribution P than to bound
H(G, P) from below becomes equivalent to bound H (G, P) from above. Here it can
be used again that in Kahn and Kim’s application the occurring graphs are always
comparability graphs that are known to be perfect, and so the previous exchange
of upper and lower bounds can be done by Theorem 6.5.

8. The landscape around graph entropy

This survey paper is about a functional on a graph with a probability distribu-
tion on its vertex set we call graph entropy. In this section we will see some other
functionals on graphs with a probability distribution on their vertex set. All those
we mention have an intimate relationship with graph entropy.
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First we will introduce H(G, P), which is also a refinement of the chromatic
number (cf. Definition 1.2’ of graph entropy), just it is defined via a different graph
exponentiation. Our second functional will be C(G, P), a similar notion for the
clique number, which is defined as a probabilistic version of the celebrated concept
of the Shannon capacity of graphs. The third similar functional to be introduced in
this section is u(G, P) that bounds C'(G, P) from above in a similar way as Lovasz’
f-function does for ordinary Shannon capacity (cf. Theorems 8.2 and 8.3 below).
Remarkable properties of these three functionals and their interrelationship with
each other and with graph entropy is the topic of this section.

In Definition 1.2’ of graph entropy the co-normal power of graphs is involved. It
is natural to ask whether a similar definition with a different graph exponentiation
also leads to a meaningful notion. The information theory problem of Ko&rner
and Longo in [37] actually led these authors to introduce such a concept. This is
H(G, P), the “co-entropy” of a graph. (This is the same concept called pi-entropy
and denoted H,(G, P) in [37] and [52].) For its definition we have to introduce
the normal power of graphs.

DEFINITION 8.1. Given a graph G, its ¢-th normal power G®) is given by
V(GD) = V(D) E(GY) = {{x,y}; Vi : {z;,y;} € E(G) or z; = y;}.

Notice that the ¢-th normal power of a graph G is just the complement of the
t-th co-normal power of the complementary graph G.

DEFINITION 8.2. ([37]) The co-entropy of a graph G with respect to a proba-
bility distribution P on V(G) is defined as

P)=liml D iog x(@O (@
(G ) el—I>r(l) ligsongcvt Pt(U)>1 et o8 X( (@)
where G©)(U) means the induced subgraph of G) on U and P!(U) is the same
probability value as in Definition 1.2’.

There is no simple formula known to express H(G, P), that is why the above
definition is a little more technical than Definition 1.2’. By comparing these two
definitions it is immediate, however, that

H(G,P) < H(G,P) (23)

for every G and P. To characterize the pairs (G, P) for which we have equality
n (23), or only those graphs that give equality with every probability distribution
P, is an open problem. It is known, however, that this class of graphs contains all
perfect graphs. In [37] Korner and Longo proved that

H(G,P)+H(G,P) > H(P)
for every pair (G, P). This, equation (23), and Theorem 6.5, indeed, immediately
imply that the two entropies are always equal for perfect graphs.

It is a longstanding open question of Kdrner whether H(G, P) is also sub-
additive like graph entropy. It should be clear from the above facts that

H(F,P)+ H(G,P) > H(FUG,P)

is true if F and G are perfect. (The graphs F and G are meant to be on the
same vertex set, as usually.) Marton [52] proved that the above inequality holds
in another case. This case is surprisingly just a kind of counterpart of the previous
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one: it is when the graph F U G is perfect. This result we will present later as
Theorem 8.9.

The functional H(G, P) is closely related to another functional that we denote
by C(G, P) and call the Shannon capacity of the graph G “within the type P.”
C(G, P) is a similar probabilistic refinement of the notion of clique number as
graph entropy is for the chromatic number. Before introducing C(G, P) we first
remind the reader of some basic facts about the Shannon capacity of graphs.

DEFINITION 8.3. The Shannon capacity of a graph G is defined as
.1 ¢
C(G) = tliglo Zlogw(G ).

REMARK . In Shannon’s original paper [62] the capacity of G is defined in a
complementary way: the independence number stands where we have the clique
number and normal instead of co-normal exponentiation is used. The two defini-
tions lead to the same concept, the only difference is that our C(G) becomes C(G)
in the other language. The aim of this remark is to avoid confusion this difference
may cause. Our main reason to adopt the above definition is that it leads easily to
the more general and rather successful concept of Sperner capacity (cf. [24], [25],
[7], [4]) where the edges of the graph involved are oriented. (In the complemen-
tary language this generalization would face the unnatural phenomenon of oriented
“non-edges.” ) In what follows we use our language consequently, some of the
quoted results may therefore appear in a different formulation than in the original
work. Since this translation is routine, however, we will usually make no further
notice of these changes.

A less confusing phenomenon is the appearance or non-appearance of the log-
arithm in the definition of Shannon-capacity. We adopt the information theory
tradition to take the logarithm; we believe this makes it easier to see the relation-
ship with graph entropy.

It is easy to see that for any graph G one has
logw(G) < C(G) < log x(G).

Therefore the Shannon capacity of all graphs with x(G) = w(G) equals logw(G).
For graphs with x(G) > w(@), however, the Shannon capacity is not easy to de-
termine, it is actually unkown for many graphs. The smallest graph with larger
chromatic than clique number is Cy, the chordless five-cycle. An easy construction
shows C(C5) > %logh (see [62]). The fact that logb is actually the true value
of C(C5) was shown by Lovész [49] more than twenty years after the problem had
been posed by Shannon.

To introduce the functional C(G, P) we first introduce a technical concept.

DEFINITION 8.4. Let a finite set V' and a probability distribution P on V be
given. The set T¢(P,¢) is defined as the set of sequences x € V! satisfying

7N (abx) ~ P(a)] < e

where N(a|x) = |{i : z; = a}|. We call T?(P,€) the set of (P,€)-typical sequences
(of length t) over the alphabet V.
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Let G(P,€) denote the subgraph of G! induced on 7*(P,¢). The following
concept was introduced by Csiszér and Korner [15] and investigated in more detail
by Marton [52].

DEFINITION 8.5. The Shannon capacity of a graph G within a given type P is
C(G, P) = lim lim sup 7 log w(G(P,e)).

e=0 t 00
There is no simple formula known to express C(G,P). In [52] Marton has
shown that finding such a formula would be equivalent to finding a formula for
H(G, P). More precisely she has the following

PROPOSITION 8.1. (Marton [52]) For any graph G and probability distribution
P on its vertex set

H(G,P)+C(G,P) = H(P).

Lacking a simple formula it seems worthwhile to find non-trivial bounds for
C(@G, P). Marton [52] introduced a probabilistic version of Lovész’ bound on C(G)
for this purpose. First we give the definition of Lovész’ original bound. (Here
again, there is a complementation compared to the original definition in [49], cf.
the remark after Definition 8.3.)

DEFINITION 8.6. Let {u(i) : i € V'} be a set of unit vectors with some common
dimension r, such that the inner product (u(i)u(j)) = 0 whenever i # j and
{i,j} € E(G). Such a system U = {u(i)} is called an orthonormal representation
of the graph G. With an extra unit vector ¢ of dimension r the system (U, c) is
called an orthonormal representation of G with a handle. The set of all orthonormal
representations of G with a handle is denoted by T'(G).

DEFINITION 8.7. (Lovész’ bound [49]) For every graph G we define the func-

tional
1

(U@ eV (uli),c)?’

0(G) =
When determining the Shannon capacity of Cs Lovész used his #-function and
the following theorem.
THEOREM 8.2. (Lovdsz [49])
C(G) <logb(G)
for any graph G.

Marton [52] introduced the following probabilistic version of Lovész’ bound.
DEFINITION 8.8. For every graph G and probability distribution P on its vertex
set we define the functional

G,P) = ; )P
w (Uc)ET(G) Zp )

The following result is analoguous to Theorem 8.2.

THEOREM 8.3. (Marton [52]) For every graph G and probability distribution
P on its vertex set one has

C(G,P) < (G, P).
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An interesting phenomenon about u(G, P) is that it is actually the entropy of
a convex corner. The corresponding convex corner was defined and investigated by
Grotschel, Lovész, and Schrijver [28].

THEOREM 8.4. (Grétschel, Lovdsz, Schrijver [28]) For any graph G, the set
TH(G)={a€e R;3(U,c) € T(G) : a; < (u(i), c)’}

is a convezx corner in R and it forms an antiblocking pair with the corresponding
set of G, that is
[TH(G)* =TH(G).

It is immediate from the above that
H(G;P) = HTH(G) (P)
By Theorems 6.4 and 8.4 one has the following remarkable property of u(G, P).

COROLLARY 8.5. (Marton [52]) For any graph G and probability distribution
P on its vertex set

w(G, P) + (G, P) = H(P).

In fact, Marton proved that u(G, P) is also sub-additive.

LEMMA 8.6. (Marton [52]) For arbitrary graphs F and G on the same vertex
set V' and probability distribution P on V

w(F UG, P) < u(F,P) +pu(G,P)

ProoF. Let (U, c) and (V,d) be orthonormal representations with handles for
F and G. Then the tensor products

w; = ui®vi,g = c®d
give an orthonormal representation with a handle for £ U G. By the identity
(a@b)(e ®f) = (ae)(bf) this proves the statement. O
About the relation of TH(G) and V P(G) the following is proved in [28].
THEOREM 8.7. (Grétschel, Lovdsz, Schrijver) For every graph G
VP(G) CTH(G) C FVP(Q),
and TH(G) = VP(Q) if and only if G is perfect.

The above theorem immediately implies u(G, P) < H(G, P) as noted in [52].
Marton, however, also proved the following stronger statement.

THEOREM 8.8. (Marton [52]) For every G and P
(G, P) <TG, P). (24)
PRrOOF. The statement follows by combining Corollary 8.5, Proposition 8.1
and the inequality C(G, P) < u(G, P). O

Now we are able to prove the following theorem of Marton about the sub-
additivity of H(G, P) in a special case.
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THEOREM 8.9. (Marton [52]) Let F' and G be two graphs on the same vertex
set V and P a probability distribution on V. If the graph F UG is perfect then

H(FUG,P)< H(F,P)+ H(G,P).
PRrROOF. We know from the foregoing that the perfectness of F'U G implies
H(FUG,P)=u(FUG,P).
By Lemma 8.6 and Theorem 8.8 this can be continued by
u(F UG, P) < u(F,P)+ u(G,P) < H(F,P)+ H(G, P),

proving the statement. |

For more about the functionals u(G, P) and H(G, P) we refer the reader to
[52] and [37]. An application of the functional u(G, P) can also be found in [41].

Finally, we briefly mention another line of research connected to the notion of
C(G, P). The following generalization of C(G) is defined in [12].

DEFINITION 8.9. Let G = {G1, .., Gx} be a family of graphs with V(G;) =V
for every G;. Let w(G?) denote the cardinality of the largest subset of V' that
induces a clique in each of the graphs G%,G%, ..., G%. The Shannon capacity of the
family G is then defined as

C(G) = limsup e log w(GY).

t—o00 t

The following beautiful result is due to Gargano, Kérner, and Vaccaro.

THEOREM 8.10. (Gargano, Kdrner, Vaccaro [25]) For G = {G1,...,Gr}, V(G;) =
V' one always has
C(9) = max min C(G;, P).

P G;eG

We remark that the fact that C(G) is bounded from above by the right hand
side expression is easy to prove and already appears in [12]. The real achievement
in Theorem 8.10 is the other direction, that is the proof showing that this upper
bound is actually tight.

In their work Gargano, Korner, and Vaccaro have generalized the concept of
C(G) and C(G, P) to directed graphs thereby introducing their concept of Sperner
capacity that provides a natural link to extremal set theory. In fact, Theorem 8.10
above is only a corollary of their more general result on Sperner capacities of families
of graphs within a given type. This result implies the asymptotic solution of many
extremal set theory problems that fit into the Sperner capacity framework. An
example is Rényi’s qualitative 2-independence problem (see [59]) from 1970. For
more details see [24], [25] and the references there.
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