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Preface

Preliminary text — it will be strongly reviesed!

The idea of solving problems in logic by first translating them to algebra,
then using the powerful methodology of algebra for solving them, and then trans-
lating the solution back to logic, goes back to Leibnitz and Pascal. Papers on the
history of Logic (e.g. Anellis–Houser [19], Maddux [51], Pratt [65]) point out that
this method was fruitfully applied in the 19th century not only to propositional
logics but also to quantifier logics (De Morgan, Peirce, etc. applied this method
to quantifier logics, too). The number of applications grew ever since. (Though
some of these remained unnoticed, e.g. the celebrated Kripke–Lemmon complete-
ness theorem for modal logic w.r.t. Kripke models was first proved by Jónsson and
Tarski in 1948 using algebraic logic.)

For brevity, we will refer to the above method or procedure as “applying
Algebraic Logic (AL) to Logic”. This expression might be somewhat misleading
since AL itself happens to be a part of logic, and we do not intend to deny this. We
will use the expression all the same, and hope, the reader will not misunderstand
our intention.

In items (i) and (ii) below we describe two of the main motivations for ap-
plying AL to Logic.

(i) This is the more obvious one: When working with a relatively new kind
of problem, it has often proved to be useful to “transform” the problem into a
well understood and streamlined area of mathematics, solve the problem there
and translate the result back. Examples include the method of Laplace Transform
in solving differential equations (a central tool in Electrical Engineering). This
general method is discussed in considerable detail in Madarász [49], under the
keyword “duality theories”. Cf. e.g. Appendix A therein which describes algebraic
logic as a special duality theory.

Ide vagy valahova a Prefacebe kéne egy szeĺıd szoveg arról, hogy SZEMAN-
TIKAVAL RENDELKEZŐ logikákat algebraizálunk, tehát a szemantikának is
megvan az algebrai megfelelője, ami nemcsak a szintaxistól függ.

In the present book we define the algebraic counterpart Alg(L) of a logic L
together with the algebraic counterpart Algm(L) of the semantical-model theo-
retical ingredients of L. Then we prove equivalence theorems, which to essential
logical properties of L associate natural and well investigated properties of Alg(L)
such that if we want to decide whether L has a certain property, we will know
what to ask from our algebraician colleague about Alg(L). The same devices are
suitable for finding out what one has to change in L if we want to have a variant
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of L having a desirable property (which L lacks). To illustrate these applications
we include several exercises (which deal with various concrete Logics). For all this,
first we have to define what we understand by a logic L in general (because oth-
erwise it is impossible to define e.g. the function Alg associating a class Alg(L) of
algebras to each logic L).

(ii) With the rapidly growing variety of applications of logic (in diverse areas
like computer science, linguistics, artificial intelligence, law, the logic of spacetime,
relativity theory etc.) there is a growing number of new logics to be investigated.
In this situation AL offers us a tool for economy and a tool for unification in
various ways. One of these is that Alg(L) is always a class of algebras, therefore
we can apply the same machinery namely Universal Algebra to study all the
new logics. In other words we bring all the various logics to a kind of “normal
form” where they can be studied by uniform methods. Moreover, for most choices
of L, Alg(L) tends to appear in the same “area” of Universal Algebra, hence
specialized powerful methods lend themselves to studying L. There is a fairly well
understood “map” available for the landscape of Universal Algebra. By using our
algebraization process and equivalence theorems we can project this “map” back
to the (far less understood) landscape of possible logics.

∗ ∗ ∗
The approach reported here is strongly related to works of Blok and Pigozzi

cf. e.g. [22], [21], [23], [64], Czelakowski [28], Font–Jansana [30]. Strongly related
material by the present authors appeared in [15] and [62]. To keep the present work
self-contained, we had to repeat here some of the things we wrote there. Another
strongly related paper is Andréka–Németi–Sain–Kurucz [17], using a somewhat
different setting. That setting gives a broader perspective, however, the investi-
gations of Hilbert-style inference systems done herein are not yet pushed through
in that setting. A common root of all the work mentioned in this paragraph is
Henkin–Monk–Tarski [37] §5.6. Applications and other extensions of the present
work include van Benthem [80], [18], [5], [6], [61], [62], [71], [72], [73], [1], [49].

After having read the present work, the reader might get interested in study-
ing those classes Alg(L) of algebras which show up most frequently as algebraic
counterparts of distinguished logics. [15] was designed to provide an in-depth study
of these algebras as well as a guide to their literature. In fact, the most basic book
on algebraic logic is [37]. The authors of that book suggested to the present au-
thors to write [15] as an easier to read and more up-to-date introduction to the
subject which, among others, could serve as a “prelude” to [37]. In the mean-
time, the somewhat more specialized book [40] by R. Hirsch and I. Hodkinson also
appeared, nicely complementing [15], and [37], [38] in various ways.

This book grew out of course materials, like [16], [14] (cf. also [13]) used first
at the Logic Graduate School, Budapest, at the beginning of the 1990’s. Therefore
our style often remained that of a lecturer writing to her/his students.
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Chapter 1

Notation, Elementary Concepts

In Chapter 1 we introduce our basic notation we will use throughout this book —
and, at the same time, we present a brief reminder/summary of the set theoretic
foundation we use, in an informal way. Besides that some readers may find the
latter useful, the former becomes less boring and better organized this way.

1.1 Sets, classes, tuples, simple operations on sets

As it is wide-spread when working in a classical branch of mathematics, we use
the Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC for short) as
our foundation for mathematics. We do not assume familiarity with this formal
system, our approach to set theory is informal. What we do assume is that the
reader is familiar with naive set theory. If the reader would find out that s/he is
unfamiliar with the material reviewed below, s/he is advised to consult e.g. Halmos
[35] which is an outstanding elementary introduction to set theory. Another, more
recent reference here is Devlin [29].

In set theory, we accept two things to be such basic concepts that we do not
define. These concepts are: that of a set and the membership relation. Intuitively,
sets are certain collections. For example, intuitively, the collection of all apples (in
a given moment of time) is a set, the elements or members of it are the apples.
In this case we say that an apple and the set of all apples are in the membership
relation. If A denotes an apple and S denotes the set of all apples then

A ∈ S

abbreviates the statement read as “A and S are in the membership relation” or
“A is an element of S” or “A belongs to S”. The statement that an element B
does not belong to C is abbreviated as

B /∈ C ,
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for any sets B and C. Other intuitive examples are: all the dogs living in Budapest
form a set, its elements are the dogs living in Budapest (and nothing else). Sets
may be elements of other sets. For example, the collection of all classes in a school
can be regarded as a set, and the classes themselves are sets again, their elements
being the students.

Examples for sets from classical mathematics are the set ω of natural num-
bers , the set Q of rational numbers , the set R of real numbers .

Next we list our basic assumptions on sets and the membership relation.

• Two sets are said to be equal iff they have exactly the same elements.

• We assume that there is a set having no elements. Then there is exactly one
such set, by our definition of the equality of sets above. We call this set the empty
set and denote it by ∅.

• Once we have some sets, we can “construct” new sets from them. For example,
if we have “finitely many” sets, say A1, . . . , An, then we assume the existence of a
set having exactly A1, . . . , An as its elements. We denote this set by {A1, . . . , An}.
In particular, if A is a set then {A} denotes the set having A as its only element.
Such sets are called singletons. For example, {∅} is the singleton having ∅ as its
only element. Notice that the sets A and {A} are different in general. E.g., while
{∅} has exactly one element, ∅ has none. Thus {∅} 6= ∅, according to our definition
of the equality of sets.

• Another way of forming new sets from old ones is taking subsets of a set. If A
and B are sets then A is a subset of B iff every element of A is an element of B
as well. A ⊆ B is our notation for A is a subset of B. For example, the set of red
apples is a subset of the set of all apples; the set of puppies living in Budapest is
a subset of the dogs living in Budapest. Notice that every set is a subset of itself;
further, the empty set ∅ is a subset of every set. ⊆ is called the inclusion relation.
We denote proper inclusion by $; that is, A $ B iff A ⊆ B but A 6= B. By our
definition of the equality of sets, it is easy to see that

A ⊆ B and B ⊆ A together imply A = B

for arbitrary sets A and B.

• We postulate that the collection of all subsets of a given set A forms a set. We
call it the powerset of A and denote it by P(A).

• Next we are looking at one of the most basic “set forming” constructions. Let
ϕ(x) denote a property of sets such that for every set x, ϕ(x) is either true or
false. If A is a set then the collection of those elements of A for which ϕ(x) is
true, forms a set. This is denoted by

{x ∈ A : ϕ(x)} . (1.1)
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Thus we can define the set of even numbers as

{x ∈ ω : x is divisible by 2} .

Notice that we did not define what we mean by a property ϕ(x). This can
be done using mathematical logic. We do not go into this now. We just think of
ordinary statements used in those branches of mathematics where we do not use
strict axiomatizations anyway.

To make our text shorter, we will often write

{x : ϕ(x)} instead of {x ∈ A : ϕ(x)}

when A is known, or easy to find, from the context. However, if such a set A does
not exist, the collection of the x’s for which ϕ(x) holds, does not form a set in
general. For a counterexample, see Russell’s paradox below.

Theorem 1.1.1. (Russell’s paradox) The collection of all sets does not form a set.

Proof. Assume, in the contrary, that there exists a set H the elements of which
are the sets. Let ϕ(x) denote the property that (x is a set and x /∈ x). Then

H ′
def
= {x ∈ H : ϕ(x)} (1.2)

is a set, by our convention above. Then either

H ′ ∈ H ′ (1.3)

or

H ′ /∈ H ′ . (1.4)

If (1.3) holds then H ′ ∈ H ′. Then ϕ(H ′) by (1.2), thus H ′ /∈ H ′. Since both
H ′ ∈ H ′ and H ′ /∈ H ′ cannot hold, (1.3) must be false, and (1.4) must be the
case. But then H ′ ∈ H ′ by (1.2) — we got H ′ ∈ H ′ and H ′ /∈ H ′ again. Since
there are no more cases, by the above we derived a logical contradiction from our
assumption (that there exists a set the elements of which are the sets). Thus this
assumption must be false, which proves the theorem. �

•We postulate that if A is a set then the collection of the elements of its elements
form a set as well. This set is called the (unary) union of A and is denoted by
⋃
A. See Figure 1.1. In particular, if A and B are sets then

⋃
{A,B} is a set again.

For
⋃
{A,B} we use the alternative notation A∪B, and call it the (binary) union

of A and B.

From
⋃

, using the schema (1.1), we define the (unary) intersection of a set
A, as follows.

⋂

A
def
= {a ∈

⋃

A : a ∈ B for every B ∈ A} .
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Figure 1.1: Unary union and intersection

Next, for any two sets A and B,

A ∩B
def
= {a ∈ A : a ∈ B}(= {a ∈ B : a ∈ A}) .

A∩B is called the (binary) intersection of A and B. If A∩B = ∅ then we say that

A and B are disjoint . The symbol
.
∪ stands for disjoint union, that is, H = A

.
∪ B

iff H = A ∪ B and A ∩B = ∅, for any set H .
The (set theoretic) difference of two sets A and B is defined as

ArB
def
= {a ∈ A : a /∈ B} .

We will need to use (ordered) pairs and (ordered) n-tuples (n a natural num-
ber). The idea of a pair is that it is an object consisting of a first member and a
second member . We denote a pair with first member a and second member b as
〈a, b〉. We want to regard two pairs equal iff their first members as well as their
second members coincide. That is,

〈a, b〉 = 〈c, d〉 iff (a = c and b = d) . (1.5)

The concept of an n–tuple (n ∈ ω) is a natural generalization of that of a pair.
An n–tuple (n ∈ ω) has a first member, a second member, . . . , an n–th member.
〈a1, . . . , an〉 denotes the n–tuple the first member of which is a1, . . . , the n–th
member of which is an. 〈a1, . . . , an〉 = 〈b1, . . . , bn〉 iff (a1 = b1, . . . , an = bn). If
n = 3 or 4 then we call an n–tuple, respectively, a triple or a quadruple. The set
theoretic “coding” (that is, formal definition) of a pair 〈a, b〉 is the following.

〈a, b〉
def
= {{a}, {a, b}} . (1.6)

See Figure 1.2. Checking that 〈a, b〉 defined as in (1.6) satisfies condition (1.5) is
left to the reader.
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〈a, b〉

{a}

������
{a, b}

666666

xx
xx

xx
xx

x

a b

Figure 1.2: Ordered pair

Collections {x : ϕ(x)} are called classes. Every set can be thought of as a
class, since for any set H , H = {x : x ∈ H}. But, as Russell’s paradox shows,
some classes are not sets. Classes that are not sets are called proper classes. There
may be collections of sets which do not form neither sets nor classes. Formulating
and proving the class version of Russell’s paradox is left to the reader.

• Though many of the “set forming” constructions described above generalize to
classes in a straightforward way (everything we described above do generalize),
some such constructions do not work for classes in general. Sets are more “coher-
ent” than other kinds of classes. By “coherent” we mean that when we are forming
new collections from “coherent” ones, we always get classes again. For example,
the collection of all functions going from a “coherent” class (set) into another
“coherent” class (set) is again a class. This is not true for classes in general.

An example for a proper class is the class V of all sets. Other typical examples
for proper classes in mathematics are: the class of all Boolean algebras, the class
of all semigroups.

Summing up what we said so far, ZFC is a set theory in which the existence of
the empty set ∅ is postulated and then the rest of the sets are built up from ∅ via
relatively simple “set forming constructions” (e.g. the construction of the powerset
of a set). Some more set forming constructions will be introduced in the following
sections (the less trivial of which is the Axiom of Choice in section 1.5). We also
illustrated that, in forming new collections from sets, we can “fall into certain
traps”, see Russell’s paradox (Thm.1.1.1). To avoid these traps, the concept of
a class has been introduced. Thus in ZFC, two kinds of entities exist: sets and
classes (and nothing else). While sets can be elements of other sets or of (possibly
proper) classes, proper classes cannot be elements of classes.

Some of our concepts naturally extend to proper classes from sets without
causing anomalies. Such are e.g. inclusion ⊆, union ∪, intersection ∩, difference
r. See also our later comment in the paragraph at the end of section 1.6.

We close this subsection by introducing the set theoretic “coding” of natural
numbers the way von Neumann did.
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By the successor of a set x we mean S(x) = x ∪ {x}. The natural numbers
are generated from the empty set ∅ using the operation of successor S, as follows.

0 = ∅, 1 = S(0), 2 = S(1), . . . , n = S(n− 1), . . . . (1.7)

It is left to the reader to check that this definition implies that

n = {0, 1, 2, . . . , n− 1} (1.8)

for every natural number n. Thus k ∈ n for every k 6 n (where 6 is the usual
ordering of natural numbers).

1.2 Binary relations, equivalence relation, functions

For any two sets A and B, A×B denotes the Cartesian product (or direct product)
of A and B, and it is defined as follows:

A×B
def
= {〈a, b〉 : a ∈ A and b ∈ B} .

If R ⊆ A × B for some sets A and B then R is called a binary relation. If
R is a binary relation then Dom(R) and Rng(R) denote its domain and range
respectively, that is,

Dom(R) = {a : 〈a, b〉 ∈ R for some b} and (1.9)

Rng(R) = {b : 〈a, b〉 ∈ R for some a} . (1.10)

On Figure 1.3 we show two ways of “drawing” (or illustrating) binary re-
lations. R on Figure 1.3 was drawn in “coordinate system style”: a horizontal
line and a vertical line (two “coordinate axes”) represent, respectively, (sets con-
taining) Dom(R) and Rng(R). A point of the plain determined by the two lines
represents an ordered pair the first member of which comes from Dom(R), the
second one from Rng(R) (see, e.g., the point 〈a, b〉 on Figure 1.3). Thus R itself is
represented by a collection of points of the plain (see shaded area).

The second way we draw binary relations differs from the first one in that we
represent ordered pairs differently: an ordered pair is represented by two points
connected by a line segment. We have already used this method on Figure 1.2, to
represent (a small part of) the membership relation. On Figure 1.3, we assume
that the left–hand–side point is the first member of the pair. Thus the relation
S on Figure 1.3 is represented by a collection of pairs drawn as line segments
connecting points.

If R is a binary relation then instead of writing 〈a, b〉 ∈ R, we will often
write R(a, b) or a R b (the latter form is called infix notation). a 6R b stands for
〈a, b〉 /∈ R.
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Figure 1.3: Binary relation

For two binary relations R and S, their composition R ◦ S is defined by

R ◦ S
def
= {〈a, b〉 : 〈a, c〉 ∈ R and 〈c, b〉 ∈ S for some set c} . (1.11)

See the illustration of R ◦ S on Figure 1.4. The converse (or inverse) R` of R is:

R` def
= {〈a, b〉 : 〈b, a〉 ∈ R} . (1.12)

If A is a set then the identity relation IdA on A is defined as follows:

IdA
def
= {〈a, a〉 : a ∈ A} . (1.13)

When there is no danger of confusion, we omit the subscript A from IdA and write
simply Id .

On Figure 1.4 we illustrate composition, converse and identity. On that figure,
A = 4 = {0, 1, 2, 3} and R,S ⊆ A×A.

Let R ⊆ U ×U for some set U . R is called an equivalence relation iff (i)–(iii)
below hold.

(i) R is reflexive, that is, IdDom(R)∪Rng(R) ⊆ R;

(ii) R is symmetric, that is, R` ⊆ R;

(iii) R is transitive, that is, R ◦R ⊆ R.

(You may want to consult Exercise 1.3.1 1,2,3 at this point.)

An equivalence relation R is called an equivalence relation on U iff U =
Dom(R) ∪Rng(R).
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Figure 1.4: Operations on relations

For every u ∈ U we let

u/R
def
= {v ∈ U : 〈u, v〉 ∈ R} . (1.14)

The set u/R is called the R–equivalence class of u. Any element of an equivalence
class is called a representative (or representing element) of that class.

Exercise 1.2.1. (uniqueness of representative) Prove that if v ∈ u/R for some equiv-
alence relation R and u, v ∈ Dom(R), then v/R = u/R. That is, an equivalence
class is determined by its arbitrary representative.

Exercise 1.2.2. (partition) Prove that if R is an equivalence relation on U then
R determines a partition of U , that is, there are sets Ui (i ∈ I for some set I)
satisfying (i)–(iii) below.

(i)
⋃
{Ui : i ∈ I} = U

(ii) (∀i, j ∈ I)(i 6= j =⇒ Ui ∩ Uj = ∅)

(iii) (∀u1, u2 ∈ U)
(
〈u1, u2〉 ∈ R⇐⇒ (∃i ∈ I)(u1 ∈ Ui and u2 ∈ Ui)

)
.

Hint: Use the equivalence classes defined above.

Let R be an equivalence relation on U . Then the partition U/R determined
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by R is defined as

U/R
def
= {u/R : u ∈ U} . (1.15)

A binary relation f is called a function iff (〈a, b〉, 〈a, c〉 ∈ f =⇒ b = c).
E.g., IdA defined above is a function for any set A; on Figure 1.4, R and Id 4 are
functions, but S, R◦S, R` are not functions. For any x ∈ Dom(f) of a function f ,
f(x) denotes the unique element y for which 〈x, y〉 ∈ f . Instead of f(x), sometimes
we write fx or fx. When defining a function, say f , we often use the following
notation.

f = 〈f(x) : x ∈ Dom(f)〉 = 〈f(x)〉x∈Domf (1.16)

and some slight variations of these. An example for using this notation: Consider

the traditional definition “f is a function, Dom(f) = ω, and (∀n ∈ ω)f(n)
def
=

n+ 3”. Instead of this formulation we will write concisely “f = 〈n+ 3 : n ∈ ω〉”.

The similar notation g
def
= 〈n + 3 : n ∈ ω and n is even〉 says that g is the

restriction of the function 〈n+ 3 : n ∈ ω〉 to the even numbers. That is,

〈n+ 3 : n ∈ ω, n is even〉 = {〈2k, 2k + 3〉 : k ∈ ω} . (1.17)

For a function f and sets A,B, “f : A −→ B” means that Dom(f) = A and

Rng(f) ⊆ B. Sometimes we write A
f
−→ B instead of f : A −→ B. If f : A −→ B

and C ⊆ A then fdC denotes the restriction of f to C, that is,

fdC
def
= 〈f(x) : x ∈ C〉 = {〈x, y〉 ∈ f : x ∈ C} . (1.18)

A function f : A −→ B is called surjective (or onto) iff Rng(f) = B; injective
(or one–one) iff (∀a, b ∈ A)(f(a) = f(b) =⇒ a = b); bijective iff it is both surjective
and injective. We introduce the following notation for surjective, injective and
bijective functions. Each of

f : A � B and A
f
� B (1.19)

denotes that f is a surjective function (surjection) from A onto B; each of

f : A � B and A
f
� B (1.20)

denotes that f is an injective function (injection) from A into B; finally, each of

f : A �→ B and A
f

�→ B (1.21)
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denotes that f is a bijective function (bijection) from A otno B.

Let A,B be sets. Then

AB
def
= {f : f is a function with Dom(f) = A and Rng(f) ⊆ B} . (1.22)

Thus ∅B = {∅} = 1 and A∅ = ∅ if A 6= ∅.

If f ∈ AB and g ∈ BC for some sets A,B,C then, since functions are binary
relations, it is meaningful to compose them using relation composition ◦ as defined
by (1.11). It is easy to see that

• f ◦ g is again a function,

• (f ◦ g)(x) = g(f(x)) for every x ∈ Dom(f),

• f ◦ g : A −→ C.

Besides relation composition f ◦g, we will speak about their function–composition
as well. The function–composition fg of f and g is defined as

fg
def
= g ◦ f . (1.23)

Hence (g ◦ f)(x) = (fg)(x) = f(g(x)).

Exercise 1.2.3. Prove that if both f and g are injective then so is f ◦ g. Assume
f ◦ g is injective. Does this imply that so is f? Does this imply that so is g?

Let f be a function and X ⊆ Dom(f). Then the f–image f [X ] of X taken
pointwise is defined as

f [X ]
def
= {f(y) : y ∈ X} . (1.24)

Exercise 1.2.4. (1) In our notation, we deliberately distinguish between f [X ] and
f(X) because it may happen that both X ⊆ Dom(f) and X ∈ Dom(f), but
f [X ] 6= f(X). Define a function f and a set X such that both f [X ] and f(X)
exist and they differ.
Hint: If Dom(f) = ω then 3 ∈ ω and 3 = {0, 1, 2} ⊆ ω is a good start.

(2) Prove that f [X ] = Rng(fdX).

Synonyms for “function” are operation, mapping, map, system and family .
The word “system” and “family” are used when we, intuitively, think of the values
of the function as collections of elements. E.g., we speak sometimes about a system
or family 〈Ai : i ∈ I〉 of sets with index set I — this is just a function with domain
I .

Sometimes we also call functions sequences , we will return to this in section
1.4.
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1.3 Orderings, ordinals, cardinals

Let R ⊆ A×A for some set A. This binary relation R is called a partial ordering of
A iff R is transitive, reflexive and anti–symmetric (i.e., R ∩R` = Id). E.g., every
set of sets is partially ordered by the inclusion relation ⊆. Partial orderings are
often denoted by 6. Instead of a 6 b, we sometimes write b ≥ a. Both a < b and
b > a abbreviate (a 6 b and a 6= b). If 6 is a partial ordering of some nonempty
set A then the pair 〈A,6〉 is called a partially ordered set (poset for short).

Let 〈A,6〉 be a poset, and let a, b ∈ A. We say that b covers a, in symbols
a −< b, iff a < b and {c ∈ A : a < c < b} = ∅. By drawing the covering relation
−< in the style the relation S was drawn on Figure 1.3 or all relations on Figure
1.4, it is possible to draw diagrams of finite posets and certain infinite posets (this
technique has been developed and successfully used in lattice theory). In more
detail, a diagram of a poset 〈A,6〉 is obtained by arranging the elements of A as
points on the plane in such a way that if a < b then the point representing b is
above the point representing a. Then a line segment is drawn between any two
points a and b whenever a −< b or b −< a. On Figure 1.5 we give examples for
poset diagrams.

By a linear (or simple or total) ordering of a set A we mean a partial ordering
R of A which is connected (i.e., A × A ⊆ R ∪ R`). If 6 is a linear ordering of
A then 〈A,6〉 is called a linearly ordered set . By a well–ordered set we mean a
linearly ordered set 〈A,6〉 such that every nonempty subset B ⊆ A has a least
element (` ∈ B is a least element of B iff ` 6 x for all x ∈ B). A subset C ⊆ A
of a poset 〈A,6〉 is called a chain in the poset iff 〈C,6 ∩(C × C)〉 is a linearly
ordered set. By an upper bound of a chain C we mean an element u ∈ A for which
c 6 u for every c ∈ C.

Zorn’s Lemma is the statement that if 〈A,6〉 is a poset in which every chain has
an upper bound, then 〈A,6〉 has a maximal element (m is a maximal element of
〈A,6〉 iff (m ∈ A and m 6 x ∈ A) implies m = x).

We take this statement as an axiom.

Recall from section 1.1 that by the successor S(x) of a set x we mean x∪{x}.
Ordinals are generated from the empty set ∅ using the operations of successor S
and union

⋃
(the union of any set of ordinals is an ordinal). The finite ordinals

are the natural numbers : 0 = ∅, 1 = S(∅), 2 = S(S(∅)), . . . . Every set of ordinals
is well–ordered by the following ordering 6. For any ordinals α and β we set α 6 β
iff (α = β or α ∈ β). Then 0 6 1 6 2 . . . , and we have n = {0, 1, . . . , n − 1} for
each finite ordinal n ≥ 1. The least infinite ordinal is

ω =
⋃

{α : α is a finite ordinal} = {0, 1, 2, . . .} .

Now, clearly, n ∈ ω iff n 6 ω for any set n. (Cf. end of section 1.1)
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{0, 1}, IdA ∪ {〈0, 1〉}
¸
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{0, 1, 2}, IdB ∪ {〈0, 1〉, 〈0, 2〉, 〈1, 2〉}
¸
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Figure 1.5: Orderings
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Two sets A and B are said to have the same cardinality iff there is a bijection
from A onto B. The cardinals are those ordinals κ for which we have that no
ordinal β < κ has the same cardinality as κ. The finite cardinals are just the finite
ordinals, and ω is the smallest infinite cardinal .

The Well Ordering Theorem is the statement that every set has the same cardi-
nality as some ordinal.

We take it as an axiom.

The cardinality of a set A is the (unique) cardinal κ such that A and κ have
the same cardinality. We denote the cardinality of A by |A|. We say that A is finite
iff |A| is a finite cardinal, that is, iff |A| ∈ ω that is, iff |A| < ω.

The power set P(A) of a set A is defined as

P(A)
def
= {B : B ⊆ A} .

P(A) has the same cardinality as A2 (hence the term “power set”).

We do not recall the operations of multiplication, addition and exponentia-
tion of cardinals. Instead, we recall some simple facts concerning these, as follows.

• Addition and multiplication of cardinals are rather trivial when infinite
cardinals are involved. For example, if κ, λ are cardinals, 0 < κ 6 λ and ω 6 λ
then κ+ λ = κ · λ = λ.

• For any sets A and B, |A| · |B| = |A×B|, |A|+ |B| = |A ∪ B| if A and B
are disjoint, and |A||B| = |BA|.

Exercise 1.3.1. Let R ⊆ A×A for some set A. Prove equivalences (1)–(5) below.

1. R is reflexive iff x R x for every x ∈ A.

2. R is symmetric iff x R y implies y R x for every x, y ∈ A.

3. R is transitive iff x R y and y R z imply x R z for every x, y, z ∈ A.

4. R is connected iff for all x, y ∈ A, x R y or y R x.

5. R is anti–symmetric iff x R y implies y 6R x for all x, y ∈ A.

1.4 Sequences

As we already mentioned, functions are sometimes called sequences. In more detail,
if I = Dom(f) then we sometimes call f an I–sequence. In particular, if Dom(f) =
ω then we call f an ω–sequence; and if Dom(f) = n for some n ∈ ω then we call
f an n–sequence or a sequence of length n. A function f is called a finite sequence
iff it is an n–sequence for some n ∈ ω. (The latter two examples, ω–sequences and
finite sequences, motivate the use of the word “sequence” — an ω–sequence or
n–sequence can really be pictured as a concrete sequence or series 〈f0, f1, f2, . . .〉
resp. 〈f0, f1, f2, . . . , fn−1〉 of values.)



22 Chapter 1. Notation, Elementary Concepts

For any set X , X∗ denotes the set of all finite sequences over X , defined as
follows:

X∗
def
= {f : Dom(f) ∈ ω and Rng(f) ⊆ X} =

⋃

n∈ω

(
nX

)
.

Throughout this book, we identify finite sequences of length n with n–tuples dis-
cussed in section 1.1. This convention will make our text simpler, and will cause
no confusion. Accordingly, we will use the same notation for sequences of length n
and n–tuples, e.g. 〈a0, . . . , an−1〉 may denote an n–tuple as well as an n–sequence.
Sometimes we will use the “vector notation” ā for 〈a0, . . . , an−1〉.

1.5 Direct product of families of sets

In section 1.2 we introduced the direct product of two sets. Generalizing this
concept, we define the Cartesian or direct product ΠA of a system of sets A =
〈Ai : i ∈ I〉 as follows.

A function f with
(
Dom(f) = I and (∀i ∈ I)f(i) ∈ Ai

)
is called a choice

function for A. Now

ΠA = Π〈Ai : i ∈ I〉 = Πi∈IAi
def
= {f : f is a choice function for A} .

See Figure 1.6.
A variant of Figure 1.6 is Figure 1.7. In the latter, a set is represented by a

(vertical) line segment instead of an oval shape (as in Figure 1.6). On Figure 1.7,
the index set I is represented by a horizontal line.

Notice that if (∃i ∈ I)Ai = ∅ then ΠA = ∅. Also, if I = ∅ then |ΠA| = 1 (the
only element of ΠA being the empty function ∅).
A köv. ábra balra kilóg az ablakból!

Exercise 1.5.1. Let 〈Ai : i ∈ I〉 be a system of sets. Assume that (∀i ∈ I)Ai = B
for some set B. Prove that Π〈Ai : i ∈ I〉 = IB.

In this context, we call IB the (Cartesian or) direct power of the set B. In
particular, if n ∈ ω and U is any set then Π〈U : i < n〉 = nU . For Π〈U : i < n〉
we sometimes write U × · · · × U

︸ ︷︷ ︸

n-times

.

Let A = 〈Ai : i ∈ I〉 be a system of sets, and let j ∈ I . Then the j–
th projection function (or simply, j–th projection) pj : ΠA −→ Aj is defined as
follows:

(∀f ∈ ΠA) pj(f)
def
= f(j) .

The Axiom of Choice (AC for short) is the statement that if 〈Ai : i ∈ I〉 is any
system of sets with Ai 6= ∅ for all i ∈ I then Πi∈IAi 6= ∅.

We take this as an axiom. We note that AC, Zorn’s Lemma and the Well
Ordering Theorem are (mutually) equivalent. (The proof is not trivial.)



1.5. Direct product of families of sets 23

r
r
r

r
r
r

r
r
r

�����

XXXXXX

XXXXXX

�����p p pp p
p p p

p p p ����

p p p
p p pp p p

p p p
∈ ΠA

A1 A2 Ai

Figure 1.6: Drawing Cartesian (direct) products 1

p p p
1 2 i I

r
r
r

r
r
r

r
r
r

�����

XXXXXX

XXXXXX

�����p p pp p
p p p

p p p ����

p p p
p p pp p p

p p p

A1 A2 Ai

Figure 1.7: Drawing direct products 2



24 Chapter 1. Notation, Elementary Concepts

1.6 Relations of higher ranks

In this section we generalize the concept of a binary relation introduced in section
1.2.

If n ∈ ωr {0} and R is a set of n–sequences then we say that R is an n–ary
relation. We refer to this n as the rank or arity of R. Clearly, an n–ary relation
R is a subset of the Cartesian product U0 × U1 × · · · × Un−1 of the following sets
Ui (i < n):

U0 = {u0 : 〈u0, u1, . . . , un−1〉 ∈ R for some u1, . . . , un−1} ,

U1 = {u1 : 〈u0, u1, . . . , un−1〉 ∈ R for some u1, . . . , un−1} ,

...

Un−1 = {un−1 : 〈u0, u1, . . . , un−1〉 ∈ R for some u1, . . . , un−1} .

Also, R ⊆ nU for U =
⋃
{Ui : i < n}. It is clear that a binary relation as defined

previously is a 2–ary relation in the present sense.

If n ∈ ω and U is a set then a function f with Dom(f) = nU and Rng(f) ⊆ U
is called an n–ary function (or operation) on U , and we say that the rank (or arity)
of the function f is n. We often identify n–ary functions with n+ 1–ary relations,
associating to an n–ary function f the n+ 1–ary relation {〈u0, u1, . . . , un−1, un〉 :
〈〈u0, u1, . . . , un−1〉, un〉 ∈ f}.

A synonym for “1–ary function (relation)” is “unary function (relation)”.
Similarly, for “2–ary” and “3–ary” we say “binary” and “ternary”, respectively.

If R is a unary relation then we identify R with the set {u : 〈u〉 ∈ R}.
Similarly, if f is a 0–ary function on some nonempty set U then f : 0U −→ U
(where 0U = {∅} = 1), and we identify f with f(∅) ∈ U . 0–ary functions are called
constants (or constant functions).

For being able to handle relations of different ranks in a unified framework,
we will need so called ω–ary relations , too. R is called an ω–ary relation iff R ⊆ ωU
for some set U . Examples for ω–ary relations are:

1. The set of all convergent ω–sequences over R (in the usual sense of calculus)
is clearly an ω–ary relation.

2. The universe of an ω–dimensional vector space is an ω–ary relation. So are
the universes of its subspaces.

3. If U is a set then ωU is called the Cartesian space with base U and dimension
ω. If p ∈ ωU , we set

ωU (p) def
= {q ∈ ωU : {i ∈ ω : qi 6= pi} is finite} ,
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and we call ωU (p) the weak Cartesian space with base U and dimension ω
determined by p. Clearly, ωU and ωU (p), for any U and p ∈ ωU , are ω–ary
relations.

After having introduced classes at the end of section 1.1, we always spoke
about sets and did not mention classes. However, many of the above constructs
generalize from sets to proper classes, and we will need some of these in this book.
For example, it is meaningful to speak about functions and relations defined on
proper classes instead of on sets. Also, sometimes we want to consider ordered
tuples 〈A,B,C, . . .〉, where some of A,B,C, . . . may be proper classes. We will use
such general constructs the way it is customary in the literature of algebra and
model theory. In this book we do not want to go into explaining how to make sure
that we cause no set theoretic problems when using such general constructs. (The
interested reader can find a compact but thorough exposition to the basics of set
theoretic foundations in Chang–Keisler [26, Appendix A].)

1.7 Closure systems

In this section we introduce the following concepts: closure operator, closure sys-
tem, and Galois connection. We will give a very short summary of these, in par-
ticular, we will look into some basic connections between them. These concepts
will be very useful as they occur at many places in our study of algebraic logic —
as well as in universal algebra.

Definition 1.7.1. (closure operator) Let H be an arbitrary set and c : P(H) −→
P(H). We call c a closure operator (over H) iff conditions (i)–(iii) are satisfied by
c, for every X,Y ⊆ H .

(i) X ⊆ c(X) c is extensive,

(ii) X ⊆ Y =⇒ c(X) ⊆ c(Y ) c is isotone,

(iii) cc(X) = c(X) c is idempotent .

We call c(X) the closure (or c-closure) of X . If X = c(X) the we say that X is a
closed set .

Examples 1.7.2. (closure operators)

(1) The function c : P(H) −→ P(H) defined by

c(X)
def
= H for every X ⊆ H

is clearly a closure operator.
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(2) The ceiling function ce : R −→ R (R is the set of all real numbers) is defined
as follows. For every r ∈ R, ce is the smallest integer not smaller than r. This
ce function is again a closure operator.

(3) Later we will see a number of examples for closure operators, see to be filled
in.

Definition 1.7.3. (closure system) By a closure system we mean a pair 〈H,D〉 where
H is an arbitrary set and D ⊆ P(H) is such that

(∀L ⊆ D)
⋂

L ∈ D .

The elements of D are called closed sets .

If 〈H,D〉 is a closure system then H ∈ D because ∅ ⊆ D and H =
⋂
∅ ∈ D.

Lemma 1.7.4. (closure operators and closure systems)

1. (1) If c is a closure operator over H then 〈H, {X ⊆ P(H) : c(X) = X}〉 is
a closure system.

2. (2) If 〈H,D〉 is a closure system then {〈X,
⋂
{Y ∈ D : X ⊆ Y }〉 : X ⊆ H}

is a closure operator.

3. (3) Let us denote the closure system associated to c in (1) above by c∗. Let
us denote the closure operator associated to 〈H,D〉 in (2) by 〈H,D〉∗. Then

c∗∗ = c and 〈H,D〉∗∗ = 〈H,D〉

for every closure operator c and closure system 〈H,D〉.

Proof. Left to the reader. �

The concepts closure operator, closure system and Galois connection can be
defined in a more abstract way, where the rôles of powersets used here are taken
by (abstract) posets. We will look into this later reference to be filled in.

These concepts make sense even when H and D are proper classes instead
of sets. Just one has to be careful with the formulation, because P(H) or P(D)
may not exist. So one has to phrase everything in terms of subclasses .

To be continued!!

1.8 First–order logic

In this section we recall the definition of first–order logic. We assume that the
reader is familiar with this concept, we recall it here only for fixing our notation.

Definition 1.8.1. (first–order logic)

(1) We call a function t a similarity type (or signature or ranked alphabet) iff
(i)–(iii) below hold.
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(i) Rng(t) ⊆ ω ;

(ii) Dom(t) = Fnst

.
∪ Rlst for some sets Fns t and Rlst ;

(iii) If r ∈ Rlst then t(r) 6= 0.

The sets Fnst and Rlst are called, respectively, the set of function symbols or
operation symbols and the set of relation symbols of t. For any s ∈ Dom(t), t(s)
is called the rank or arity of s; if t(s) = 0 then we call s a constant symbol ; if
s ∈ Fnst then we call s a unary (binary) function symbol iff t(s) = 1 (t(s) = 2).

From now on until the end of this section, t stands for an arbitrary but fixed
similarity type.

(2) Let V be an arbitrary set but such that V ∩ Dom(t) = ∅. We define the set
Trmt(V ) of terms of similarity type t with variables from V and the set Fml t(V )
of formulas of similarity type t with variables from V by recursion, as follows.
Trmt(V ) is defined to be the smallest set satisfying (i) and (ii) below, and Fml t(V )
is defined to be the smallest set satisfying (iii) and (iv) below.

(i) V ∪ {c ∈ Fnst : t(c) = 0} ⊆ Trm t(V ).

(ii) {f(τ1, . . . , τn) : f ∈ Fnst, t(f) = n 6= 0 and τ1, . . . , τn ∈ Trmt(V )} ⊆
Trmt(V ).

(iii) {r(τ1, . . . , τn) : r ∈ Rlst, t(r) = n and τ1, . . . , τn ∈ Trmt(V )} ∪ {τ = σ :
τ, σ ∈ Trmt(V )} ⊆ Fml t(V ).

The formulas belonging to the left–hand–side set are called atomic formulas .

(iv) {¬ϕ : ϕ ∈ Fml t(V )}∪{(ϕ∧ψ) : ϕ, ψ ∈ Fml t(V )}∪{∃vϕ : v ∈ V and ϕ ∈
Fml t(V )} ⊆ Fml t(V ).

The logical connectives ¬,∧, ∃v are called, respectively, negation, disjunc-
tion and existential quantifier , and are read as not, and, there exists v such that ,
respectively.

From Trmt(V ) and Fml t(V ) we will omit t or V and write simply, e.g., Trmt,
Fml(V ) or even Trm and Fml when there is no danger of confusion.

(3) By a model of similarity type t we mean a pair 〈M,m〉 satisfying (i)–(ii) below.

(i) M is a non–empty set (called the universe of 〈M,m〉).

(ii) m is a function with Dom(m) = Dom(t) such that

• if c ∈ Fnst and t(c) = 0 (that is, if c is a constant symbol) then m(c) ∈
M (that is, m(c) is a constant on M);

• if f ∈ Fnst and t(f) = n 6= 0 then m(f) : nM −→M ;

• if r ∈ Rlst and t(r) = n then m(r) ⊆ nM .
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The functionsm(c),m(f) and the relationsm(r) are called the interpretations
of the symbols c, f and r. They are also referred to as fundamental operations or
fundamental relations , respectively.

Concerning models, we use the following notation. The meta–variables we
use for models are the German capitals M,N,W, and these with indices like e.g.
M3. The universe of a model is denoted by the corresponding Roman capital, that
is, the universes of M,N,W,M3 are respectively M,N,W,M3. If M = 〈M,m〉,

f ∈ Fnst, r ∈ Rlst then fM and rM stand, respectively, for m(f) and m(r). We

may denote M as 〈M, fM, rM〉f∈Fns t,r∈Rlst
as well. If t is finite, for example

t consists of a function symbol + and a relation symbol 6, then we sometimes

denote M as 〈M,+M,6M〉. The class of all models of similarity type t is denoted
by Modt.

(4) Let M ∈ Modt and let V be an arbitrary set of variables (e.g., V = {vi : i ∈
ω}).

A function k : V −→M is called a valuation of the variables from V in M.
Let k be an arbitrary but fixed valuation of the variables in M. We define

when a formula ϕ ∈ Fml t(V ) is true in M at valuation k of the variables , in
symbols M |= ϕ[k], by recursion, as follows. First we define the value τM[k] of any
term τ ∈ Trmt(V ) at k in M as:

• vM[k]
def
= k(v) if v ∈ V ,

• cM[k]
def
= cM if t(c) = 0,

• (f(τ1, . . . , τn))
M def

= fM
(
τM
1 [k], . . . , τM

n [k]
)

if f ∈ Fnst, t(f) = n, τ1, . . . , τn ∈
Trmt.

Now

• for atomic formulas r(τ1, . . . , τn),

M |= r(τ1, . . . , τn)[k]
def
⇐⇒ 〈τM

1 [k], . . . , τM
n [k]〉 ∈ rM ,

for atomic formulas τ = σ,

M |= τ = σ[k]
def
⇐⇒ τM[k] = σM[k] ,

• for negated formulas ¬ϕ,

M |= ¬ϕ[k]
def
⇐⇒ it is not the case that M |= ϕ[k] ,

• for conjunctions (ϕ ∧ ψ),

M |= (ϕ ∧ ψ)[k]
def
⇐⇒ M |= ϕ[k] and M |= ψ[k] ,
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• for quantified formulas ∃vϕ,

M |= ∃vϕ[k]
def
⇐⇒ M |= ϕ[k′] for some valuation k′

such that kd(V r {v}) = k′d(V r {v}) .

By these, M |= ϕ[k] has been defined for any ϕ ∈ Fml t.

We say that ϕ is valid in M or that M is a model of ϕ, in symbols M |= ϕ,
iff M |= ϕ[k] for every valuation k.

Notation: If M ∈ Modt, k : V −→ M , ϕ ∈ Fml t(V ), and vi1 , . . . , vin
are all the

variables occurring freely in ϕ then, instead of M |= ϕ[k] we sometimes write
M |= ϕ[k(vi1), . . . , k(vin

)].

(5) Let K ⊆ Modt and Σ ⊆ Fml t.
If ϕ ∈ Fml t and M ∈ Modt then

K |= ϕ abbreviates that M |= ϕ for every M ∈ K, and

M |= Σ abbreviates that M |= ϕ for every ϕ ∈ Σ .

K |= Σ means that M |= ϕ for every M ∈ K and ϕ ∈ Σ.

The first–order theory of K is defined as:

Th(K)
def
= {ϕ ∈ Fml t : K |= ϕ} .

The class of models of Σ is defined as:

Mod(Σ)
def
= {M ∈ Modt : M |= Σ} .

(6) If Σ ⊆ Fml t and ϕ ∈ Fml t then we say that ϕ is a semantical consequence of
Σ, in symbols Σ |= ϕ, iff

for every M ∈ Modt, M |= Σ =⇒M |= ϕ .

If Σ is a singleton, that is if Σ = {ψ} for some ψ ∈ Fml t then we simply write
ψ |= ϕ instead of {ψ} |= ϕ.

(7) We will use the following abbreviations:

(ϕ ∨ ψ) stands for ¬(¬ϕ ∧ ¬ψ),
(ϕ→ ψ) stands for ¬ϕ ∨ ψ,
(ϕ↔ ψ) stands for (ϕ→ ψ) ∧ (ψ → ϕ),
∀vϕ stands for ¬∃v(¬ϕ).



30 Chapter 1. Notation, Elementary Concepts

The derived logical connective ∨ is called conjunction and is read as or ; → is
called implication and is read as implies ; ↔ is called equivalence and is read as if
and only if or iff for short; ∀v is called universal quantifier and is read as for all
v such that .

(8) We define some distinguished subclasses of Fml t. We assume that the reader
is familiar with the concepts of “free occurrence of a variable in a formula”, and
“a variable occurs under the scope of a quantifier”.

• ϕ ∈ Fml t is called a sentence iff every variable v occurring in it occurs under
the scope of a quantifier.

• ϕ ∈ Fml t is called a quantifier–free formula iff no quantifiers occur in ϕ. ϕ is
called a universal formula iff it is of form Q0 . . . Qnψ where ψ is quantifier–
free, n ∈ ω, Qi(i 6 n) is a universal quantifier (∀v for some v ∈ V ).

• ϕ ∈ Fml t is called an equation iff it is of the form σ = τ , where σ, τ ∈ Trm t.

• ϕ ∈ Fml t is called a quasi–equation iff it is of the form

(e1 ∧ · · · ∧ en)→ e ,

where e, e1, . . . , en (n ∈ ω) are equations.

If M is a model, then sometimes we say that “ϕ is a formula in the language
of M”. By this we mean that ϕ is a first–order formula of similarity type of that
of M.
A következő változik az új Closure systems részfejezet miatt!

Exercise 1.8.2. Prove that K ⊆ Mod(Th(K)) for any class K of similar models.



Chapter 2

Basics from Universal Algebra

2.1 Examples for algebras

Informally speaking, by an algebra we mean a model in which there are no re-
lations. In more detail, recall from Definition 1.8.1 (1) (in section 1.8) that, in
general, the domain of a similarity type consists of both function symbols and
relation symbols. By an algebraic similarity type we mean a similarity type the
domain of which does not contain any relation symbols (i.e., the set of relation
symbols is empty), but it may contain function symbols.

To distinguish between algebras and arbitrary models in our notation, for
denoting algebras, we use German capitals from the beginning of the alphabet, e.g.
A,B,C,D; while M,N,W stand for models of a possibly non–algebraic similarity
type. When we deal with algebras, we prefer using X = {xi : i ∈ ω} for our set of
variables of the first–order language of algebras, while in case of general models,
we prefer using the set of variables V = {vi : i ∈ ω}. Otherwise we use the
notation introduced for models in case of algebras as well (cf. e.g. our notational
conventions in Definition 1.8.1 (3)). Thus if A is an algebra of similarity type t then
A = 〈A, fA〉f∈Dom(t), further we call A the universe of A, and fA a fundamental

operation of A or the interpretation of f in A, etc. In section 2.4, F will also denote
an algebra (with universe F ).

Convention 2.1.1. Throughout the rest of this chapter, unless otherwise specified,
by a similarity type we always mean an algebraic one, that is, one the set of relation
symbols of which is empty.

Definition 2.1.2. (similarity class etc.)

(i) Let t be an arbitrary (algebraic) similarity type. Then the similarity class
Algt associated to t is defined as follows.

Algt
def
= {A : A is an algebra of similarity type t} .
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Figure 2.1: Algebras with one unary operation

(ii) We say that A and B are similar iff both A and B belong to the same
similarity class (Algt for some t).

(iii) Let A be an algebra, with universe A. We say that A is finite (infinite) iff
|A| < ω (|A| > ω). We say that A is trivial iff |A| = 1.

Example 2.1.3. (unary- and mono-unary algebras) By a unary algebra we mean one
in the similarity type of which only unary operation symbols occur. An algebra is
called mono-unary iff its similarity type consists of one unary operation symbol
only. Here are four examples for mono-unary algebras.

Let t = {〈s, 1〉}, that is, t consists of one unary function symbol. The algebras
A,B,C,D illustrated on Figure 2.1 belong to Algt.
The definition of A = 〈A, sA〉 is this:

A
def
= Z (the set of all integers), and (∀z ∈ Z)sA(z)

def
= z + 1 .

B
def
= 〈ω, sB〉, where sB(n) = sA(n) for every n ∈ ω. C

def
= 〈6, sC〉, where sC(n) =

n+ 1 (mod 6). D is a trivial algebra of similarity type t.

Example 2.1.4. (groupoids) Algebras with just one binary fundamental operation
are referred to as groupoids . Our next example is a groupoid.

Let p = {〈+, 2〉}. Then 〈Z,+Z〉 with +Z the usual addition on the integers,
and A given on Figure 2.2 clearly belong to Algp.

Example 2.1.5. (semigroups) Let + be a binary operation symbol (as in Example
2.1.4). The following equation (a) expresses a very common property of binary
operations + called associativity (we use infix notation).

(a) (a+ b) + c = a+ (b+ c).
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A = 〈3,+(mod 3)〉

q q

q

0 1

2

A

addition table for A

2 2 0 1

1 1 2 0

0 0

0

1

1

2

2+A

Figure 2.2: An algebra with one binary operation

A groupoid with an associative operation is called a semigroup. It is easy to
see that A = 〈3,+(mod3)〉 on Figure 2.2 is a semigroup. Other simple examples
for semigroups are:

• +A is a constant operation, that is,

a+A b = c for some fixed c ∈ A ,

for every a, b ∈ A;

• a+A b = a for every a, b ∈ A; or similarly, a+A b = b for every a, b ∈ A.

Frequently used examples for semigroups are semigroups of words with con-
catenation. Here is the definition:

For a fixed set H , called an alphabet in this context, H∗ denotes the set of
all finite sequences of elements of H , called words over H . That is,

H∗
def
=

⋃

n∈ω

(
nH

)
.

If n = 0 then 0H = {∅}. In this context, we usually write λ in place of ∅, and we
call λ the empty word .

Now, the universe of our semigroup is H∗, and the operation is concatenation,
usually denoted by a. If p, q ∈ H∗ then p = 〈a1, . . . an〉, q = 〈b1, . . . , bk〉 for some
n, k ∈ ω and a1, . . . an, b1, . . . , bk ∈ H .

p a q = 〈a1, . . . an〉
a 〈b1, . . . , bk〉 = 〈a1, . . . an, b1, . . . , bk〉

(
∈ n+kH

)
.

Clearly, 〈H∗,a〉 is a semigroup. We can get other semigroups of words by consid-
ering such subsets of H∗ which are closed under a.

Example 2.1.6. Let t = {〈g, 2〉, 〈f, 1〉, 〈c, 0〉}. Then

A = 〈Z ∪ {∞}, gA, fA, cA〉

given and illustrated on Figure 2.3 belongs to Algt.



34 Chapter 2. Basics from Universal Algebra

gA(x, y) = gA(y, x) =







∞ if ∞ ∈ {x, y}
x if x can be reached in finitely many

fA-steps from y.

cA =∞, fA(x) =

{
x+ 1 if x ∈ Z
x if x =∞,
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Figure 2.3: An algebra with 3 operations

Example 2.1.7. We define ba
def
= {〈∨, 2〉, 〈−, 1〉}. We call ba the similarity type of

Boolean algebras , we call the function symbols ∨ and − join and minus , respec-
tively. Next we define a distinguished subclass of Algba called the class of powerset
Boolean algebras . Recall from section 1.3 that for a set U , P(U) denotes the pow-
erset of U . For an arbitrary set U , we define the operation complementation U−

relative to U as follows. For any set X , U − (X)
def
= U r X . Often we omit the

subscript U from U−, and thus, ambiguously, we use the same (meta–)symbol −
for referring to both the function symbol minus (from ba) and the set theoretic
operation complementation. Context will help avoiding confusion.

Now, given a nonempty set U , the powerset Boolean algebra P(U) over U is
defined to be the algebra with universe P(U) and fundamental operations ∪ and
− (interpreting ∨ and −, respectively). Formally:

P(U)
def
= 〈P(U),∪,−〉 ,

P(U) is really an algebra, because P(U) is closed under both ∪ and − (i.e., for
any X,Y ∈ P(U), X ∪ Y,−X ∈ P(U)).

When working in the similarity class Algba , we use the following derived
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operations:

x ∧ y
def
= −(−x ∨ −y) (∧ is called meet)

0
def
= x ∧ −x (zero constant)

1
def
= x ∨ −x (one constant)

x− y
def
= x ∧ −y (binary minus operation).

It is easy to check that the corresponding “set–operations” in the powerset
Boolean algebra over some set U are as follows:

∨ ∪ 0 ∅

− U− 1 U

∧ ∩ − r .

This checking is left to the reader.

We will often use one more derived operation, called symmetric difference
and denoted by ⊗. In this case, similarly to the case of minus and complementa-
tion, we use the same symbol, moreover, the same name for these (corresponding)
operations both in the “abstract case” and in the “concrete case” (i.e., powerset
Boolean algebra case). This will not cause confusion, because context (and a very
strong representation/axiomatizability theorem to be formulated in section 2.7,
see Thm.2.7.5), will always help. The definition of symmetric difference is:

x⊗ y
def
= (x− y) ∨ (y − x) in the “abstract case”,

x⊗ y
def
= (xr y) ∪ (y r x) in powerset Boolean algebras.

We refer to the operations ∨,−,∧, 0, 1,⊗ (and also to others derivable from these)
as Boolean operations .

One more kind of examples for algebras are the ∪–reducts 〈P(U),∪〉 of pow-
erset Boolean algebras P(U). For any nonempty set U , the algebra 〈P(U),∪〉 and
the poset 〈P(U),⊆〉 are inter–definable in the following sense. In 〈P(U),∪〉, ⊆
can be defined using the fundamental operation ∪ as X ⊆ Y ⇐⇒ X ∪ Y = Y
for every X,Y ∈ P(U). On the other hand, ∪ can be captured in 〈P(U),⊆〉 as
X ∪ Y = sup⊆(X,Y ), where

sup⊆(X,Y ) = Z
def
⇐⇒ [Z ∈ P(U), X ⊆ Z, Y ⊆ Z, and

(∀W ∈ P(U))([X ⊆W& Y ⊆W ]⇒ Z ⊆W )] .

We showed that the partial order 〈P(U),⊆〉 is determined by the algebra 〈P(U),∪〉
and vice versa. This is why we use two ways of drawing powerset Boolean algebras:
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one indicating ∪, the other indicating ⊆ (the latter are poset diagrams augmented
with the function −, cf. the beginning of section 1.3 and Figure 1.5).

On Figures 2.4, 2.5, 2.6 and 2.7 you can see the powerset Boolean algebras

2
∼

def
= P(1), P(2), P(3) and P(4), respectively. (In the picture of P(4), we draw

only the poset diagram of it, omitting complementation − so that the picture be
less complicated.)

Remark 2.1.8. Recall that we introduced the logical connectives conjunction and
disjunction in Definition 1.8.1 (2) and (7) in section 1.8. Notice that we used
the same symbol ∨ for denoting both join and conjunction, and we used ∧ for
denoting both meet and disjunction. This is not just a coincidence. To the Boolean
operations one can naturally associate logical connectives. We will discuss this in
Chapters 4, 5.
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2.2 Building new algebras from old ones (operations on

algebras)

We want to learn new things from algebras via the old (Greek) method of analysis
and synthesis . When using this method, one investigates something in such a way
that first one takes the thing to (relatively) simple pieces; then one investigates the
simple pieces instead of the original thing; finally, one puts the new information ob-
tained about the simple pieces together, gaining this way new knowledge about the
whole thing itself. This method, when applied to algebras, assumes the existence
of certain ways of obtaining new algebras from already existing ones, namely, two
kinds of such ways: ways for gaining simpler algebras from existing ones, and ways
of building new, bigger, more complex algebras from existing ones. These ways
are performed by introducing operations on algebras . Next we will introduce such
operations. The ones we will call taking subalgebras , homomorphic images , form-
ing direct decompositions and subdirect decompositions give us algebras smaller,
simpler than their arguments, while direct products , subdirect products , reduced
products , ultraproducts produce bigger, more complex, more complicated algebras
from a number of simpler, smaller ones.

When decomposing or reducing algebras, it is very natural to ask the ques-
tion: Can we decompose an algebra to non–decomposable, irreducible, “atomic”
fragments? To answer this question, we will introduce minimal algebras, simple
algebras, directly indecomposable algebras and subdirectly irreducible algebras.

2.2.1 Subalgebra

Let f be an operation of rank n on the nonempty set A, that is, f : nA −→ A,
and let X ⊆ A. We say that X is closed w.r.t. f iff

f(a1, . . . , an) ∈ X for every a1, . . . , an ∈ X .

According to this, if f is a constant then X is closed w.r.t. f iff f ∈ X . Thus the
empty set ∅ is closed w.r.t. every operation on A of positive rank, but it is not
closed w.r.t. any operation of rank 0.
Example: taking A to be Z, we see that the set of odd integers is closed w.r.t.
multiplication but not w.r.t addition.

Definition 2.2.1. (subalgebra, subalgebra generated by a set etc.) Let A be an algebra
of similarity type t.

(i) Let X ⊆ A be a nonempty set. X is called a subuniverse of A iff X is closed
w.r.t. each fundamental operation of A.

(ii) An algebra B is called a subalgebra of A, in symbols B ⊆ A, iff A and B

are similar, B is a subuniverse of A, and for each function symbol f of A,
fB = fAdB. We say that B is a proper subalgebra of A iff it is a subalgebra
of A different from A, that is, iff B ⊆ A and B 6= A.
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(iii) Let X ⊆ A. The subuniverse of A generated by X is

SgA(X)
def
=

⋂

{B : X ⊆ B and B is a subuniverse of A} .

The subalgebra of A generated by X is

SgA(X)
def
=

〈

SgA(X), fAdSgA(X)
〉

f∈Dom(t)
.

(iv) If K is a class of similar algebras then

SK
def
= {B : B is a subalgebra of some A ∈ K} .

Clearly K ⊆ SK, because A is a subalgebra of itself, for any algebra A. If

K = {A} for some algebra A then SA
def
= S{A}, that is, SA denotes the set

of all subalgebras of A.

(v) We say that A is a minimal algebra iff A has no proper subalgebras (that is,
iff B ⊆ A =⇒ B = A for every algebra B).

Notice that, on Figure 2.1, C and D are minimal but A and B are not. We
note that A is minimal iff A is generated by any of its subsets.

Remark 2.2.2. The “act” of taking a subalgebra of an algebra A can be visualized
as “cutting out” a coherent part of A (not just any part!). If we imagine that the
operations of A are drawn as arrows (like on Figure 2.2.1 below), then we can say
that a part of A is coherent if no arrows “go out of” it.

Definition 2.2.3. (Boolean set algebra, SetBA) By a Boolean set algebra we mean
an element of the class

SetBA
def
= S{B : B is a powerset Boolean algebra} =

S{P(U) : U is a nonempty set} .

Exercise 2.2.4. How many subalgebras does P(3) have? (P(U) was defined in
Exercise 2.1.7 (4).) Answer the same question for P(1), P(2), P(4) instead of
P(3) as well.

Exercise 2.2.5. For any algebra A ∈ Algt and set X ⊆ A, we let

EA(X)
def
= X ∪ {fA(a0, . . . , at(f)−1) : f ∈ Dom(t), a0, . . . , at(f)−1 ∈ X} ,

EA
0 (X)

def
= X ,

EA
n+1(X)

def
= EA

(
EA

n (X)
)

for every n ∈ ω.

Prove that
SgA(X) =

⋃

{EA
n (X) : n ∈ ω} .
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Earlier we said that one possible step in the analytic investigation of algebras
is taking subalgebras. It is natural to ask how refined this analysis can be. The
following question is a special — and natural — one in this line. Is it true that
any algebra A has subalgebras of arbitrary sizes (smaller than the size of A)?
The following proposition gives an answer to this question for the case of infinite
algebras with finite similarity type.

Proposition 2.2.6. Let A ∈ Algt, |A| = κ > ω, |Dom(t)| < ω. Then

∀β
(
ω 6 β < κ =⇒ (∃B ∈ SA)|B| = β

)
.

Sketch of proof. Let A, t, κ be as in the formulation of the proposition. Let β be

such that ω 6 β < κ, and let G ⊆ A, |G| = β. We let B
def
= SgA(G). Then |B| = β

can be seen as follows.
First one shows that for any set X , |X | = β ⇒ |EA(X)| = β (EA(X) was

defined in Exercise 2.2.5). Here we use the condition |Dom(t)| < ω. From this
(∀n ∈ ω)|EA

n (G)| = β follows. Now, using Exercise 2.2.5,

|SgA(G)| = | ∪
{
EA

n (G) : n ∈ ω
}
| = ∪{β : n ∈ ω} = β . �

If A is a finite algebra then, in general, it is not true that for any k < |A|
there would exist a subalgebra B of A with |B| = k. For example, the powerset
Boolean algebra P(2) has no subalgebra B with |B| = 3 (cf. Exercise 2.2.4).

2.2.2 Homomorphic image

Definition 2.2.7. (homomorphism) Let t be an arbitrary similarity type, let A,B ∈
Algt, and let h : A −→ B be an arbitrary function.

(i) Let f ∈ Dom(t) (that is, f is a function symbol of t). The function h is said
to respect f iff

h
(
fA(a1, . . . , at(f))

)
= fB

(
h(a1), . . . , h(at(f))

)

for every a1, . . . , at(f) ∈ A.

(ii) The function h is called a homomorphism from A into B iff h respects every
function symbol f ∈ Dom(t).

(iii) Hom(A,B) denotes the set of all homomorphisms from A into B.

Exercise 2.2.8. Prove that for any set X , if A = SgA(X), h, k ∈ Hom(A,B) for
some algebra B, and h, k are such that hdX = kdX , then h = k.

We distinguish several kinds of homomorphisms and use the following nota-
tion for them. Each of

h : A −→ B, A
h
−→ B, h ∈ Hom(A,B)
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denotes that h is a homomorphism from A into B. Both

h : A � B and A
h
� B

denote that h is a one–one homomorphism (i.e., an injection) from A into B. We

call such homomorphisms embeddings . If A and B are such that A
h
� B for some

embedding h then we say that A is embeddable into B.
Similarly, both

h : A � B and A
h
� B

denote that h is a homomorphism from A onto B (i.e., a surjection), and in this
case we say that B is the homomorphic image of A under h, in symbols, B = h(A).
Further, each of

h : A �→ B, A
h

�→ B, A
h
∼= B

denotes that h is a one-one homomorphism from A onto B. We call such a homo-
morphism an isomorphism. A and B are said to be isomorphic, which we denote
by A ∼= B, iff there is an isomorphism from A onto B. A homomorphism from
A into A is called an endomorphism of A, and an isomorphism from A onto A is
called an automorphism of A.

Remark 2.2.9. Taking a homomorphic image of an algebra is a new example for
an operation on algebras. This operation produces a smaller, simpler algebra from
its argument (cf. the introductory paragraphs of the present section 2.2).

Taking a homomorphic image of an algebra A involves identifying certain
elements of A. In the homomorphic image, we cannot “see” certain details which
were still clearly “visible” in A. See Figure 2.2.2.

If h is a homomorphism from A into B, then a simplified image of A appears
in B. Putting this another way, magnified versions of certain parts of B can be
found in A (moving backwards via h). See Figure 2.2.2.

Definition 2.2.10. (I,H) For a class K of similar algebras,

IK
def
= {A : A is isomorphic to some B ∈ K}, and

HK
def
= {A : A is a homomorphic image of some B ∈ K} .

Similarly to our convention in case of S, we use the notation

HA
def
= H{A}, IA

def
= I{A} .

Principle of identifying isomorphic objects: According to our definition above, an
isomorphism is a one–one correspondence between the elements of two algebras
that respects the interpretation of each function symbol. Therefore, with regard
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to a host of properties, isomorphic algebras are indistinguishable from each other.
This applies to most of the properties with which we shall deal; if they are true in a
given algebra, then they are true for all isomorphic images or isomorphic “copies”
of that algebra as well. Such properties are called algebraic or abstract properties.

If ϕ is a property of algebras and we say that “property ϕ holds for algebra A

up to isomorphism” then we mean that ϕ holds for any isomorphic image of A. For
example, P(3) has 5 subalgebras but it has only 3 subalgebras up to isomorphism
(because some subalgebras of P(3) are isomorphic).

Definition 2.2.11. (Boolean algebra, BA) Recall the definition of Boolean set alge-
bras from Definition 2.2.3. The class BA of all Boolean algebras is defined as:

BA
def
= ISetBA .

2.2.3 A distinguished example: Lattices

To be written later.

2.2.4 Congruence relation

As we have seen, unlike the formation of subalgebras, the formation of homomor-
phic images involved external considerations. Despite of this, we will show that all
the homomorphic images of an algebra can still be captured completely internally,
too. To do this, we introduce the concepts of a congruence relation and that of a
quotient algebra.

Definition 2.2.12. (congruence relation, quotient algebra)

(i) Let A be a set and f an n–ary operation on A, that is, f : nA −→ A. Let θ ⊆
A×A be an equivalence relation. We say that θ has the substitution property
w.r.t. f iff for every a1, . . . , an, b1, . . . , bn ∈ A, the following implication holds.

(
∀i(0 < i 6 n⇒ ai θ bi)

)
=⇒ f(a1, . . . , an) θ f(b1, . . . , bn) .

(ii) Let A be an algebra. A binary relation θ ⊆ A × A is called a congruence
relation (or briefly, congruence) on A, iff it is an equivalence relation on A
and θ has the substitution property w.r.t. every fundamental operation of A.
Con(A) denotes the set of all congruence relations on A.

(iii) If A is an algebra then to every θ ∈ Con(A) we associate a new algebra A/θ
similar to A, as follows. The universe of A/θ is the partition A/θ determined
by θ (see the definition of a partition after Exercise 1.2.2 in subsection 1.2).
(Thus an element of the universe of A/θ is an equivalence class a/θ for some
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a ∈ A.) For any function symbol f of A of rank n, the fundamental operation
fA/θ of A/θ is defined as follows. For any a1, . . . , an ∈ A,

fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ .

The algebra A/θ is called the quotient algebra of A w.r.t. θ.

Exercises 2.2.13. Prove that the above definition of a quotient algebra is sound,
that is, the definition of its functions does not depend on the choice of the repre-
senting elements of the equivalence classes.

Notice that to every algebra A, Con(A) has a minimal element and a maximal
element w.r.t. inclusion ⊆ as ordering; these are IdA and A×A. Also notice that
〈Con(A),⊆〉 forms a lattice. Therefore, sometimes, we refer to Con(A) as the
congruence lattice of A.

Definition 2.2.14. (kernel) Let h ∈ Hom(A,B). Then

ker(h)
def
= {〈a, b〉 ∈ 2A : h(a) = h(b)}

is called the kernel of h.

Exercises 2.2.15. (kernels and homomorphisms) Let A be an arbitrary algebra.

(1) Prove that for any homomorphism h of A, ker (h) ∈ Con(A).

(2) Let θ be an equivalence relation on A. We define the function q : A −→ A/θ
as follows:

(∀a ∈ A)q(a)
def
= a/θ and ker(q) = θ .

Prove that if θ ∈ Con(A) then q ∈ Hom(A,A/θ).

(3) Let θ be an equivalence relation on A. Prove that θ ∈ Con(A) iff for each
function symbol f of A of rank n, {〈a1/θ, . . . , an/θ, f

A(a1, . . . , an)/θ〉 :
a1, . . . , an ∈ A} is an operation (an n–ary function) on A/θ.

The homomorphism q defined in Exercise 2.2.15 (2) is called the quotient
map from A onto A/θ.

Corollary 2.2.16. Con(A) = {ker(h) : h is a homomorphism with Dom(h) = A}.
�

Exercise 2.2.17. Prove that if A is an algebra and ∅ 6= C ⊆ Con(A) then
⋂
C ∈

Con(A).

Theorem 2.2.18. (Homomorphism Theorem) Let h : A � B, θ = ker (h), and
let q : A −→ A/θ be the quotient map. Then the unique function i : A/θ � B
satisfying q ◦ i = h is an isomorphism from A/θ onto B.

Proof. The proof is illustrated on Figure 2.2.4.
We define:

i(a/θ)
def
= h(a) for every a ∈ A.
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• This definition is sound: Suppose aθb. Then h(a) = h(b) since θ = ker(h).
Thus i(a/θ) = h(a) = h(b) = i(b/θ).

• i is one–one:

i(a/θ) = i(b/θ) =⇒ h(a) = h(b)

=⇒ a/θ = b/θ by ker (h) = θ.

• i is onto because h is onto, and q ◦ i = h.

• i is a homomorphism:

If f is an n–ary function symbol and a1, . . . , an ∈ A then

i
(

fA/θ(a1/θ, . . . , an/θ)
)

= i
(

fA/θ(q(a1), . . . , q(an))
)

by def. of q

= i
(
q
(
fA(a1, . . . , an)

))
q is a homom.

= h
(
fA(a1, . . . , an)

)
by q ◦ i = h

= fB (h(a1), . . . , h(an)) h is a homom.

= fB (i(q(a1)), . . . , i(q(an))) by q ◦ i = h

= fB (i(a1/θ), . . . , i(an/θ)) by def. of q .

�

Definition 2.2.19. (simple algebras) An algebra A is called simple iff A is non–trivial
and has no nontrivial homomorphic images. More formally: A is simple iff

|A| > 1 and ∀B(∀h ∈ Hom(A,B))(h is one-one or |Rng(h)| = 1) .

Smp denotes the class of all simple algebras. If K is a class of algebras then

SmpK = Smp(K)
def
= Smp ∩ K .

That is, Smp(K) is the class of all simple algebras of K.

Notice that A ∈ Smp⇐⇒ |Con(A)| = 2.

Exercises 2.2.20. (concerning simple algebras)

1. Every two–element algebra is simple. Thus so is 2
∼

(= P(1)), cf. Figure 2.4 in

section 2.1.

2. A on Figure 2.2 is simple.

3. Let A = 〈ω, pred〉, where (∀n > 0)pred(n) = n−1 and pred(0) = 0, see Figure
2.12.
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Figure 2.13: Cartesian product of two algebras

Then we have that

∀B

(

∀(A
h
� B)

)

(A ∼= B or |Rng(h)| = 1) . (2.1)

But A is not simple. Algebras satisfying condition (2.1) are called pseudo–simple
algebras.

2.2.5 Cartesian product, direct decomposition

Recall the concept of a Cartesian (or direct) product of a system of sets from
section 1.5. Now we introduce the direct product of a system of algebras. Before
giving the general definition, we describe some special cases.

Let A = 〈A, fA〉, B = 〈B, fB〉 be two algebras with f unary (i.e., fA : A→
A, fB : B → B). Their Cartesian (or direct) product A×B has universe A × B
and is defined as follows. A ×B = 〈A × B, f〉, where f(〈a, b〉) = 〈fA(a), fB(b)〉
for all 〈a, b〉 ∈ A×B. See Figure 2.2.5.

Firkás, csúnya ábra!
A straightforward generalization of a product of two algebras is a product of an
arbitrary sequence (or family) 〈Ai : i ∈ I〉 of algebras, as follows. Let Ai = 〈Ai, f

i〉
for i ∈ I . Then Πi∈IAi = 〈Πi∈IAi, f〉, where f(〈ai : i ∈ I〉) = 〈f i(ai) : i ∈ I〉.

The definition for n-ary operations f : nA → A is completely analogous. So
is the definition to arbitrary algebras, as follows.

Definition 2.2.21. (direct [Cartesian] product) Let I be a set, t an arbitrary similarity
type and {Ai : i ∈ I} ⊆ Algt. The direct (or Cartesian) product of the system
A = 〈Ai : i ∈ I〉 of similar algebras, denoted by Π〈Ai : i ∈ I〉 or ΠA, is defined to
be the algebra of type t with universe Πi∈IAi and fundamental operations defined
as follows. If t(f) = n and a1, . . . , an ∈ Πi∈IAi then

(
fΠA(a1, . . . , an)

)

i
= fAi(a1(i), . . . , an(i))
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for all i ∈ I .

Π〈Ai : i ∈ I〉 is also denoted as Πi∈IAi or Π
I
A. If, for some algebra B,

Ai = B for all i ∈ I then we write IB for the direct product, and call it a direct
power of B.

Exercise 2.2.22. Prove that if I = ∅ then Πi∈IAi is a trivial algebra.

Lemma 2.2.23. (on projections) We use the notation introduced in Def.2.2.21 above
and the notion of a projection function pi introduced in section 1.5.

(i) (∀i ∈ I)(pi is a homomorphism).

(ii) (∀i ∈ I)(pi is onto Ai).

(iii) (∀a, b ∈ A, a 6= b)(∃i ∈ I)pi(a) 6= pi(b).

The proof is left to the reader. �

If I is a set, Ai (i ∈ I) and B are similar algebras and hi : B −→ Ai

are homomorphisms for every i ∈ I , then we call the system 〈hi : i ∈ I〉 of

homomorphisms a cone. We also use the notation 〈hi〉i∈I as well as 〈B
hi−→ Ai〉i∈I

for denoting this cone. The cone 〈Πi∈IAi
pi−→ Ai〉i∈I of projection homomorphisms

is called the projection cone of the product Πi∈IAi.

Lemma 2.2.24. (“universal property” of direct product) Let 〈Ai : i ∈ I〉 be an

indexed system of similar algebras, and let 〈B
hi−→ Ai〉i∈I be a cone, for some

algebra B and homomorphisms B
hi−→ Ai (i ∈ I). Then there exists a unique

homomorphism k : B −→ Πi∈IAi such that for every i ∈ I, k ◦ pi = hi, where pi

denotes the i–th projection function. Concisely, our lemma states:
(

∀〈B
hi−→ Ai〉i∈I

)

(∃!k : B −→ Πi∈IAi)(∀i ∈ I)k ◦ pi = hi .

See Figure 2.2.5.

The proof is left to the reader. �

When using Lemma 2.2.24, sometimes we say that the cone 〈B
hi−→ Ai〉i∈I

induces the homomorphism k. Borrowing the expression from category theory,



50 Chapter 2. Basics from Universal Algebra

we call the property described by Lemma 2.2.24 the universal property of direct
products .

Lemma 2.2.25. (commutativity and associativity of direct product)

(i) A1 × A2
∼= A2 × A1

(that is, direct product is commutative up to isomorphism).

(ii) A1 × (A2 × A3) ∼= (A1 × A2)× A3

(that is, direct product is associative up to isomorphism).

The proof is left to the reader. �

Definition 2.2.26. (P) Given a class K of similar algebras, we let

PK
def
= I{Πi∈IAi : I is a set, and (∀i ∈ I)Ai ∈ K} .

We often write PA instead of P{A}.

Ez lehet, hogy majd valtozik, lop alfejezet miatt!!:

Exercises 2.2.27. (1) Prove that SSK = SK.

(2) Prove that PPK = PK.

(3) Prove that SPSPK = SPK.

(4) Prove that there is no family 〈Ai : i ∈ I〉 of non–trivial algebras with |I | > ω
such that |Πi∈IAi| = ω.

(5) Let K = {A}, where |A| = 2. Prove that PK does not contain any countably
infinite algebra.

(6) Let K be as in (5) above. Prove that SPK does contain countably infinite
algebras.

(4), (5), and (6) above indicate that the operator SP is more flexible than P!
Hence often SP is more useful than P. Actually, SP is one of the most useful
operators.

Definition 2.2.28. (directly indecomposable algebras) We say that A is directly in-
decomposable iff A is not isomorphic to the direct product of two non–trivial
algebras.

Clearly, the simple algebras and the algebras of prime cardinality are directly
indecomposable.

Theorem 2.2.29. (direct decomposition of finite algebras) Every finite algebra is
isomorphic to the direct product of some directly indecomposable algebras.

Proof. By induction. Let A be finite.
- If |A| = 1, then A is directly indecomposable.
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- Assume A is non–trivial. Our induction hypothesis is:

∀B(|B| < |A| =⇒B is isomorphic to

the direct product of some directly indecomposable algebras) .

Case 1: A is directly indecomposable. Then we are done.
Case 2: (∃A1,A2)(A ∼= A1 × A2 and 1 < |A1|, 1 < |A2|). Then |A1| < |A| >

|A2|. Then, by the induction hypothesis,

A1
∼= B1 × · · · ×Bm and A2

∼= C1 × · · · × Ck ,

for some directly indecomposable Bi’s and Ci’s. Thus, using Lemma 2.2.25 (ii)
above,

A ∼= B1 × · · · ×Bm × C1 × · · · × Ck .

�

Exercise 2.2.30. Give such examples for directly indecomposable algebras which
are not mentioned above (that is, they should be non–simple and have non–prime
cardinalities).

2.2.6 Subdirect decomposition

Motivation 2.2.31. As we mentioned before starting to introduce operations on al-
gebras, to study a complex system1 A, a standard approach is to simplify A first,
then study the simplified system, and then try to use the so obtained information
for a better understanding of the original system A itself. One of our tools for
simplifying an algebra A is taking homomorphic images of it. If h : A −→ B is
surjective then we can consider B as a simplified version of A, and h a “simplifi-
cation”. Such an h is a real (or non–trivial) simplification if h(a) = h(b) for some
a, b ∈ A, a 6= b. If we have only one real simplification h : A � B, then forgetting
A will cause loss of information, since from B alone we cannot reconstruct A. The
reason for this is that the information which was (deliberately) thrown away when
a and b were collapsed, cannot be restored from B itself. E.g., on Figure 2.2.31, if
we look at B only (say A was forgotten), we will never find out whether “a

←−
−→b”

or “
∩
a

∩
b” or perhaps “a −→

∩
b” was the original pattern in A. However, if we

have another simplification, say h1 : A � B1 such that h1(a) 6= h1(b), then the
two simplifications h, h1 together might both simplify the original picture A and
at the same time, retain all information about A. Such is the situation, e.g., on
Figure 2.2.5, where the algebra A×B is simplified into two simple components A

and B without loss of information (the simplifying homomorphisms are the two
projections).

1Here we use the word “system” in an intuitive way. Our motivation for calling an algebra A

a system in this motivational text comes from applications of algebra to the theory of (complex)
systems.
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What is the criterion for not loosing information? Well, we need a sequence
hi : A � Bi (i ∈ I) of surjective homomorphisms such that

(∀a, b ∈ A)[a 6= b⇒ (∃i ∈ I)hi(a) 6= hi(b)] . (2.2)

This is the case, e.g., when A is the direct product of 〈Bi : i ∈ I〉 and
hi (i ∈ I) are the projection functions. Another example is on Figure 2.2.31.
(Here A is not the direct product of B1 and B2.) A sequence of homomor-
phisms satisfying (2.2) is a simplification which certainly does not loose infor-
mation. In order to make this a non–trivial (or real) simplification, we require
that (∀i ∈ I)(hi is not injective and |Rng(hi)| > 1).

Actually, a simplification 〈hi : i ∈ I〉 of A as described above can be
considered as a decomposition of the complex system A into simpler systems Bi,
i ∈ I . For certain reasons, we call such decompositions subdirect decompositions2 .
The general schema of subdirect decompositions is like this:

2The name “subdirect” comes from a strong connection with the operator SP, where S is
connected with the part “sub” and P with the part “direct” of the word.
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Figure 2.17: Subdirect decomposition cone

Definition 2.2.32. (subdirect decomposition) Let A be an algebra.

(i) By a subdirect decomposition of A we understand a system 〈hi : i ∈ I〉 of
surjective homomorphisms hi : A � Bi such that

(∀a, b ∈ A, a 6= b)(∃i ∈ I)hi(a) 6= hi(b) .

(ii) A subdirect decomposition is called non–trivial if

(∀i ∈ I)(hi is not an isomorphism) .

We call it trivial otherwise.

(iii) If 〈A
hi

−−−−� Bi〉i∈I is a subdirect decomposition of A, then we call Bi the
i–th component (of the decomposition).

Exercises 2.2.33. (subdirect decomposition)

(1) Give examples of non–trivial subdirect decompositions. Choose first A to
have three elements and, say, all operations “trivial”.

(2) Prove that if |A| = 2 then A has no non–trivial subdirect decomposition.

(3) Prove that if in h̄ = 〈hi : i ∈ I〉 we have |I | = 1, then h̄ cannot be a
non–trivial subdirect decomposition.

(4) Give two different (non–isomorphic) subdirect decompositions of some alge-
bra A.

Exercises 2.2.34. (subdirect decomposition and direct decomposition)

(1) Assume 〈A
hi

−−−−� Bi〉i<2 is a subdirect decomposition of A. Prove that A is
embeddable into B0 ×B1.

Hint: First check that the statement is true with A a small finite algebra
of 3 or 4 elements.

(2) Let 〈Bi : i ∈ I〉 be a system of similar algebras. Recall the projection

functions pi from section 1.5. Prove that 〈Πj∈IBj
pi−→Bi : i ∈ I〉 is a subdirect

decomposition of Πj∈IBj .
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(3) Let 〈A
hi

−−−−� Bi〉i∈I be a subdirect decomposition. Prove that there is an

embedding A
f
� Πi∈IBi such that (∀i ∈ I)f ◦ pi = hi, that is, the diagram

on Figure 2.2.34 commutes.

(4) Let A ⊆ Πi∈IBi be an arbitrary subalgebra of an arbitrary direct product.
Recall that pidA denotes the function pi restricted to A. Prove that

〈pidA : i ∈ I〉 is a subdirect decomposition of A .

We will see that subdirect decompositions indeed do not involve loss of in-
formation in the following sense. If we are given a subdirect decomposition of an
algebra A into components Bi (i ∈ I), then A can be “built up” from the compo-
nents Bi (i ∈ I) by the operator SP. That is, A ∈ SP{Bi : i ∈ I}. (Cf. Exercise
2.2.27 (6).)

Theorem 2.2.35. Let 〈A
hi

−−−−� Bi〉i∈I be a subdirect decomposition of the algebra
A. Then (i)–(ii) below hold.

(i) A ∈ SP{Bi : i ∈ I}.

(ii) f : A � Πi∈IBi, for some embedding f of A.

Proof. (i) clearly follows from (ii), thus it is enough to prove (ii).

Let 〈A
hi

−−−−� Bi〉i∈I be a subdirect decomposition of some algebra A. We

define f : A −→ Πi∈IBi as follows. For each a ∈ A, f(a)
def
= 〈hi(a) : i ∈ I〉.

Clearly, f(a) ∈ Πi∈IBi for every a ∈ A. By the definition of a subdirect
decomposition, we have

(∀a, b ∈ A)
(
a 6= b⇒ (∃i ∈ I)hi(a) 6= hi(b)

)
.

Therefore f is injective. It remains to check that f is a homomorphism.
To see this, let g be an n–ary operation of A, and let 〈a1, . . . , an〉 ∈ nA. Then

f
(
gA(a1, . . . , an)

)
= 〈hi

(
gA(a1, . . . , an)

)
: i ∈ I〉 by def. of f

= 〈gBi (hi(a1), . . . , hi(an)) : i ∈ I〉 hi is a homom.

= gΠBi (〈hi(a1)〉i∈I , . . . , 〈hi(an)〉i∈I ) by def. of a product

= gΠBi (f(a1), . . . , f(an)) .
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This proves that f is a homomorphism, completing the proof of (ii). �

The above theorem shows that subdirect decompositions are useful in the
sense that instead of a complicated algebra A, we may study its “relatively simple”
subdirect components Bi (i ∈ I), and after having studied the components, we
can reconstruct the original algebra A by using SP. As we already said in the
starting paragraph of section 2.2, this process of decomposing first, then studying
the parts, and then recovering the original by putting the parts together is often
called the analysis–synthesis method; namely, we analyze complex system A into
its “simple” parts Bi, study the parts, and then synthesize the original A from
parts Bi.

This analysis–synthesis method suggests the question whether there are some
kind of “smallest” i.e. “atomic” building blocks which cannot be further decom-
posed subdirectly into even “smaller” (or “simpler”) components.3 This thought
motivates the definition of subdirectly indecomposable algebras. To follow the “of-
ficial” terminology, we will say “subdirectly irreducible” instead of “subdirectly
indecomposable”.

Definition 2.2.36. (subdirectly irreducible algebras)

(i) An algebra A is called subdirectly irreducible iff A has no non–trivial subdirect
decomposition (in the sense of Definition 2.2.32 (ii) above). That is, A is
subdirectly irreducible iff for any subdirect decomposition 〈hi : i ∈ I〉 of A,
if |I | 6= 0 then

(∃i ∈ I)(hi is an isomorphism) .

Putting it another way, A is subdirectly irreducible iff for any subdirect

decomposition 〈A
hi

−−−−� Bi〉i∈I of A, we have A ∈ I{Bi : i ∈ I}. That is,
for any subdirect decomposition of A, the original algebra A is isomorphic to
some of the components Bi.

(ii) Sir denotes the class of all subdirectly irreducible algebras. If K is a class of
algebras then

SirK = Sir(K)
def
= Sir ∩ K .

That is, SirK is the class of subdirectly irreducible members of K.

Lemma 2.2.37. (on the congruences of subdirectly irreducible algebras) A ∈ Sir
iff Con(A) r {IdA} has a smallest element, that is, there is a congruence β ∈
Con(A) r {IdA} such that

(∀α ∈ Con(A))(α 6= IdA =⇒ β ⊆ α) . (2.3)

See Figure 2.2.6.

3Of course, this question motivates the related one, of whether every algebra is built up from
such “atomic”, that is, “indecomposable” building blocks. We will come to this question soon.
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A×A
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β
◦

◦
IdA

Figure 2.19: The congruence lattice of A ∈ Sir

Proof. Assume A ∈ Sir. Let β
def
=

⋂
(Con(A) r {IdA}). Then β ∈ Con(A) by

Exercise 2.2.17. Assume β = IdA. Then 〈h : ker(()h) ∈ Con(A) r {IdA}〉 is a
non–trivial subdirect decomposition of A. By Definition 2.2.36, this contradicts
the fact that A ∈ Sir. Thus β 6= IdA, and, clearly, β is the smallest element of
Con(A) r {IdA}.

Now assume β ∈ Con(A) r {IdA} satisfies (2.3). Let 〈hi : i ∈ I〉 be a
subdirect decomposition of A. Let 〈a, b〉 ∈ β r IdA. Then hi(a) 6= hi(b) for some
i ∈ I . Thus, for such an i, 〈a, b〉 /∈ ker(()hi) ∈ Con(A), therefore β 6⊆ ker(()hi).
This implies ker(()hi) = IdA by (2.3). Thus hi is one–one. But then hi is an
isomorphism because it is onto (by subdirect decomposition). This proves A ∈
Sir. �

Exercises 2.2.38. (subdirectly irreducible algebras)

(1) Prove that for every algebra A, |A| = 2⇒ A ∈ Sir.

(2) Prove that 2
∼
∈ Sir and P(2) /∈ Sir.

(3) Prove that any subalgebra of the algebra A given in Example 2.2.20 (3) is
subdirectly irreducible.

(4) Prove that every subdirectly irreducible algebra is directly indecomposable.

Exercises 2.2.39. (subdirectly irreducible and simple algebras)

(1) Recall the similarity type ba from Example 2.3 4. Let t
def
= ba ∪ {〈c, 1〉}. Let

the algebras A,B ∈ Algt be isomorphic to P(2) on the “ba–part”, and c be
as indicated on Figure 2.2.39.



2.2. Building new algebras from old ones (operations on algebras) 57

·

c

��

??
?

��
�

·

cll

��
�

·c ;;
??

?

·

c

ZZ

·

c

��

??
?

��
�

·

cll

��
�

·

c 22

??
?

·

c

ZZ

A B

Figure 2.20: A ∈ Sir r Smp and B ∈ Sir(Smp)
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Figure 2.21: Subdirectly irreducible but not simple

Prove that A ∈ Sir r Smp and B ∈ Sir(Smp).

(2) Prove that if A satisfies condition (?) below then A is subdirectly irreducible
but not simple.

(?) Let a, b ∈ A, a 6= b. To every x, y ∈ A, if x, y, a, b are all different then
there is a fundamental operation fx,y of A such that every element
of A except for x and y are fixed points of fxy, and fxy(x) = a and
fxy(y) = b. There are no other fundamental operations of A.

See the illustration on Figure 2.2.39.

(3) Prove that Smp $ Sir.

Recall the definitions of Sir and Sir(K) (for a class K of algebras) from Defi-
nition 2.2.36 (ii).

Theorem 2.2.40. (Birkhoff) Let A be an algebra. Then (i)–(ii) below hold.

(i) A ∈ SPSir.
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(ii) A ∈ SPSir(H{A}).

The proof will be discussed below the formulation of the following theorem. �

Theorem 2.2.40 above is a powerful tool in simplifying investigations of al-
gebras. Namely, in a sense, it is sufficient to study the subdirectly irreducible
algebras only, because the rest is built up from these by SP. (Of course, this is
not true for all kinds of questions, because building up by SP might interfere with
certain kinds of questions. But still, we will experience that it is true for many
kinds of questions.) Similarly, if we are investigating a class K = HK of algebras
(like Boolean algebras, groups etc.) then it is often sufficient to investigate SirK
instead of K, since the rest of K is built up from SirK by SP.

Theorem 2.2.41. (Birkhoff’s Subdirect Decomposition Theorem) Every algebra A

admits a subdirect decomposition into subdirectly irreducible components that are
quotient algebras of A. That is:

Let A be an algebra. Then there is a subdirect decomposition 〈A
hi

−−−−� Bi〉i∈I

of A such that {Bi : i ∈ I} ⊆ Sir(HA).

Proof. Since every trivial algebra is subdirectly irreducible, we may assume that
A is not trivial. Let I = (A×A) r IdA. For each i = 〈a, b〉 ∈ I , choose a maximal
member βi in the set {θ ∈ Con(A) : 〈a, b〉 /∈ θ}. The existence of such a maximal
member follows easily by Zorn’s lemma.

Let i = 〈a, b〉 ∈ I be arbitrary. We claim that A/βi ∈ Sir. This is so because
(∀θ ∈ Con(A/βi))a/βi ≡θ b/βi, by the definition of βi. Thus the smallest congru-
ence containing 〈a/βi, b/βi〉 is the smallest non–identity element of Con(A/βi).
Thus A/βi ∈ Sir by Lemma 2.2.37. We have seen that (∀i ∈ I)A/βi ∈ Sir.

Clearly,
⋂
{βi : i ∈ I} = IdA. Let qi be the quotient map associated to βi, for

every i ∈ I . Then 〈qi : i ∈ I〉 is a subdirect decomposition of A, with components
the factor algebras A/βi of A, for every i ∈ I . This completes the proof of Theorem
2.2.41. �

Let us return briefly to the analysis–synthesis method outlined above Defi-
nition 2.2.36. Theorem 2.2.41 above implies that this method is applicable rather
“deterministically” to algebras. Namely, if we want to study a (say, complicated)
algebra A, then we can subdirectly decompose A to parts Bi (i ∈ I) which are
not decomposable subdirectly any further. Since the Bi’s are not decomposable
any further, we have to investigate the Bi’s, and then “synthesize” the results
obtained about the Bi’s to results about the original A along the lines discussed
earlier. The important point here is that to any algebra A, there are “atomic”
(i.e. indecomposable) components Bi of A such that we know when to stop in the
“analysis part”, that is, in the decomposition process. (Further A can be built up
from these “atomic” components Bi of A.)

From Theorems 2.2.35 and 2.2.41 we can prove Theorem 2.2.40, as follows.
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Proof. Proof of Theorem 2.2.40:
Let A be an algebra. By Theorem 2.2.41, there is a subdirect decomposition

〈A
hi

−−−−� Bi〉i∈I with (∀i ∈ I)Bi ∈ Sir(HA). Now, Theorem 2.2.35 says that
A ∈ SP{Bi : i ∈ I} ⊆ SP Sir(HA). This completes the proof. �

2.2.7 Ultraproduct, reduced product

Motivation 2.2.42. Like direct product, ultraproduct and reduced product are such
operations on algebras which “build up bigger, more complex algebras from smaller
ones” (cf. the introductory paragraphs of section 2.2). To motivate these new
operations to be introduced shortly, observe the following. An equation is valid in
the direct product A of some system 〈Bi : i ∈ I〉 of algebras iff it is valid in each
component Bi (i ∈ I). For example, if the similarity type contains two constant
symbols d, e and a unary function symbol f , then f(d) = e is valid in A iff it is
valid in Bi for every i ∈ I . Thus f(d) = e is not valid in A whenever it is not valid
in one of its components, even if f(d) = e is valid in each of the other (possibly
infinitely many) components. See Figure 2.22.

Ábrát krumplisan!!

The property of direct product illustrated above shows that this operation is rigid
in that it does not “tolerate” any “deviation”: an equation cannot be valid in the
value of the operation even when it is valid in “almost every” argument (compo-
nent) of the operation. Now we are aiming at defining operations on algebras which
are not so rigid in this sense. We would like to define a “product–like” operation in
the value of which a property holds iff it holds in almost every argument (almost
everywhere). To have such a concept, we need to clarify first what we want to
mean by “almost every” or “almost everywhere”.

From a (mathematical) concept of “almost everywhere”, we require the fol-
lowing, intuitively natural things.

(i) If something is true everywhere, then it should be true almost everywhere.

(ii) If two properties ϕ and ψ hold almost everywhere then their conjunction
(ϕ ∧ ψ) should hold almost everywhere, too.

(iii) If ϕ holds almost everywhere and ϕ (always) implies ψ then ψ should hold
almost everywhere, too.

We may also add:

(iv) A property ϕ holds almost everywhere iff its negation ¬ϕ does not hold
almost everywhere.

In the following definition we give two (mathematical) concepts correspond-
ing to the above described intuition of “almost everywhere”. These concepts are
called filter and ultrafilter .
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Figure 2.22: Direct product is rigid
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Definition 2.2.43. (filter, ultrafilter, special filters) Let I be a nonempty set. Recall
that P(I) denotes the powerset (set of all subsets) of I . Let F ⊆ P(I).

1. F is called a filter over I iff conditions (i)–(iii) below are satisfied.

(i) I ∈ F

(ii) if X,Y ∈ F then X ∩ Y ∈ F

(iii) if X ∈ F and X ⊆ Z ⊆ I then Z ∈ F .

2. A filter F over I is called and ultrafilter over I iff for every X ∈ P(I), (iv)
below holds.

(iv) X ∈ F ⇐⇒ (I rX /∈ F).

If we simply say that F is an ultrafilter then we tacitly assume that F is an
ultrafilter over

⋃
F .

3. {I} is called the trivial filter (over I), P(I) the improper filter . A filter F
over I is said to be a proper filter iff it is not the improper filter P(I). For each
Y ⊆ I , the filter {X ⊆ I : Y ⊆ X} is called the principal filter generated by Y . A
filter (ultrafilter) is called non–principal iff it is not a principal filter (ultrafilter).

If |I | ≥ ω then Fr(I)
def
= {X ∈ P(I) : |IrX | < ω} is called the Fréchet filter (over

I).

Exercise 2.2.44. Prove that, for any nonempty set I , the trivial filter over I , any
principal filter, and the Fréchet filter over I are all filters.

If F is a filter over I then we sometimes refer to the elements of F as to
“big” or “F–big” sets, while we call the rest of the subsets of I “small” sets.

Next we investigate filters and ultrafilters.

Definition 2.2.45. (generated filter, finite intersection property) Let E be a subset
of P(I).

(i) By a filter generated by E we mean the intersection F of all filters over I
which include E, that is,

F =
⋂

{D : E ⊆ D and D is a filter over I} .

(ii) E is said to have the finite intersection property iff the intersection of
any finite number of elements of E is nonempty.

Proposition 2.2.46. Let E be any subset of P(I) for some nonempty set I, and let
F be the filter generated by E. Then (i)–(iii) below hold.

(i) F is a filter over I.

(ii) F is the set of all X ⊆ I such that either X = I or for some Y1, . . . , Yn ∈ E,

Y1 ∩ · · · ∩ Yn ⊆ X .
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(iii) F is a proper filter iff E has the finite intersection property.

Proof. (i) is easy to prove. (iii) follows easily from (ii). To prove (ii), let

F ′
def
= {X ⊆ I : X = I or Y1 ∩ · · · ∩ Yn ⊆ X for some Y1, . . . , Yn ∈ E} .

We prove that F = F ′. First we check that F ′ is a filter, as follows. I ∈ F ′ by the
definition of F ′. Let X,X ′ ∈ F ′, and let Yi, Y

′
j ∈ E be such that

Y1 ∩ · · · ∩ Yn ⊆ X and Y ′1 ∩ · · · ∩ Y
′
k ⊆ X

′ .

If X ⊆ Z ⊆ I , then Y1 ∩ · · · ∩ Yn ⊆ Z, thus Z ∈ F ′. Further,

Y1 ∩ · · · ∩ Yn ∩ Y
′
1 ∩ · · · ∩ Y

′
k ⊆ X ∩X

′ ,

thus X∩X ′ ∈ F ′. Therefore F ′ is a filter over I . Obviously E ⊆ F ′. Thus F ⊆ F ′,
by the definition of F .

To see F ′ ⊆ F , consider any filter D over I which includes E. Then F ′ ⊆ D
can be seen as follows. Clearly I ∈ D. If I 6= X ∈ F ′ then X ∈ D because, for any
Y1, . . . , Yn ∈ E, we have Y1∩ · · ·∩Yn ∈ D. Thus F ′ ⊆ D. This shows that F ′ ⊆ F .
Thus F = F ′. �

Exercises 2.2.47. (1) Prove (i) and (iii) of Proposition 2.2.46 above.

(2) Prove that for any set I , if C is a nonempty chain of proper filters over I ,
then

⋃
C is a proper filter over I .

(3) Prove that every proper filter has the finite intersection property.

Proposition 2.2.48. The following (i) and (ii) are equivalent.

(i) F is an ultrafilter over I.

(ii) F is a maximal proper filter over I. That is, F is a proper filter over I, and
the only proper filter over I which includes F is F itself.

Proof. (i)⇒(ii). Assume (i). Then 0 /∈ F , because I ∈ F and 0 = IrI . Hence F is a
proper filter. Let D be any proper filter over I which includes F . If X ∈ DrF , then
IrX ∈ F (because F is an ultrafilter), thus IrX ∈ D, and 0 = X ∩ (IrX) ∈ D.
This contradicts the assumption that D is proper. Thus D ⊆ F , so D = F , and
(ii) holds.

(ii)⇒(i). Assume (ii). Consider any X ⊆ I . We cannot have both X ∈ F and
I rX ∈ F , because then 0 ∈ F , thus (∀Y ⊆ I)Y ∈ F , and F is not proper. It is
enough to prove that IrX /∈ F ⇒ X ∈ F . Suppose IrX /∈ F . Let E = F ∪{X},
and let D be the filter generated by E. We show that E has the finite intersection
property. Consider Y1, . . . , Yn ∈ E, and let Z = Y1 ∩ · · · ∩ Yn. Since F is closed
under finite intersections, we either have Z ∈ F or Z = Y ∩X for some Y ∈ F .
In the first case, Z 6= 0, because 0 /∈ F . In the second case, we also have Z 6= 0,
for otherwise we would have Y ∩X = 0, Y ⊆ I rX , whence I rX ∈ F . Thus in
any case, Z 6= 0. By Proposition 2.2.46, 0 /∈ D. Thus D is a proper filter including
F , thus by (ii), D = F . Therefore E ⊆ F and X ∈ F . This proves (i). �
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Proposition 2.2.49. If E ⊆ P(I) and E has the finite intersection property, then
there exists an ultrafilter F over I such that E ⊆ F .

Proof. By Proposition 2.2.46, the filter D generated by E does not contain the
empty set, thus D is proper. Moreover, if C is any nonempty chain of proper filters
over I , then

⋃
C is a proper filter over I , by Exercise 2.2.47 (2). Furthermore, if

F ∈ C includes E, then
⋃
C includes E. Then, by Zorn’s lemma, the class H of

all proper filters over I including E has a maximal element, say F . Thus E ⊆ F .
F is a maximal proper filter over I , because if F ′ is a proper filter including F ,
then E ⊆ F ′, and so F ′ belongs to H and F ′ = F . Thus, by Proposition 2.2.48,
F is an ultrafilter over I . �

Corollary 2.2.50. Any proper filter over I can be extended to an ultrafilter over I.

Proof. Every proper filter has the finite intersection property by Exercise 2.2.47
(3). �

Exercises 2.2.51. Below, I is a non–empty set, U ⊆ P(I) is an ultrafilter, and
Fr(I) denotes the Fréchet filter over I .

(1) (a) Let X ∈ U , X = Y0 ∪ · · · ∪ Yn for some n ∈ ω. Prove that

Yi ∈ U for some i 6 n .

(b) Prove that U is principal iff U = {Y ⊆ I : {x} ⊆ Y } for some x ∈ I .

(2) (a) Prove that Fr(I) is not an ultrafilter (but is a filter by Exercises 2.2.44).

(b) Prove that U is non–principal iff Fr(I) ⊆ U .

(3) Let E ⊆ P(I) be such that (∀ finite H ⊆ E)|
⋂
H | > ω. Prove that there

exists a non–principal ultrafilter containing E.

Definition 2.2.52. (reduced product, ultraproduct) Let I be a nonempty set and F
a proper filter over I . Let 〈Ai : i ∈ I〉 be a system of nonempty sets.

1. Consider the Cartesian product Πi∈IAi of the sets Ai. Let a, b ∈ Πi∈IAi.
We say that a and b are F–equivalent , in symbols a ≡F b, iff

{i ∈ I : a(i) = b(i)} ∈ F .

Then ≡F is an equivalence relation over Πi∈IAi. (Exercise: Prove this!) Let a/F
denote the equivalence class of a:

a/F
def
= {b ∈ Πi∈IAi : a ≡F b} .

We define the reduced product of 〈Ai : i ∈ I〉 modulo F , in symbols Π〈Ai : i ∈
I〉/F or Πi∈IAi/F , to be the set of all equivalence classes of ≡F . That is,

Πi∈IAi/F
def
= {a/F : a ∈ Πi∈IAi} .
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Figure 2.23: Ultraproduct

We call the set I the index set for Πi∈IAi/F . In the special case when F is an
ultrafilter, the reduced product Πi∈IAi/F is called an ultraproduct .

2. Now let 〈Ai : i ∈ I〉 be a system of similar algebras. We define the reduced
product Π〈Ai : i ∈ I〉/F = Πi∈IAi/F of this system as follows. Πi∈IAi/F is
defined to be an algebra with universe Πi∈IAi/F (the reduced product of the
universes), and if f is an n–ary function symbol of the similarity type of the Ai’s
then f is interpreted on Πi∈IAi/F as follows.

fΠi∈IAi/F (a1/F , . . . , an/F)
def
= 〈fAi (a1(i), . . . , an(i)) : i ∈ I〉/F (2.4)

for every a1, . . . , an ∈ Πi∈IAi.

Illustration: Assume that the similarity type of 〈Ai : i ∈ I〉 contains a unary
function symbol f . Then equation (2.4) above is reduced to

fΠi∈IAi(a/F) = 〈fAi(a(i))〉i∈I/F .

On Figure 2.23, the equivalence class a/F is drawn as a long “sausage” (containing
“line” a).

Nyilak feljebb! Kilóg a jobb oldalon!
The following proposition states that the definition of a reduced product

given above is correct.

Proposition 2.2.53. Let I, F , Ai be as in Definition 2.2.52 above. Suppose that
a1 ≡F b1, . . . , an ≡F bn. Then for every function symbol f of the similarity type
of the Ai’s,

〈fAi ((a1)i, . . . , (an)i) : i ∈ I〉 ≡F 〈f
Ai ((b1)i, . . . , (bn)i) : i ∈ I〉 .
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Exercise 2.2.54. Prove Proposition 2.2.53.

Convention 2.2.55. We sometimes omit the subscript i ∈ I from Πi∈IAi/F when
it causes no misunderstanding.

We call the ultraproduct of a system 〈A : i ∈ I〉 (all the models are the same)
an ultrapower . An ultrapower is denoted as IA/F .

Exercise 2.2.56. Generalize the concept of a reduced product (ultraproduct) of
algebras to that of models .

The most important theorem we need concerning ultraproducts is the fol-
lowing. Recall our notation for the truth of a formula in an algebra at a valuation
from the end of Definition 1.8.1 (4) (in section 1.8).

Theorem 2.2.57. ( Los ultraproduct theorem) Let B be the ultraproduct Πi∈IAi/F .
Then (i)–(iii) below hold.

(i) For any term τ(x1, . . . , xn) in the language of B and elements
a1/F , . . . , an/F ∈ B, we have

τB (a1/F , . . . , an/F) = 〈τAi (a1(i), . . . , an(i)) : i ∈ I〉/F .

(ii) Given any formula ϕ(x1, . . . , xn) of the language of B and elements
a1/F , . . . , an/F ∈ B, we have

B |= ϕ[a1/F , . . . , an/F ] iff {i ∈ I : Ai |= ϕ[a1(i), . . . , an(i)]} ∈ F .

(iii) For any sentence ϕ of the language of B,

B |= ϕ iff {i ∈ I : Ai |= ϕ} ∈ F .

Proof. (iii) is an immediate consequence of (i) and (ii). The proofs of (i) and (ii)
are by induction on the complexity of terms and formulas, respectively.

Proof of (i): (i) holds whenever τ(x1, . . . , xn) is a variable, a constant, or is
of the form f(x1, . . . , xn), by the definition of reduced product. Suppose that

τ(x1, . . . , xn) = f(τ1(x1, . . . , xn), . . . , τk(x1, . . . , xn)) and τ1, . . . , τk satisfy (i).

Then for any elements a1/F , . . . , an/F ∈ B,

τB(a1/F . . . an/F) = fB(τB
1 (a1/F . . . an/F) . . . τB

k (a1/F . . . an/F)) . (2.5)

If j ∈ {1, . . . , k} then τB
j (a1/F , . . . , an/F) = 〈τ

Aj

j (a1(i), . . . , an(i)) : i ∈ I〉/F
by the induction hypothesis. By the definition of reduced product, we have:

fB(b1/F , . . . , bn/F) = 〈fAi(b1(i), . . . , bn(i)) : i ∈ I〉/F , (2.6)
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for any b1, . . . , bn ∈ Πi∈IAi. For every i ∈ I , there are b1, . . . , bn such that

τAi (a1(i), . . . , an(i)) = fAi(b1(i), . . . , bn(i)) . (2.7)

Now

τB(a1/F . . . an/F) = fB
(
τB
1 (a1/F . . . an/F) . . . τB

k (a1/F . . . an/F)
)

by (2.5)

= fB(b1/F . . . bn/F) for some b1 . . . bn ∈ Πi∈IAi

= 〈fAi(b1(i) . . . bn(i)) : i ∈ I〉/F by (2.6)

= 〈τAi (a1(i) . . . an(i)) : i ∈ I〉/F by (2.7).

Proof of (ii): The proof of (ii) for atomic formula (equations) is similar to the
above proof of (i); we note that (i) is used in the proof of (ii).

Suppose ϕ = ¬ψ(x1, . . . , xn) and (ii) holds for ψ(x1, . . . , xn). Let a1, . . . , an ∈
Πi∈IAi. Then

B |= ϕ[a1/F , . . . , an/F ]⇐⇒ B 2 ψ[a1/F , . . . , an/F ]

⇐⇒ {i ∈ I : Ai |= ψ[a1(i), . . . , an(i)]} /∈ F

⇐⇒ {i ∈ I : Ai 2 ψ[a1(i), . . . , an(i)]} ∈ F

⇐⇒ {i ∈ I : Ai |= ϕ[a1(i), . . . , an(i)]} ∈ F .

The fact that F is an ultrafilter is used to show that the second “⇐⇒” holds.
Indeed, this is the only point in the entire proof of the theorem where we need the
fact that F is an ultrafilter, and not merely a proper filter.

The next step is to prove that if ψ and χ satisfy (ii), then so does (ψ ∧ χ).
This is done by writing a string of equivalences like the one we used for ¬ψ.
This time the crucial fact about F which we need is that X ∩ Y ∈ F ⇐⇒ X ∈
F and Y ∈ F . Every filter has this property. The details of this step in the proof
are straightforward, and are left to the reader.

Now suppose that ϕ(x1, . . . , xn) = ∃xψ(x, x1, . . . , xn), and that (ii) holds for
ψ. Let a1/F , . . . , an/F ∈ B. Then

B |= ϕ[a1/F , . . . , an/F ]⇐⇒ B |= ∃xψ(x, x1, . . . , xn)[a1/F , . . . , an/F ]

⇐⇒ B |= ψ[b/F , a1/F , . . . , an/F ] for some b ∈ Πi∈IAi

⇐⇒ {i ∈ I : Ai |= ψ[b(i), a1(i), . . . , an(i)]} ∈ F

for the above b, by ind. hyp.

=⇒ {i ∈ I : Ai |= ∃xψ(x, x1, . . . , xn)[a1(i), . . . , an(i)]} ∈ F

⇐⇒ {i ∈ I : Ai |= ϕ[a1(i), . . . , an(i)]} ∈ F .

To see the other direction, assume {i ∈ I : Ai |= ϕ[a1, . . . , an]} ∈ F . Then

{i ∈ I : Ai |= ψ[d(i), a1(i), . . . , an(i)]} ∈ F for some d ∈ Πi∈IAi
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⇐⇒ B |= ψ[d/F , a1/F , . . . , an/F ]

⇐⇒ B |= ϕ[a1/F , . . . , an/F ] .

By this, our induction for step (ii) is completed. �

Exercise 2.2.58. Prove Theorem 2.2.57 for the case of models . That is, consider
the theorem we get from Theorem 2.2.57 via substituting models for algebras in it,
and using ultraproduct of models (cf. Exercise 2.2.56) instead of that of algebras.
Prove this theorem.

Definition 2.2.59. (Pr, Up)
Given a class K of similar algebras, we let

PrK
def
= I{Πi∈IAi/F : I is a set, F is a filter over the set I , and (∀i ∈ I)Ai ∈ K}

UpK
def
=

I{Πi∈IAi/F : I is a set, F is an ultrafilter over the set I , and (∀i ∈ I)Ai ∈ K} .

Lemma 2.2.60. PrPrK = PrK.

Proof. 4 Let K be an arbitrary class of algebras. Then PrK ⊆ PrPrK follows from
the definition of reduced product. It remains to prove PrPrK ⊆ PrK.

Let J be a set and 〈Ij : j ∈ J〉 a system of pairwise disjoint sets. For every
j ∈ J , let 〈Ai : i ∈ Ij〉 be a system of algebras. Let F be a filter over J , and for
every j ∈ J , let Fj be a filter over Ij . We define

I
def
=

⋃

j∈J

Ij and F̂
def
= {L ⊆ I : {j ∈ J : L ∩ Ij ∈ Fj} ∈ F} .

(L ∈ F̂ iff L is an “F–big union of Fj–big sets”.) It is easy to check that F̂ is a
filter over I . It is enough to prove that

Π
j∈J

(

Π
i∈Ij

Ai

/

Fj

)/

F ∼= Π
i∈I

Ai/F̂ . (2.8)

For every j ∈ J , let fj : Π
i∈I

Ai −→ Π
i∈Ij

Ai be defined as:

(

∀a ∈ Π
i∈I
Ai

)

fj(a)
def
= adIj .

Clearly fj is a surjective homomorphism, for every j ∈ J . Let qj : Π
i∈Ij

Ai −→

Π
i∈Ij

Ai/Fj be the quotient map for every j ∈ J , thus (∀b ∈ Π
i∈Ij

Ai)qj(b) = b/Fj .

Follow the proof on Figure 2.24.

4In Andréka–Németi [11] as well as in Andréka–Burmeister–Németi [3] it is shown that Lemma
2.2.60 cannot be proved without the Axiom of Choice.
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Figure 2.24: Proof of Lemma 2.2.60

Let P
def
= Π

j∈J

(

Π
i∈Ij

Ai/Fj

)

. Consider the cone

〈 Π
i∈I

Ai

fj

� Π
i∈Ij

Ai
qi−→ Π

i∈Ij

Ai/Fj : j ∈ J〉 .

By Lemma 2.2.23, this cone induces a unique homomorphism

h : Π
i∈I

Ai −→ P ,

thus, denoting the projection homomorphisms of P by pj (j ∈ J), we have

h ◦ pj = fj ◦ qj , i.e.,

(∀a ∈ Π
i∈I
Ai)h(a)(j) = qj(fj(a)) = qj(adIj) = (adIj)/Fj , (2.9)

for every j ∈ J . Let k denote the quotient map k : P −→ P/F . Notice that

h ◦ k is surjective. (2.10)

The following sequence proves that

θ
def
= ker(()h ◦ k) = ≡F̂ . (2.11)
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〈a, b〉 ∈ θ ⇐⇒ 〈h(a), h(b)〉 ∈ ker(()k) = ≡F

⇐⇒ {j ∈ J : h(a)(j) = h(b)(j)} ∈ F by def’s of k,≡F

⇐⇒ {j ∈ J : (adIj)/Fj = (bdIj)/Fj} ∈ F by (2.9)

⇐⇒ {j ∈ J : {i ∈ Ij : (adIj)(i) = (bdIj)(i)} ∈ Fj} ∈ F

⇐⇒ {j ∈ J : ({i ∈ I : a(i) = b(i)} ∩ Ij) ∈ Fj} ∈ F

⇐⇒ {i ∈ I : a(i) = b(i)} ∈ F̂

⇐⇒ 〈a, b〉 ∈ ≡F̂ .

We proved (2.11).
Let q denote the quotient map q : Π

i∈I
Ai −→ Π

i∈I
Ai/F̂ . Applying the homomor-

phism theorem (Theorem 2.2.18), (2.10) and (2.11) together imply the existence of
an isomorphism g : Π

i∈I
Ai/F̂ �→ P/F such that q ◦g = h◦k. This proves (2.8). �

Exercise 2.2.61. Prove Lemma 2.2.60 for models instead of algebras.

Exercise 2.2.62. Prove that for any class K of similar algebras, (1)–(6) below hold.

(1) UpK ⊆ HPK

(2) PHK ⊆ HPK

(3) SHK ⊆ HSK

(4) PPK = PK

(5) UpUpK = UpK

(6) UpSK ⊆ SUpK, PrSK ⊆ SPrK .

2.3 Categories

Category theory lends us a very useful way of looking at mathematical objects: To
find/describe the properties of some object, instead of looking at it as to something
consisting of elements which again are bulit up from other entities, forming all
kinds of connections among each other, category theory would rather look at
the object as a whole, and intends to grasp its properties via its interrelations
with other objects , being “outside” of the original object. In other words, category
theory treats the objects under investigation as “black-box”-s. Sometimes we want
to use this way of thinking in this book, therefore, in this section, we introduce
some very basic concepts of category theory.

Definition 2.3.1. (category) A category C consists of

• A (potentially proper) class Ob(C) the elements of which are called the objects
of C.
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• To any two objects A,B a class HomC(A,B). It is called the collection of all
morphisms going from A to B. Both

A
f
−→ B and f : A −→ B

mean that f ∈ HomC(A,B). HomC(A,B) is also called the hom-class from
A to B.

If A
f
−→ B then we call A the domain of f , and denote it by dom(f),

while B is called the codomain of f and is denoted by cod (f). The class of
all morphisms Mor(C) is defined as follows:

Mor(C)
def
=

⋃
{HomC(A,B) : A,B ∈ C}

= {f : f ∈ HomC(A,B) for some objectsA and B} .

• To any three objects A,B,C a function ◦, called composition, associating a
morphisms g◦f to any two morphisms f ∈ HomC(A,B) and g ∈ HomC(B,C).
That is,

◦ : HomC(A,B) ×HomC(B,C) −→ HomC(A,C)
〈f, g〉 7→ g ◦ f .

• To any object A a morphism 1A, called the identity morphism at A, such
that 1A ∈ HomC(A,A).

Concerning the above, we postulate the following two axioms:

(i) Composition is associative, that is, to any three morphisms

A
f
−→ B

g
−→ C

h
−→ D

we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(ii) The identity axiom says that for any

A
f
−→ B and B

g
−→ C ,

1B ◦ f = f and g ◦ 1B = g .

It is easy to see that for any A ∈ Ob(C), if e ∈ HomC(A,A) satisfies the
identity axiom then e = 1A. Namely, 1A = 1A ◦ e = e.

A small category is a category in which both Ob(C) and Mor(C) are actually
sets and not proper classes. A category that is not small is said to be large. A
locally small category is a category such that for all objects A and B, the hom-class
HomC(A,B) is a set, called a homset . Many important categories in mathematics,
although not small, are at least locally small.

The morphisms of a category are sometimes called arrows due to the influence
of drawing them as arrows.
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Examples 2.3.2. (Set, Algt, Modt)

(i) Our first example is the category Set of all sets together with functions
between sets, where composition is the usual function composition. More
precisely, Ob(Set) is the class of all sets,

Mor(Set)
def
= {〈A, f,B〉 : A,B ∈ Ob(Set) and f is a function from A into B} ,

where dom(〈A, f,B〉) = A and cod(〈A, f,B〉) = B, further for any A ∈

Ob(Set), 1A
def
= IdA, and for any functions A

f
−→ B and B

g
−→ C, g ◦ f is

the usual function composition of f and g with domain A and codomain B.
To prove that Set is a locally small category is left to the reader.

(ii) Algt

(iii) Modt

2.4 Free algebras

To be written later.

2.5 Variety characterization, quasi–variety characteri-
zation

If we are given a class K of similar algebras, often it is very useful to know what
is the equational theory (the set of all equations valid in K) and/or the quasi-
equational theory (the set of all quasi-equations valid in K) of the class K. In this
section we give sufficient and necessary conditions for a class K to be definable by
equations (Thm.2.5.10); and sufficient and necessary conditions for a class K to
be definable by quasi-equations (Thm.2.5.11).

Definition 2.5.1. (term-algebra) Let t be a similarity type and let X be an arbitrary
set with X ∩ Dom(t) = ∅. Recall the set Trmt(X) of terms of similarity type t
with variables from X from Definition 1.8.1. The term-algebra Ft(X) of similarity
type t over X is defined as follows.

(i) The universe of Ft(X) is Trmt(X);

(ii) if f ∈ Fnst, t(f) = n and τ1, . . . , τn ∈ Trmt(X) then

fFt(X)(τ1, . . . , τn)
def
= f(τ1, . . . , τn).

Exercise 2.5.2. Prove that if |A| = |B| for some sets A,B then Ft(A) ∼= Ft(B).
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Lemma 2.5.3. Let t, X be as in Definition 2.5.1 For every algebra A ∈ Algt and
function g : X −→ A there exists a homomorphism h : Ft(X) −→ A such that
hdX = g.

Proof. We define h by the following recursion:

• For any x ∈ X , h(x)
def
= g(x);

• for any f ∈ Fns t, t(f) = n and τ1, . . . , τn ∈ Trmt(X),

h
(
f(τ1, . . . , τn)

) def
= fA

(
h(τ1), . . . , h(τn)

)
.

Then h is a homomorphism with the required properties. �

Definition 2.5.4. We say that a formula ϕ (ϕ may be, e.g., an equation or a quasi–
equation) is preserved under an operator like, e.g., P iff for any class K of (similar)
algebras,

K |= ϕ =⇒ PK |= ϕ .

Similarly, ϕ is preserved under SP iff

K |= ϕ =⇒ SPK |= ϕ .

The definition for other operations like H, Pr etc. is similar.

By the  Los ultraproduct theorem (Theorem 2.2.57), every first–order formula
is preserved under Up.

Exercises 2.5.5. (1) Let t be a similarity type containing two constant symbols:
0 and 1. Prove that the formula (x = 0∨ x = 1) (written in this language) is
preserved under S but not under P.

(2) Prove that equations are preserved under S and under H.

(3) Prove that equations are preserved under P. Use this and (2) above to prove
that equations are preserved under HSP.

(4) Prove that S, P, Up preserve quasi–equations.

Definition 2.5.6. Let K ⊆ Algt. Then both Eq t(K) and Eq tK denote the set of all
equations of similarity type t which are valid in K, that is,

Eq tK = Eqt(K)
def
= {e : K |= e and e is an equation of similarity type t} .

Qeqt(K) and QeqtK denote the set of all quasi–equations valid in K, that is,

QeqtK = Qeqt(K)
def
= {q : K |= q and q is a quasi–equation of similarity type t} .

Convention 2.5.7. From now on, by a class K of algebras we always mean a class
of similar algebras.
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Definition 2.5.8. (variety, quasi–variety) A class of algebras of similarity type t is
called a variety (quasi–variety) iff it can be defined by a set of equations (quasi–
equations) of type t. That is, K is a variety iff

(∃ set Σ of equations)(A ∈ K⇐⇒ A |= Σ) ;

and K is a quasi–variety iff

(∃ set Γ of quasi–equations)(A ∈ K⇐⇒ A |= Γ) .

We will also use the expressions equational class and quasi–equational class as
synonyms of “variety” and “quasi–variety”, respectively.

Mod(Eq tK) (Mod(QeqtK)) denotes the class of all models of the equational theory
EqtK (quasi–equational theory Qeq tK, respectively). Mod(Eq tK) (Mod(QeqtK)) is
called the variety (quasi–variety) generated by K.

Example 2.5.9. It can be proven that the class BA of all Boolean algebras can
be defined by finitely many equations, thus it is a variety. Such an equational
axiomatization will be given in section 2.7.

Theorem 2.5.10. (Variety characterization) Let K ⊆ Algt. Then

Mod(Eq tK) = HSPK .

Thus, V is a variety iff

V = HSPV .

Proof. HSPK ⊆ Mod(Eq tK), because equations are preserved under HSP (cf.
Exercise 2.5.5 (3) above).

To prove Mod(Eq tK) ⊆ HSPK, let A ∈ Mod(Eq tK). Consider the term-
algebra Ft(A) over the universe A of A. Then, by Lemma 2.5.3, there is a surjective
homomorphism f : Ft(A) � A which is an extension of the identity map on A.

Now define for all σ, τ ∈ Trmt(A)

σ ≡ τ
def
⇐⇒ K |= (σ = τ).

Clearly, ≡ is a congruence relation on Ft(A) (check it!). We define a function
h : Trmt(A)/ ≡ −→ A by

h(τ/ ≡)
def
= f(τ) for every τ ∈ Trmt(A).

This definition is sound, since ≡ ⊆ ker(f) by A ∈ Mod(Eq tK), and h is a ho-
momorphism from Ft(A)/ ≡ to A (check it, cf. the proof of the Homomorphism
Theorem: Theorem 2.2.18). h is surjective, because f is surjective, thus A is a
homomorphic image of Ft(A)/ ≡.
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Figure 2.25: Proof of the Variety Characterization theorem

Next we prove that Ft(A) ∈ SPK. First, there exists a set K0 ⊆ K such that
EqtK0 = Eq tK, because there are only “set many” equations of similarity type t.
Namely, if e is an equation of similarity type t such that K 2 e then let Ae ∈ K
and let ve be a valuation of the variables in Ae such that Ae 2 e[ve]. Let

K0
def
= {Ae : e is an equation of similarity type t and K 2 e}.

Clearly Eq tK0 = Eq tK and K0 ⊆ K is a set, because there are only set-many
equations.

We define the function g : Trm t(A)/ ≡ −→ ΠAe∈K0
Ae as follows.

g(τ/ ≡)
def
= 〈. . . , τAe [ve], . . .〉Ae∈K0

.

This definition is sound, since if τ ≡ σ then K |= (τ = σ) holds, therefore for
all Ae ∈ K0 we have Ae |= (τ = σ)[ve], that is, τA ◦ [ve] = σA ◦ [ve]. We show that
g is an injective homomorphism (an embedding) from Ft(A)/ ≡ into ΠAe∈K0

Ae.
g is a homomorphism: If k ∈ Fns t, t(k) = n and τ1, . . . , τn ∈ Trmt(A) then

g
(
k(τ1/ ≡, . . . , τn/ ≡)

)

Ae
= g

(
k(τ1, . . . , τn)/ ≡

)

Ae
= k(τ1, . . . , τn)Ae [ve] =

kAe(τAe

1 [ve], . . . , τAe
n [ve]) = kAe

(
g(τ1/ ≡)Ae

, . . . , g(τn/ ≡)Ae

)
.

g is injective: Assume σ 6≡ τ . Then A(σ=τ) 6|= (σ = τ)[v(σ=τ)] for some algebra
A(σ=τ) ∈ K0, that is, the A(σ=τ) coordinates of g(τ/ ≡) and g(σ/ ≡) are different.

Thus Ft(A)/≡ ∈ ISPK that is, A ∈ HSPK. �

Theorem 2.5.11. (Quasi–variety characterization) For any class K of similar algebras

ModQeq(K) = SPUpK = SPrK .
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For proving Theorem 2.5.11, we need Lemmas 2.5.12, 2.5.13 below.
Let t be an arbitrary similarity type. Let I be an arbitrary set, and let e,

ei (i ∈ I) be equations of type t. Then we call the formula ∧ei
i∈I
→ e an infinitary

quasi–equation. If A ∈ Modt, k is a valuation of the variables into A, then

A |= ∧ei
i∈I
→ e[k]

def
⇐⇒ A 2 ei [k] for some i ∈ I , or A |= e[k] .

Notice that if I is finite then ∧ei
i∈I
→ e is a quasi–equation. Also notice that if

I0 ⊆ I then ∧ei
i∈I0

→ e |= ∧ei
i∈I
→ e.

For any class K of similar algebras we define

Qeq∞(K)
def
= {ϕ : ϕ is an infinitary quasi–equation and K |= ϕ} .

Lemma 2.5.12. For any class K of similar algebras,

ModQeq(K) ⊆ ModQeq∞(UpK) .

Proof. Let ∧ei
i∈I
→ e be an arbitrary infinitary quasi–equation. We will show that

if UpK |= ∧ei
i∈I
→ e then there is a finite I0 ⊆ I such that K |= ∧ei

i∈I0

→ e . (2.12)

Assume that (2.12) holds, and let A ∈ ModQeq(K), ∧ei
i∈I
→ e ∈ Qeq∞(UpK). Then,

by (2.12), there is a finite I0 ⊆ I such that K |= ∧ei
i∈I0

→ e. Then A |= ∧ei
i∈I0

→ e, and

thus A |= ∧ei
i∈I
→ e by ∧ei

i∈I0

→ e |= ∧ei
i∈I
→ e. Therefore A ∈ ModQeq∞(UpK), since

we choose ∧ei
i∈I
→ e arbitrarily. This proves Lemma 2.5.12. It remains to prove

(2.12).

To see (2.12), let J = {j ⊆ I : |j| < ω}, and assume that K 2 ∧ei
i∈j
→ e for

every j ∈ J . Then

(∀j ∈ J)(∃Aj ∈ K)(∃ valuation kj of the variables into Aj)
(

Aj |= ∧
i∈j
ei[kj ] but Aj 2 e[kj ]

)

.

For every j ∈ J , let such an Aj be fixed. Let F be an ultrafilter over J , B
def
=

Π〈Aj : j ∈ J〉/F , and k(x)
def
= 〈kj(x) : j ∈ J〉/F for every variable x. Then

B |= ∧
i∈I
ei[k] but B 2 e[k] by Theorem 2.2.57 (ii). Since B ∈ UpK, this implies

that UpK |= ∧ei
i∈I
→ e does not hold. This proves (2.12). �
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Figure 2.26: Proof of Claim

Lemma 2.5.13. For any class of similar algebras K,

ModQeq∞(K) ⊆ SPK .

Proof. Let A ∈ ModQeq∞(K). Let

H
def
= {h : h is a homomorphism

with Dom(h) = A and Rng(h) ⊆ C for some C ∈ K} .

For arbitrary h1, h2 ∈ H , we say that h1 and h2 are equivalent if ker(h1) = ker(h2).
There are only set many non–equivalent homomorphisms in H , because Con(A)
is a set and (∀h ∈ H)ker (h) ∈ Con(A). Thus we can take a system 〈hi : i ∈ I〉
of homomorphisms from the class H indexed by some set I such that {ker(hi) :
i ∈ I} = {ker(h) : h ∈ H}. For every i ∈ I , let Ai be an element of K such that

Rng(hi) ⊆ Ai. Let B
def
= Πi∈IAi. Let f : A −→ B be the homomorphism induced

by the product B. (Cf. Lemma 2.2.23 (iv).) Thus

(∀i ∈ I)f ◦ pi = hi , (2.13)

where pi is the i–th projection. It is enough to prove that f is injective.

Let V denote a set of variables. Let g : V �→ A be a bijection. Let Diag+(A)
denote the set of all atomic formulas true in A at the valuation g of the variables.
(We call Diag+(A) the positive diagram of A.)

Claim: For any x, y ∈ Dom(g), if f(gx) = f(gy) then

K |= Diag+(A)→ x = y .

Proof. The proof of the Claim is illustrated on Figure 2.26.

Let x, y ∈ V be arbitrary but fixed. Assume

f(gx) = f(gy) . (2.14)
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Let C ∈ K be such that

C |= Diag+(A)[k] (2.15)

for some valuation k of the variables. Let k′ : A −→ C be the function defined as
follows:

(∀a ∈ A)k′(a)
def
= k(g−1a) .

Because of (2.15), k′ is a homomorphism. Then k′ ∈ H , and

ker(k′) = ker (hi) (2.16)

for some i ∈ I . Then hi(gx) = hi(gy) by (2.14) and (2.13), therefore k′(gx) =
k′(gy) by (2.16). Then k(x) = k(y) be the definition of k′. Thus C |= Diag+(A)→
x = y[k], which proves the claim, since C and k were chosen arbitrarily. �

Now assume that a, b ∈ A, f(a) = f(b). Then there are variables x, y ∈ V
such that g(x) = a and g(y) = b, and by our assumption we have f(g(x)) =
f(g(y)). Then, by the above Claim, K |= Diag+(A) → x = y. Notice that
Diag+(A) → x = y is an infinitary quasi–equation. Thus, since A ∈ ModQeq∞K,
A |= Diag+(A) → x = y as well. Therefore, in particular, A |= Diag+(A) → x =
y [q] for any valuation q such that q(x) = g(x) and q(y) = g(y). Then g(x) = g(y),
since A |= Diag+(A) [q]. Thus a = b, proving that f is an injection. This completes
the proof of Lemma 2.5.13. �

Proof. Proof of Theorem 2.5.11: SPUpK ⊆ ModQeq(K) holds, because S,P,Up
preserve quasi–equations (cf. Exercise 2.5.2 (4)).

To see ModQeq(K) ⊆ SPUpK, let A ∈ ModQeq(K). By Lemmas 2.5.12 and
2.5.13, A ∈ ModQeq∞(UpK) ⊆ SPUpK. �

Corollary 2.5.14. For any class of similar algebras,

ModQeq(K) = SPrK .

Proof. This follows directly from Theorem 2.5.11 and Lemma 2.2.60. �

2.6 Discriminator varieties

⇒ Már ebben a fejezetben nagyon relevánsak a Boole algebrák!! Eltoprengeni,
hogyan legyen. Ld. BA-s exerciseket ebben a fejezetben. Ide valo az az exerc. is,
hogy BA discr varietas

Bevezető szöveg!

Definition 2.6.1. (discriminator term, discriminator variety)



78 Chapter 2. Basics from Universal Algebra

(i) A class K of algebras is said to have a discriminator term iff there is a term
τ(x, y, z, u) in the language of K such that in every member of K we have

τ(x, y, z, u) =

{

z, if x = y,

u, otherwise.

(ii) A variety V is called a discriminator variety if the class Sir(V) of subdirectly
irreducible members of V has a discriminator term.

Sometimes, instead of the 4–ary τ , the ternary discriminator term t(x, y, z) =
τ(x, y, z, x) is used. They are interdefinable, since

τ(x, y, z, u) = t(t(x, y, z), t(x, y, u), z).

Therefore, it does not matter which one is used.

Exercises 2.6.2. (1) Show that if K has a discriminator term then K consists of
simple algebras.

(2) Assume that the Boolean operations −,∧, 0, 1 are available in K and that
they satisfy the Boolean axioms (i.e. every element of K is a Boolean algebra
possibly with some further operations). This property will be referred to as ‘K
has a Boolean reduct ’ or that the elements of K are Boolean ordered algebras .
Prove that K has a discriminator term iff there is a term c(x) in the language
of K such that

c(x) =

{

0, if x = 0,

1, otherwise

in every member of K.

(Hint: τ(x, y, z, u) =
[
c(x⊕ y) ∧ u

]
∨

[
z ∧ −c(x⊕ y)

]
, where ⊕ denotes

symmetric difference.)

Theorem 2.6.3. Let K be a class of similar algebras. Assume that K has a discrim-
inator term. Then

HSPK = SPUpK.

The proof we give here is a model theory oriented, more intuitive proof as
opposed to the more “computational” proofs in the standard universal algebra
books. The idea of giving here such a more intuitive proof was suggested us by
Johan van Benthem.

In the proof we will use Proposition 2.6.4 below.

Proposition 2.6.4. Assume K has a discriminator term. Then to every quasi–
equation q in the language of K there is an equation e(q) such that (i)–(ii) below
hold:

(i) K |= e(q)↔ q ,
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(ii) HSPK |= e(q)→ q .

Proof. By the length of a quasi–equation we mean the number of the equations
on the left hand side of the implication of the quasi–equation. The proof goes by
induction on the length of quasi–equations. For any quasi–equation q, length(q)
denotes its length.

If length(q) = 0 for a quasi–equation q, then it is an equation, and then
statements (i) and (ii) are obvious.

The induction step: Assume that for any quasi–equation q′ we have:

length(q′) < n =⇒

(∃ equation e(q′)) (K |= e(q′)↔ q′ & HSPK |= e(q′)→ q′) . (2.17)

Let q be a quasi–equation of length n, say q is

(σ1 = ρ1 ∧ · · · ∧ σn = ρn)→ σ0 = ρ0 .

Then q is equivalent to
σ1 = ρ1 → q′ ,

where q′ is the quasi–equation (σ2 = ρ2 ∧ · · · ∧ σn = ρn) → σ0 = ρ0. Since
length(q′) < n, by the induction hypothesis (IH) above we have

K |= σ = ρ↔ q′ and HSPK |= σ = ρ→ q′ (2.18)

for some equation σ = ρ.
Let τ denote the discriminator term of K, and we define e(q) to be

τ(σ1, ρ1, σ, ρ) = ρ .

First we prove that

K |= q → e(q) . (2.19)

To see this, let A ∈ K and the valuation ā ∈ ωA of the variables into A be arbitrary.
It is enough to prove that

A |= ¬e(q)→ ¬q[ā] . (2.20)

Assume A |= ¬e(q)[ā], that is, A |= τ(σ1, ρ1, σ, ρ) 6= ρ[ā]. Since τ is a discriminator
term, this implies

A |= σ1 = ρ1[ā] (2.21)

and
A |= σ 6= ρ[ā] .
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By the latter and (2.18),

A 2 q′[ā] . (2.22)

By (2.21) and (2.22), A 2 q[ā], proving (2.20). This proves (2.19).

Next we are proving

HSPK |= ¬q → ¬e(q) . (2.23)

To do this, let A ∈ HSPK and ā ∈ ωA, and assume that A 2 q[ā]. Then

A |= σ1 = ρ1[ā] (2.24)

and A 2 q′[ā], thus

A |= σ 6= ρ[ā] (2.25)

by (the second part of) (2.18). Now A |= τ(σ1, ρ1, σ, ρ) = σ 6= ρ[ā] by (2.24)
and (2.25). This proves A 2 e(q)[ā], proving (2.23), since A and ā were chosen
arbitrarily. We have proved (2.23).

(2.19) and (2.23) together prove Proposition 2.6.4. �

Proof. Proof of Theorem 2.6.3: First we prove that HSPK |= Qeq(K). Indeed,
let q ∈ Qeq(K). Then, by Proposition 2.6.4 (i), there is an equation e(q) with
K |=

(
e(q) ↔ q

)
. Since equations are preserved under HSP, HSP K |= e(q) also

holds. Now by Proposition 2.6.4 (ii), HSPK |= q.
Now

HSPK ⊆ ModQeq(K) = SPUpK ,

by Thm.2.5.11, which proves one direction of Theorem 2.6.3.
The other direction, SPUpK ⊆ HSPK is straightforward, since, by Exercise

2.2.62, Up ⊆ HP, PH ⊆ HP, SH ⊆ HS, and PP = P. �

Exercise 2.6.5. Check how much one can simplify the proof of Theorem 2.6.3 above
if we assume that K has a Boolean reduct (cf. item (2) of Exercises 2.6.2 above).

Corollary 2.6.6. Assume K has a discriminator term. Then

(i) K is contained in some discriminator variety.

(ii) The subdirectly irreducible members of HSP K are exactly the subdirectly
irreducibles of SUpK.

Proof. (ii): Let A be a subdirectly irreducible member of HSPK. By Theorem
2.6.3, A ∈ SP(UpK). Then A is a subdirect product of algebras from SUpK. By
irreducibility, then A ∈ SUpK. This proves (ii).

(i): The discriminator term τ which works for K also works for SUpK, since
the discriminator property

∀x, y, z, u
(
[x 6= y ⇒ τ(x, y, z, u) = u] ∧ [x = y ⇒ τ(x, y, z, u) = z]

)



2.7. Boolean Algebras 81

is defined by a universal formula, thus is preserved under SUp. Thus SUpK has a
discriminator term. But by (ii) the class Sir(HSPK) of subdirectly irreducibles of
HSPK is in SUpK. Then by definition, HSPK is a discriminator variety. �

Exercises 2.6.7. (i) Prove that (d1 − d2) below are equivalent with saying that
τ is a discriminator term for K.

τ(x, x, z, u) = z (2.26)

τ(x, y, z, u) = u ∨ x = y . (2.27)

(ii) Prove that if τ is a discriminator term then also (d3 − d5) below are true.

τ(x, y, z, u) = z → (x = y ∨ z = u (2.28)

τ(x, y, z, u) = z ∨ τ(x, y, z, u) = u (2.29)

τ(x, y, z, z) = z . (2.30)

Exercises 2.6.8. Assume τ is a discriminator term for K.

(i) Prove that HSPK |= (d1 ∧ d5) (for (d1) and (d5) see previous exercise).

(ii) Prove that HSK |= (d1, d2).

Hint: Basic universal algebra:

(i) Equations are preserved under H, S and P.

(ii) Quasi–equations (implications between equations) are preserved under S and
P.

(iii) Disjunctions of equations are preserved under H and S.

Exercise 2.6.9. Assume τ is a discriminator term for K. Prove that in HSPK (the
variety generated by K) d1 and d3 are valid.

Hint: Use Theorem 2.5.11 above saying that SPUpK = HSPUpK if K has
a discriminator. Then apply Exercise 2.6.8 (ii) above together with the fact that
Up preserves all formulas, hence UpK |= (d1 − d3).

2.7 Boolean Algebras

Vigyazat, ez a fejezet ideiglenes, at kell gondolni rendesen. Ez egy fontos fejezet.
The basic theory of Boolean algebras (BA’s for short) can be found in any

textbook on universal algebra, e.g. in Burris et al. [25] or in Halmos’s book [36] or
in the handbook [44]. For the reader not familiar with BA’s, we would like to point
out that Halmos’s little book [36] is a very easily readable introduction. Since the
literature is so rich, we do not reproduce it here, instead we establish only notation
and terminology to be used later, and give some basic theorems with outlines of
proofs only.
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As we already wrote in previous sections, the similarity type of BA′s is ba =
{〈∨, 2〉, 〈−, 1〉}. We defined BA’s in the following steps: the class of powerset BA’s
was defined to be

{P(U) : P(U) = 〈P(U),∪,−〉 for some set U} ,

where set theoretic union ∪ is the interpretation of ∨, and the set theoretic com-
plementation − is the interpretation of the symbol − (denoted both the same
way, ambiguously). (Cf. Examples 2.1.7 4.) Then we defined Boolean set algebras
in Definition 2.2.3 as

SetBA = S{P(U) : U is a set} .

Finally, in Definition 2.2.11, BA’s were defined as

BA = ISetBA .

We use the following derived operations:

x ∧ y = −(−x ∨ −y)

0 = x ∧ −x

1 = x ∨ −x

x− y = x ∧ −y

x⊕ y = (x− y) ∨ (y − x) .

As can be seen, we use the complementation symbol − in two different senses,
both as a unary operation (this is the basic one), and sometimes also as a binary
operation abbreviating x∧−y. We hope context will help to avoid misunderstand-
ing.

As it is usual, we define the ordering 6 of BA’s as:

x 6 y
def
⇐⇒ x ∨ y = y .

The “generic” BA is the following:

2
∼

= P({0}) .

Exercises 2.7.1. Recall that 1 = {0}.

(1) Prove that 2
∼

= P(1) has exactly 2 elements.

(2) Prove that 2
∼

has no subalgebras (except itself).

(3) Prove that 2
∼

has no nontrivial homomorphic images.

(4) Prove that there exists a one–element BA.
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(5) Prove that there is no 3–element BA.

(6) Prove that in any Algt there is only one one–element algebra up to isomor-
phism. (The expression “up to isomorphism” will be used quite often, and its
above use makes the above sentence mean that any two one–element algebras
are isomorphic.)

(7) Prove that there is only one two–element BA (up to isomorphism).

(8)∗ Prove that there is at most one 4–element BA (up to isomorphism).

Definition 2.7.2. Let A ∈ BA. By a filter of A we understand a congruence class
of 1A. By an ultrafilter of A we understand a maximal filter, that is, the kernel of
a homomorphisms of A onto 2

∼
.

Lemma 2.7.3. characterization of filters and ultrafilters Let A be an arbitrary BA.

(i) F is a filter of A iff the following conditions hold for all a, b ∈ A.

1 ∈ F

a ∈ F , a 6 b⇒ b ∈ F

a, b ∈ F ⇒ a ∧ b ∈ F .

(ii) F is an ultrafilter of A iff it is a filter of A and for all a ∈ A,

a ∈ F ⇐⇒ −a ∈ Ar F .

Proof. The proof is left to the reader. �

Definition 2.7.4. Let Bax be the following set of axioms:

x ∧ y = −(−x ∨ −y) (2.31)

x ∧ y = y ∧ x (2.32)

x− (−y − z) = −(−(x ∧ y)− (x ∧ z)) (2.33)

x− (y − y) = x . (2.34)

(2.35)

Theorem 2.7.5. Stone’s axiomatizability theorem BA is a finitely axiomatizable va-
riety. Moreover,

BA = Mod(Bax ) ,

where Bax is the set of axioms given in Definition 2.7.4 above.

Proof. Outline of proof: BA ⊆ Mod(Bax ) is easy to check. To see Mod(Bax ) ⊆ BA,
let A ∈ Mod(Bax ) be arbitrary, and we define the following function rep: for every
a ∈ A,

rep(a)
def
= {U : U is an ultrafilter of A and a ∈ U} .
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Using that A |= Bax , it is not hard to check that rep is a Boolean homomorphism
into the Boolean set algebra 〈{rep(a) : a ∈ A},∪,−〉. Thus

Mod(Bax ) ⊆ HMod(Bax ) ⊆ SetBA ⊆ BA ⊆ Mod(Bax )

completes the proof. �

Lemma 2.7.6. Sir ∩ BA = I{2
∼
} .

Proof. Outline of proof: First one proves that 2
∼

is subdirectly irreducible, i.e.

2
∼
∈ SirBA. This was done in Exercise 2.2.33 (2) and also in Exercise 2.2.38 (2);

but for completeness we include a proof here. This proof is based on the fact that,
by Exercise 2.7.1 (3) above, 2

∼
has no nontrivial homomorphic image, but any

subdirect decomposition of an algebra A consists of homomorphic images of A.
Therefore any subdirect decomposition of 2

∼
consists of the one element BA and

the two element BA and nothing else. But the one element BA is trivial, so should
be omitted from the decomposition, while any two element BA is isomorphic to
2
∼

, hence any decomposition of 2
∼

consists of the original 2
∼

itself as factors. This

means that 2
∼

is subdirectly irreducible.

Next one proves that any subdirectly indecomposable BA is isomorphic to 2
∼

.

This goes as follows. Assume A ∈ SirBA. Assume x ∈ A and x 6= 0, x 6= 1. Then
relativising with x as well as relativising with −x are homomorphisms, and they
provide a subdirect decomposition of A; where relativising with x is the function

rlx sending y to x ∩ y, that is, rlx
def
= 〈x ∩ y : y ∈ A〉. �

Theorem 2.7.7. BA = SP{2
∼
}.

Proof. By Lemma 2.7.6, SirBA = I{2
∼
}. Now, by Birkhoff’s “subdirect decompos-

ability” theorem (Theorem 2.2.40), we have that BA = SPSirBA = SPI{2
∼
} =

SP{2
∼
}. �

Exercise 2.7.8. Let B ∈ BA. Represent B as a set BA C such that C ⊆ P(U × U)
for some set U .

Hint: To any sets U and W , if |U × U | > |W | then there is a partition P of
U × U with |P | = |W |.

2.8 Boolean Ordered Algebras (Boa’s), Boolean Alge-

bras with Operators (BAO’s)

By a Boolean ordered algebra (Boa) we understand an (arbitrary) universal algebra
in which the BA–operations are term definable. A Boolean algebra with operators
(BAO) is a special Boa. (A more precise definition follows below.)
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More concretely, recall from section 2.1 that by a similarity type we under-
stand a function t : I −→ ω for some set I . By a Boa of similarity type t we
understand an algebra A = 〈B, fi〉i∈I , where B ∈ BA and (∀i ∈ I) fi : t(i)B → B.

By a Boa we understand a Boa of similarity type t for some t. Notice that a
Boa of type t is a (special) universal algebra of type t+ (Boolean operations).5

Convention 2.8.1. Throughout t is fixed to denote the similarity type of the algebra
in question. So we might be discussing some algebra 〈B, fi〉i∈I without mentioning
any “t.” Then suddenly we start talking about t(i) (or t(fi) sometimes). Then t(i)
defines (by the force of the present convention) the rank of fi.

Exercises 2.8.2. (1) BA ⊆ Boa.

(2) Let B ∈ BA,c : B −→ B. We define

Cs1
def
=

{
〈B, c〉 : B ∈ BA and c(x) =

{

1 if x 6= 0

0 if x = 0

}
.

We call the class Cs1 the class of cylindric set algebras of dimension 1. Clearly
Cs1 ⊆ Boa.

Claim 2.8.3. Cs1 ⊆ Smp.

(3) Let B ∈ BA, c : B −→ B.

Kapcsolatot teremteni a lop alfejezettel!!:

We call c a closure operator iff x 6 cx = ccx and x 6 y ⇒ cx 6 cy for every
x ∈ B. We call c a complemented closure operator iff c is a closure operator and, in
addition, c(−cx) = −cx for every x ∈ B. c is called additive iff c(x∨ y) = cx∨ cy.
Now we define

CA1
def
= {〈B, c〉 : B ∈ BA and c is an additive complemented closure operator} .

CA1 is called the class of cylindric algebras of dimension 1. Clearly CA1 ⊆ Boa.

Claim 2.8.4. Sir(CA1) = Cs1.

Corollary 2.8.5. CA1 is a discriminator variety.

Proof. By Claim 2.8.4, Sir(CA1) = Cs1. As a consequence of Exercise 2.6.2, Cs1

has a discriminator term. �

Lemma 2.8.6. Let A ∈ Boa, θ ∈ Con(A), a, b ∈ A. Then

a θ b⇐⇒ (a⊕ b) θ 0 .

5The careful reader may read “Boa of type t” as an abbreviation for “Boa of extra–Boolean
type t”. Here we use the former expression for keeping things short.
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Proof. Recall that x = y ⇐⇒ x⊕ y = 0. Now

a θ b⇐⇒ a/θ = b/θ

⇐⇒ a/θ ⊕ b/θ = 0/θ

⇐⇒ (a⊕ b)/θ = 0/θ

⇐⇒ (a⊕ b) θ 0 .

�

Definition 2.8.7. By a BAO (Boolean Algebra with operators) of type t (a BAOt)
we mean a Boa A = 〈B, fi〉i∈I of type t such that the set (Dst) of distributivity
equations below is valid in A.

(Dst) each fi distributes over Boolean “∨”, i.e.

fi(x1, . . . ,xn−1, (xn ∨ yn), xn+1, . . . ,xt(i)) =

fi(x1, . . . ,xt(i)) ∨ fi(x1, . . . ,xn−1, yn, xn+1, . . . ,xt(i))

for each i ∈ I and each n 6 t(i).

By a normal BAO we understand a BAO 〈B, fi〉i∈I in which the equations (Nrm)
below are valid.

(Nrm) fi(x1, . . . ,xn−1, 0, xn+1, . . . ,xt(i)) = 0 for each n 6 t(i) and i ∈ I .

BAOt and Normal BAOt denote the classes of all BAO’s and all normal BAO’s of
similarity type t, respectively.

Exercises 2.8.8. (1) Recall the definitions of the classes Cs1 and CA1 of algebras
from Examples 2.8.2. Prove that Cs1 ⊆ BAO and CA1 ⊆ BAO.

(2) Give an example for an algebra A such that A ∈ Boa r BAO.

(3) Prove that BAOt and normal BAOt are varieties.

(4) When are these two varieties finitely axiomatizable?6

Notation 2.8.9. For a BAO A = 〈B, fi〉i∈I we define A◦
def
= B. That is, A◦ is the

BA–reduct of A.

Let A ∈ Boa and a ∈ A. We call a an atom iff 0 < a and (∀b ∈ A)(0 < b 6

a ⇒ b = a). A is called atomic iff every element of A is the union of some of the
atoms of A. Notice that every finite Boolean algebra is atomic. A Boa is called
complete iff its lattice reduct is a complete lattice.

Theorem 2.8.10. (Jónsson–Tarski [42]) 7

(i) Every BAO A is contained (as a subalgebra) in a complete and atomic BAO
A+.

6Note that t is a set of pairs hence if t : I −→ ω then |t| = |I|.
7The original theorem says more than what we state here.
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(ii) If A is normal, then so is A+.

(iii) A+ is completely distributive, i.e. each fi commutes with arbitrary suprema
in A+.

(iv) For every proper filter8 F of A◦, the infimum of F taken in A+ is nonzero.

Formally, inf(A
+) F 6= 0.

For proving Theorem 2.8.10 we will need the following proposition of BA–
theory.

Proposition 2.8.11. (i) Every BA A is contained (as a subalgebra) in a complete
and atomic BA A+.

(ii) For every proper filter F of A◦, inf(A
+)F 6= 0.

Proof. This is an immediate consequence of the well known (Stone) representation
theorem of BA’s. It can be found in any textbook on BA’s (and most ones on
universal algebra).

Hint: let XA be the set of ultrafilters of A, and let B be the BA of all subsets
of XA. The embedding of A into B sends each element of A to the set of ultrafilters
containing it, i.e. f(a) = {x ∈ XA : a ∈ x} for all a ∈ A. �

Proof. Proof Theorem 2.8.10: Let A ∈ BAO. Consider A◦ ∈ BA. By Proposition
2.8.11, there is a complete and atomic B ∈ BA with B ⊇ A◦ satisfying (iv). Let
this B be fixed, see Figure 2.27.

It is enough to define operations f+
i : t(i)B → B (for each i) such that f+

i

commutes with suprema and agrees with fi on A. First we define f+
i on the atoms

AtB of B. To make the idea of the proof more visible we write out the rest of the
proof for the special case when each fi is normal and unary. The generalization to
n–ary fi is straightforward.

Definition 2.8.12. We define

(i) f+
i (b)

def
= infB{fi(x) : b 6 x ∈ A} for each b ∈ AtB, and

(ii) f+
i (y)

def
= supB{f+

i (b) : b ∈ AtB and b 6 y}.

Figure 2.28 represents the definition of f+
i (b) with b an atom.

Both parts of the definition make sense since B is complete, and they define
a function f+

i : B → B. It is useful to notice here that

y = supB{b ∈ AtB : b 6 y} (2.36)

for any y ∈ B. (This explains how f+
i (y) is determined by part (i) of the definition.)

Clearly, f+
i is completely distributive by a bit of Boolean reasoning, using part

(ii) of the definition. We let A+ def
= 〈B, f+

i 〉i∈I . Clearly A+ ∈ BAO is complete and
atomic, etc. The question is how A+ is related to A.

8A filter F is proper if 0 /∈ F .
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Claim 2.8.13. Let y ∈ A. Then f+
i (y) 6 fi(y).

Proof. Assume f+
i (y) ≥ a ∈ AtB. Then by (ii) (∃b ∈ AtB) [b 6 y and f+

i (b) ≥ a].
Fix this b. By (i) then a is a lower bound of {fi(x) : b 6 x ∈ A}. Since b 6 y ∈ A,
this implies a 6 fi(y). We proved that fi(y) is an upper bound of {a ∈ AtB :
a 6 f+

i (y)}. By (4.1) then fi(y) ≥ sup{a ∈ AtB : a 6 f+
i (y)} = f+

i (y). �

From now on we write f and f+ for fi and f+
i respectively. Similarly, we

write At for AtB.

Claim 2.8.14. Let y ∈ A, f(y) ≥ b ∈ At. Then there is a ∈ At such that a 6 y and
b 6 f+(a).

Proof. Let N
def
= {x ∈ A : b � f(x)}. Note that N 6= ∅ by normality. Let x0, . . .,

xn ∈ N . We show that

−y ∨ x0 ∨ . . . ∨ xn 6= 1 . (2.37)

Assume the contrary. Then y 6 x0 ∨ . . . ∨ xn, thus b 6 f(y) 6 f(x0 ∨ . . . ∨ xn) =
f(x0)∨ . . .∨f(xn). Since b is an atom, this means (∃i 6 n) b 6 f(xi) contradicting
the definition of N . This proves (2.37).

Let N− = {−x : x ∈ N} ∪ {y}. Then by (4.2) for any finite H ⊆ N−,
inf(H) 6= 0. Hence N− is contained in a proper filter of A whence, by (iv), there
is an atom a 6 inf(N−). Assume now a 6 x ∈ A, for some x. Then

a 6 x ⇒
↑

a6=0

a � −x ⇒ −x /∈ N− ⇒ x /∈ N ⇒ b 6 f(x).

This proves b 6 inf{f(x) : a 6 x ∈ A} = f+(a). By a 6 inf(N−) 6 y we are
done. �

Let y ∈ A and f(y) ≥ b ∈ At be arbitrary. By Claim 2.8.14, there is an atom
a 6 y with f+(a) ≥ b. Now,

f+(y) = sup{f+(a) : y ≥ a ∈ At} ≥ f+(a) ≥ b.

So for any atom b 6 f(y) we proved f+(y) ≥ b. Then f(y) = sup{b ∈ At : f(y) ≥
b} 6 f+(y). By the choice of y we proved (∀y ∈ A) f+(y) ≥ f(y). Together with
Claim 2.8.13 this implies (∀y ∈ A) f+(y) = f(y). That is,

f+
i dA = fi for all i ∈ I.

But this means exactly that A ⊆ A+. The rest is immediate from the properties
of B and its relationship with A◦ both of which we inherited from Proposition
2.8.11. We have proved Theorem 2.8.10. �

Definition 2.8.15. An equation e in the language of BAO’s is called positive if “−”
does not occur in e except perhaps in front of constant symbols. I.e. if t(i) = 0
then −fi may occur in e.
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Theorem 2.8.16. (Jónsson–Tarski) Let A ∈ BAO. Then there is a complete and
atomic BAO A+ ⊇ A as in Theorem 2.8.10, such that the following holds. For any
positive equation e, we have (A |= e)⇒ (A+ |= e).

Proof. It can be found, e.g. in Jónsson–Tarski [43], [37, §2.7 (Theorems 2.7.13,
2.7.14, 1.7.16)]. �

To be filled in later. Puska: Venema diszi BAO appendix
Valahol legyenek lezarasi operatorok is, meg felcsoportok is. Lehet mondani,

hogy BA a logika absztrakciojakent jott letre; felcsoportok meg szamok absztrak-
ciojakent.
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Chapter 3

General framework for studying
logics

3.1 Defining the framework

Defining a logic is an experience similar to defining a language. (This is no coin-
cidence if you think about the applications of logic in e.g. theoretical linguistics.)
So how do we define a language, say a programming language like C++. First one
defines the syntax of C++. This amounts to defining the set of all C++ programs.
This definition tells us which strings of symbols count as C++ programs and which
do not. But this information in itself is not very useful, because having only this
information enables the user to write programs but the user will have no idea what
his programs will do. Indeed, the second, and more important step in defining C++

amounts to describing what the various C++ programs will do when executed. In
other words, we have to define the meaning, or semantics of the language, e.g.
of C++. Defining semantics can be done in two steps, (i) we define the class M
of possible machines that understand C++, and then (ii) to each machine M and
each string ϕ of symbols that counts as a C++ program we tell what M will do
if we “ask” it to execute ϕ. In other words we define the meaning mng(ϕ,M) of
program ϕ in machine M.

The procedure remains basically the same if the language in question is not a
programming language but something like a natural language or a simple declara-
tive language like first-order logic. When teaching a foreign language, e.g. German,
one has to explain which strings of symbols are German sentences and which are
not (e.g. “Der Tisch ist rot” is a German sentence while “Das Tisch ist rot” is
not). This is called explaining the syntax of German. Besides this, one has to ex-
plain what the German sentences mean. This amounts to defining the semantics of
German. If we want to formalize the definition of semantics (for, say, a fragment
of German) then one again defines a class M of possible situations or with other
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words, “possible worlds” in which our German sentences are interpreted, and then
to each situation M and each sentence ϕ we define the meaning or denotation
mng(ϕ,M) of ϕ in situation (or possible world) M.

At this point we could discuss the difference between a language and a logic,
but we do not do that. For our present purposes it is enough to say that the two
things are very-very similar.1

Soon (in Definition 3.1.3 below) we will define what we mean by a logic. (A
more carefully chosen expression would be “logical system”.) Roughly speaking, a
logic L is a five-tuple

L = 〈FL,`L,ML,mngL, |=L〉 ,

where

• FL is a set, called the set of all formulas of L;

• `L is a binary relation between sets of formulas and individual formulas, that
is, `L⊆ P(FL)×FL (for any set X , P(X) denotes the powerset of X); `L is
called the provability relation of L;

• ML is a class, called the class of all models (or possible worlds) of L;

• mngL is a function with domain FL×ML, called the meaning function of L,
hence, by the usual convention of set theory,

mngL : FL ×ML −→ V

where V is the class of all sets (cf. the end of subsection 1.1).

• |=L is a binary relation, |=L⊆ML × FL, called the validity relation of L;

• there is some connection between |=L and mngL, namely for all ϕ, ψ ∈ FL
and M ∈ML we have

(
mngL(ϕ,M) = mngL(ψ,M) and M |=L ϕ

)
=⇒M |=L ψ . (3.1)

Intuitively, FL is the collection of “texts” or “sentences” or “formulas” that
can be “said” or “expressed” in the language L. For Γ ⊆ FL and ϕ ∈ FL, the
intuitive meaning of Γ `L ϕ is that ϕ is provable (or derivable) from Γ with the
syntactic inference system (or deductive mechanism) of L. In all important cases,
`L is subject to certain (well-known) conditions like Γ `L ϕ and Γ ∪ {ϕ} `L ψ
imply Γ `L ψ for any Γ ⊆ FL and ϕ, ψ ∈ FL. The meaning function tells us what
the texts belonging to FL mean in the possible worlds from ML. For fixed ϕ ∈ FL
and M ∈ML, mngL(ϕ,M) is called the meaning or denotation or intension of the
expression ϕ in the model (or “possible environment” or “possible interpretation”)

1The philosophical minded reader might enjoy looking into the book [2], cf. e.g. B. Partee’s
paper therein.
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M.2 The validity relation tells us which texts are “true” in which possible worlds
(or models) under what conditions. In all the interesting cases from mngL the
relation |=L is definable. A typical possible definition of |=L from mngL is the
following.

M |=L ϕ iff (∀ψ ∈ FL)
(
mngL(ψ,M) ⊆ mngL(ϕ,M)

)
,

for all ϕ ∈ FL, M ∈ ML. However, in general, definability of |=L from mngL is
not required (condition (3.1) above is not a definition).

When no confusion is likely, we omit the subscripts L from FL, `L etc.

Usually FL and `L are defined by what is called a grammar in mathemat-
ical linguistics. 〈FL,`L〉 together with the grammar defining them is called the
syntactical part of L, while 〈ML,mngL, |=L〉 is the semantical part of L.

When defining a logic, a typical definition of F has the following recursive
form. Two sets, P and Cn(L) are given; P is called the set of primitive or atomic
formulas and Cn(L) is called the set of logical connectives of L (these are operation
symbols with finite or infinite ranks). Then we require F to be the smallest set H
satisfying

(1) P ⊆ H , and

(2) for every ϕ1, . . . , ϕn ∈ H and f ∈ Cn(L) of rank n, f(ϕ1, . . . , ϕn) ∈ H .

For example, in propositional logic, if p is some propositional variable (atomic
formula according to our terminology), then (¬p) is defined to be a formula (where
¬ is a logical connective of rank 1).

For formulas ϕ ∈ F and models M ∈M , mng(ϕ,M) and M |= ϕ are defined
in uniform ways (by some finite “schemas”).

Given a logic L, for ϕ ∈ FL we say that ϕ is valid (in L), in symbols |=L ϕ,
iff (∀M ∈ ML)M |= ϕ. For ϕ as above and Γ ⊆ FL we say that ϕ is a semantical
consequence of Γ, in symbols Γ |=L ϕ, iff (∀M ∈ ML)

(
(∀ψ ∈ Γ)M |=L ψ =⇒

M |=L ϕ
)
. (We hope that the traditional double use of symbol |= does not cause

real ambiguity.) One of the important topics of Logic is the study of the connection
between semantic consequence Γ |=L ϕ and the syntactic consequence Γ `L ϕ. If
the two coincide then `L is said to be strongly complete and sound (for L).

Figure 3.1 below illustrates the general pattern of a logic.
Exercises 3.1.1 below are designed to illuminate the intuitive content of the

concept of a logic as outlined above, and to show how familiar logics are special
cases of our general concept.

Ábra kilóg jobbra!

Exercises 3.1.1.

2The literature makes subtle distinctions between these words. We deliberately ignore these
distinctions, because on the present level of abstraction they are not relevant yet.



96 Chapter 3. General framework for studying logics

Figure 3.1: The “fan-structure” of a language with semantics
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(1) Create an illustration for the above outlined concept of a logic, that is, for
L = 〈FL,`L,ML,mngL, |=L〉, by formalizing classical sentential logic in this
spirit; and do this in the following way. Let P be a set, called the set of atomic
formulas of LS . Let {∧,¬} = Cn(LS) be a set disjoint from P , called the set
of logical connectives of LS (usually called Boolean connectives). Define the
set FS (of formulas) to be the smallest set H satisfying the two conditions:
P ⊆ H and

(
ϕ, ψ ∈ H =⇒ (ϕ ∧ ψ),¬ϕ ∈ H

)
. Further, define the class

MS (of models) as MS
def
= {〈W, v〉 : W is a non-empty set, and v : P −→

P(W )}. Now, you want to recast sentential logic LS in the form L0
S = 〈FS ,`0

S

,MS ,mng0
S , |=

0
S〉 such that it could be a concrete example of our general ideas

outlined above. For this, FS and MS are already defined. We leave `0
S to the

end. Let Sets denote the class of all sets. Define mng0
S : FS ×MS → Sets in

the following way. Let M = 〈W, v〉 ∈MS be arbitrary but fixed. For any p ∈ P

define mng0
S(p,M)

def
= v(p). For any ϕ, ψ ∈ FS define mng0

S

(
(ϕ ∧ ψ),M

) def
=

mng0
S(ϕ,M)∩mng0

S(ψ,M) and mng0
S(¬ϕ,M)

def
= W rmng0

S(ϕ,M). For any
M = 〈W, v〉 ∈ MS, ϕ ∈ FS let M |=0

S ϕ iff mng0
S(ϕ,M) = W . Check that

you indeed defined (the set of formulas together with) the “semantical part”
〈FS ,MS ,mng0

S , |=
0
S〉 of a logic in the sense outlined above these exercises.

Let us turn to defining a possible choice of `0
S .

Throughout, we use (ϕ → ψ) as an abbreviation for ¬(ϕ ∧ ¬ψ) and
(ϕ↔ ψ) as that for (ϕ→ ψ)∧ (ψ → ϕ). List a set Ax of valid formulas of LS

and call these logical axioms .3 Possible elements of this list are (ϕ→ ϕ) for all
ϕ ∈ FS , (ϕ∧ψ)→ (ψ∧ϕ), (ϕ∧ψ)→ ϕ, (ϕ∧¬ϕ)→ (ψ∧¬ψ), ϕ→ (ψ → ϕ),
for all ϕ, ψ ∈ FS . Having defined your set Ax of logical axioms, add the
inference rule {ϕ, (ϕ → ψ)} ` ψ (for all ϕ, ψ ∈ FS) which is called Modus
Ponens. If you wish, you may add similar rules like {ϕ, ψ} ` (ϕ ∧ ψ) (but
they are not really needed). For Γ ⊆ FS , define Γ `0

S ϕ to hold iff ϕ ∈ H for
the smallest set H ⊆ FS such that Γ ∪ Ax ⊆ H and H is closed under your
inference rules, e.g. whenever ψ, (ψ → ρ) ∈ H then also ρ ∈ H . With this,
you defined your choice of `0

S for L0
S . If

(
Γ `0

S ϕ =⇒ Γ |=0
S ϕ

)
for all Γ, ϕ

then `0
S is called sound . If the other direction “⇐=” holds, then `0

S is called
strongly complete. Spend a little time with trying to guess whether your `0

S

has one of these properties. Now, check that you indeed defined a logic

L0
S = 〈FS ,`

0
S ,MS,mng0

S , |=
0
S〉

in the sense outlined above the present exercises.

3If the instructions below would be too vague for the non-logician reader then s/he has
three options: (i) Consult Definitions 4.1.19–4.1.22 together with the 11 lines preceding Defini-
tion 4.1.19 in section 4.1 herein. There we define and discuss inference systems `L in detail, so
that should suffice. (ii) Recall any of the known inference systems for propositional logic from
the literature. (iii) Ignore this “`-part” of this exercise, since we will not rely on it later.
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(2) Compare the just defined versionL0
S of sentential logic with the ideas outlined

above.

(3) Compare L0
S with your own previous concept of sentential logic, and try to

prove that they are the same thing (perhaps in different forms).

(4) Change the logic L0
S obtaining L1

S in the following way. Leave FS and `0
S

unchanged. Define the new M1
S by postulating that its elements are functions

M : P → {0, 1}. (Identify 0 with False and 1 with True.) Define mng1
S : FS×

M1
S → {0, 1} and |=1

S in the natural way. (Hint: If p ∈ P then mng1
S(p,M)

def
=

M(p), and mng1
S(¬ϕ,M)

def
= 1 − mng1

S(ϕ,M), etc.) Check that what you
obtained, L1

S = 〈FS ,`0
S ,M

1
S ,mng1

S , |=
1
S〉, is again an example of our general

concept of a logic.

(5) Try to compare logics L0
S and L1

S . Try to find ways in which they could
be called equivalent. (Hint: Prove e.g. that they have the same semantic
consequence relation, i.e. (∀Γ ∪ {ϕ} ⊆ FS) Γ |=0

S ϕ⇔ Γ |=1
S ϕ.)

(6) Let ϕ ∈ FS be arbitrary. Prove that ϕ is valid in every model of L0
S iff it is

valid in every model of L1
S . That is, the validities of L0

S and L1
S coincide. Try

to find further similar “equivalence properties”.

??? FELADAT ???: A kovetkezo reszt (Remark 3.1.2-val bezarolag) 2 reszre kell
majd bontani. A tenyleg ervelo, mng`-t megszerkeszto reszt kicsit kesobbre kene
halasztani.

Instead of the general concept of a logic outlined above, in many cases we
will consider only four of its five components: FL, ML, mngL and |=L. Namely, we
found that we can simplify the theory without loss of generality by not dragging
`L along with us for the following reason.4

The validity relation |=L (or the function mngL if you like) induces the se-
mantical consequence relation |=L ⊆ P(FL) × FL, given above Exercises 3.1.1.
There is a natural temptation to try to replace `L with |=L in the theory, though
at several places (e.g. at completeness theorems) this would be a grave oversim-
plification. Surprisingly enough, we found that all the theorems we prove for |=L
carry over to `L, whenever the theorems are not about connections between |=L
and `L (see explanation below). Therefore we decided to drop `L for the time
being and introduce it only where we must say something about `L which cannot
be said about |=L in itself.

The reader interested in logics in the purely syntactical sense 〈FL,`L〉 is
invited to read our paper in the way described as follows.

4The following considerations, together with Remark 3.1.2, grew out from discussions with
Wim Blok, Joseph M. Font, Ramon Jansana and Don Pigozzi. In particular, Remark 3.1.2 is due
to Font and Jansana.
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Let Lsyn = 〈F,`〉 be a logic in the syntactical sense. To simplify the ar-
guments below, we assume that Lsyn has a derived logical connective “↔” just
as classical logics do, see Ex. 3.1.1 (1) above. Of course, we assume the usual
properties of “↔”, e.g. {ϕ, (ϕ ↔ ψ)} ` ψ etc. (cf. the `0

S part of Ex. 3.1.1 (1)).
Intuitively, (ϕ↔ ψ) expresses that ϕ and ψ are equivalent. In Remark 3.1.2 below
the present discussion, we discuss how to eliminate the assumption of the express-
ibility of “↔”. (However, the reader may safely skip Remark 3.1.2, since we will
not rely on it later.)

Assume we want to study the “syntactical logic” Lsyn = 〈F,`〉. To be able to
apply the theorems of the present paper, we will associate a class M` of pseudo-
models, a mng` etc. to Lsyn. The class of pseudo-models is

M`
def
= {T ⊆ F : T is closed under `}.

For any pseudo-model T ∈M` and formula ϕ ∈ F ,

mng`(ϕ, T )
def
= {ψ ∈ F : T ` (ϕ↔ ψ)} .

Further, validity in pseudo-models T ∈M` is defined as

T |=` ϕ
def
⇐⇒ ϕ ∈ T .

Now, if we want to investigate the “syntactic logic” 〈F,`〉, we apply our theorems
to the logic

L`
def
= 〈F,M`,mng`, |=`〉 .

Then condition (3.1) above holds for L` and the semantical consequence relation
induced by |=` coincides with the original syntactical one `. (These are easy to
check.) Hence, applying the theorems to the logic L` yields results about 〈F,`〉
as was desired. In other words, L` is an equivalent reformulation of the “syntactic
logic” 〈F,`〉, hence studying L` is the same as studying 〈F,`〉.

Remark 3.1.2. (Eliminating the assumption of expressibility of “↔”) Here we show
that in the above argument showing that our results can be applied to a wider
class of syntactical logics Lsyn = 〈F,`〉, the assumption of expressibility of “↔”
in Lsyn is not needed. It will turn out in Definition 4.1.8 in section 4.1 that for any
logic L, the set F of formulas has an algebraic structure, that is F is the universe
of an algebra F. (The operations of F are the logical connectives of L collected in
Cn(L).) Let

M`
def
= {〈T, h〉 : T ⊆ F,

T is closed under `, h is a homomorphism from F into F}.

For any ϕ ∈ F, 〈T, h〉 ∈M`, let

mng`(ϕ, 〈T, h〉)
def
= h(ϕ)

〈T, h〉 |=` ϕ
def
⇐⇒ h(ϕ) ∈ T.
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Then L`
def
= 〈F,M`,mng`, |=`〉 is a logic such that for all Γ∪{ϕ} ⊆ F , (Γ |=` ϕ

iff Γ ` ϕ) holds. Moreover, if ` satisfies some natural conditions then L` is a
“structural” logic (cf. Def. 4.1.8), therefore all the theorems of this paper can be
applied to it. For more information in this line see [30].

Summing up, for a while we will concentrate our attention on the simplified
form

L = 〈FL,ML,mngL, |=L〉

of a logic. For the reasons outlined above, this temporary restriction of attention
will not result in any loss of generality.

To conclude this subsection, we turn to nailing down our definitions formally
in the form we will use them.

For any set X , we let X∗ denote the set of all finite sequences (“words”) over

X . That is, X∗
def
=

⋃

n∈ω (nX) (cf. [71]).

Definition 3.1.3. (logic) By a logic L we mean an ordered quadruple

L
def
= 〈FL,ML,mngL, |=L〉,

where (i)–(v) below hold.

(i) FL (called the set of formulas) is a set of finite sequences (called words) over
some set X (called the alphabet of L) that is, FL ⊆ X∗.

(ii) ML is a class (called the class of models).

(iii) mngL is a function with domain FL ×ML (called the meaning function).

(iv) |=L (called the validity relation) is a relation between ML and FL that is,
|=L ⊆ ML × FL. (According to the tradition, instead of “〈M, ϕ〉 ∈ |=L” we
write “M |=L ϕ”.)

(v) For all ϕ, ψ ∈ FL and M ∈ML we assume (3.1), that is,

(
mngL(ϕ,M) = mngL(ψ,M) and M |=L ϕ

)
=⇒M |=L ψ .

Remark 3.1.4. (i) In the above definition, we nailed down the expression “model
of L” instead of the more suggestive one “possible world of L” only for purely
technical reasons, namely, to avoid a danger of potential ambiguity with the
literature.

(ii) By requiring (i) of Def.3.1.3 above we exclude infinitary languages like Lκ,λ

or Ln
∞,ω. This exclusion is not necessary, all the methods go through with

some modifications. Igaz-e? Konkrét pointer?: Actually, occasionally we will
look into properties of the finite variable fragment Ln

∞,ω of infinitary logic,
because it naturally admits applications of our methods and plays an essential
rôle in finite model theory and in theoretical computer science.
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(iii) Although it is not automatically permitted in ZFC, we may assume that for
any five classes C1, . . . , C5 the tuple 〈C1, . . . , C5〉 exists and is again a class,
cf. the relevant text at the end of subsection 1.6.

Definition 3.1.5. (semantical consequence, valid formulas)

Let L = 〈FL,ML,mngL, |=L〉 be a logic. For every M ∈ML and Σ ⊆ FL,

M |=L Σ
def
⇐⇒ (∀ϕ ∈ Σ) M |=L ϕ,

ModL(Σ)
def
= {M ∈ML : M |=L Σ}.

ModL(Σ) is called the class of models of Σ.

A formula ϕ is said to be valid , in symbols |=L ϕ, iff ModL({ϕ}) = ML.

For any Σ ∪ {ϕ} ⊆ FL,

Σ |=L ϕ
def
⇐⇒ ModL(Σ) ⊆ModL({ϕ}),

CsqL(Σ)
def
= {ϕ ∈ FL : Σ |=L ϕ} .

If ϕ ∈ CsqL(Σ) then we say that ϕ is a semantical consequence of Σ (in logic L).
Csq abbreviates “conseqence”.

Definition 3.1.6. (theory, set of validities) Let L = 〈FL,ML,mngL, |=L〉 be any
logic. For any K ⊆ML let the theory of K in L be defined as

ThL(K)
def
= {ϕ ∈ FL : (∀M ∈ K) M |=L ϕ}.

If K = {M} for some M ∈ML then instead of ThL({M}) we write ThL(M).

The set ThL(ML) is called the set of validities of L.

For any set X∗ of “strings of symbols”, the notion of a decidable subset
H ⊆ X∗ is introduced in almost any introductory book on logic or on the theory
of computation (see e.g. [56]). The same applies to H ⊆ X∗ being recursively
enumerable (r.e.).

Az ELTE-s diákok (tömegesen!) nem tudják, mia az, hogy eld”onthetőség, pedig
tanulták. (Emlékszenek viszont, mi az hogy rek.fels.) Ezért itt kéne egy mondat
emlékeztető erre.

Definition 3.1.7. (decidability of logics) We say that

a logic L = 〈FL,ML,mngL, |=L〉 is decidable

iff the set ThL(ML) of validities of L is a decidable subset of the set FL of formulas.
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3.2 Concrete logics in the new framework

3.2.1 Distinguished logics

Now we define some basic logics. Some of them are well-known, but we recall their
definitions for illustrating that they are special cases of the concept defined in
Definition 3.1.3 above, and also for fixing our notation.

Definition 3.2.1. (Propositional or sentential logic LS) Let P be a set, called the
set of atomic formulas of LS . Let {∧,¬} be a set disjoint from P , called the set
of logical connectives of LS (usually called Boolean connectives).

Propositional (or sentential) logic (corresponding to P ) is defined to be a
quadruple

LS
def
= 〈FS ,MS,mngS , |=S〉,

for which conditions (i)–(iii) below hold.

(i) The set FS of formulas is the smallest set H satisfying

• P ⊆ H

• ϕ, ψ ∈ H =⇒ (ϕ ∧ ψ) ∈ H and (¬ϕ) ∈ H .

(That is, the alphabet of this logic is {∧,¬} ∪ P .)

(ii) The class MS of models of LS is defined by

MS
def
= {〈W, v〉 : W is a non-empty set and v : P → P(W )} .

If M = 〈W, v〉 ∈MS then

W is called the set of possible states (or worlds5 or situations) of M.

(iii) Let 〈W, v〉 ∈MS, w ∈W , and ϕ ∈ FS . We define the binary relation w v ϕ
by recursion on the complexity of the formulas:

• if p ∈ P then
(
w v p

def
⇐⇒ w ∈ v(p)

)

• if ψ1, ψ2 ∈ FS , then

w v ¬ψ1
def
⇐⇒ w 6v ψ1

w v (ψ1 ∧ ψ2)
def
⇐⇒ w v ψ1 and w v ψ2.

If w v ϕ then we say that ϕ is true in w, or w forces ϕ.

Now mngS(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}.

〈W, v〉 |=S ϕ (ϕ is valid in 〈W, v〉), iff for every w ∈W , w v ϕ.

5It is important to keep the two senses in which “possible world” can be used separate. The
elements 〈W,v〉 of MS can be called possible worlds since we inherit this usage from the general
concept of a logic. At the same time, the elements w ∈ W can be called “possible states or
worlds” as a technical expression of modal logic. So there is a potential confusion here, which
has to be kept in mind.
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It is important to note that the set P of atomic formulas is a parameter in
the definition of LS . Namely, in the definition above, P is a fixed but arbitrary
set. So in a sense LS is a function of P , and we could write LS(P ) to make this
explicit. However, the choice of P has only limited influence on the behaviour
of LS , therefore, following the literature we write simply LS instead of LS(P ).
From time to time, however, we will have to remember that P is a freely chosen
parameter because in certain investigations the choice of P does influence the
behaviour of LS = LS(P ).

Exercises 3.2.2.

(1) Think of P = ∅, of P = {p} a singleton, or of infinite P . Write up explicitly
what LS is like in each of these three cases. What is the cardinality |FS | of
the formulas in each case? What is the cardinality |{ModLS

(Σ) : Σ ⊆ FS}|
of axiomatizable model classes in each case?

(2) Let (ϕ → ψ)
def
⇐⇒ ¬(ϕ ∧ ¬ψ) and (ϕ ↔ ψ)

def
⇐⇒

(
(ϕ → ψ) ∧ (ψ → ϕ)

)
.

Prove that

• {ϕ} |=S ψ ⇐⇒ |=S (ϕ→ ψ)

•
(
{ϕ} |=S ψ and {ψ} |=S ϕ

)
⇐⇒ |=S (ϕ↔ ψ).

Exercises 3.2.3. (decidability issues)

(1) Prove that LS is a decidable logic (cf. Def. 3.2.1).

(2) (Important!) Let Ax ⊆ FS be an arbitrary but finite set of formulas. Prove
that the set CsqLS

(Ax) of consequences of Ax (cf. Def. 3.1.7) is decidable.

(3) (This might be too hard. Then ignore it.) Show that (2) becomes false if we
generalize it to all decidable sets Ax. (Hint: Use an infinite set P .)

(4) Assume that P is finite. Prove that then (2) becomes true for any set Ax.
(Might be too hard; then come back to this after doing the next Ex.(5).)

(5) (Important!) Assume P is finite. Let M ∈ MS be arbitrary. Prove that
ThLS

(M) is decidable. (Hint: Let ϕ ≡ ψ iff M |=S (ϕ ↔ ψ). Prove that
FS/≡ is finite (use that P is finite). But then FS/≡ together with the logi-
cal connectives is a finite algebra. Show that in such a finite algebra we can
always compute the “meaning” of any formula.)

As Exercises 3.2.3 show, logic LS has a lot of “nice” properties. On the other
hand, LS is a very “weak” logic. It is well-known that e.g. first-order logic LFOL

(cf. Def. 3.2.23 below) is much stronger than LS . However, to build up LFOL from
LS we have to modify the notion of a model, of an atomic formula, etc. in the usual
way. We do not want to “throw out” LS so drastically, we want to increase the
expressive power without changing the class of models or without any other “major
surgery”. Is it possible to leave MS unchanged and to obtain some significantly
stronger (and more interesting) logic (e.g. by adding some new connectives)? The
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answer is affirmative according to Def. 3.2.4 and Exercises 3.2.6 below. However,
we are also interested in how far we can push this procedure of obtaining stronger
and stronger logics without changing the models (or other parts) of LS . What is
the price of this increasing expressive power? How far do the nice properties of LS

remain true?

Definition 3.2.4. (Modal logic S5) The set of connectives of modal logic S5 is
{∧,¬,♦}.

The set of formulas (denoted as FS5) of S5 is defined as that of propositional
logic LS together with the following clause:

ϕ ∈ FS5 =⇒ ♦ϕ ∈ FS5.

Let MS5
def
= MS . The definition of w v ϕ is the same as in the propositional case

but we also have the case of ♦:

w v ♦ϕ
def
⇐⇒ (∃w′ ∈ W ) w′ v ϕ.

Then mngS5(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity relation |=S5 is

defined as follows.

〈W, v〉 |=S5 ϕ
def
⇐⇒ (∀w ∈ W ) w v ϕ.

Now, modal logic S5 is S5
def
= 〈FS5,MS5,mngS5, |=S5〉.

Remark 3.2.5. According to a rather respectable (and useful) tradition, an extra-
Boolean connective is called a modality iff it distributes over disjunction. This
will not be true for all of our connectives that we will call modalities. (Exercise:
check for which ones it is true). Thus, regrettably, we sometimes ignore this useful
tradition. For this tradition cf. e.g. Venema [81, Appendix A (pp. 143–152)].

Exercises 3.2.6. (decidability issues)

(1) Prove that S5 is a decidable logic. (Hint: Prove that if 〈W, v〉 6|=S5 ϕ then
〈W0, v〉 6|=S5 ϕ for some finite W0 ⊆ W in the following way. Let P0 be the
set of atomic formulas occurring in ϕ. Define an equivalence relation ∼ on
W by stipulating that w1 ∼ w2 iff they agree on every element of P0. Then
from each equivalence class of W/∼ keep only one element in W0.)

Note that this amounts to repeating Exercises 3.2.3 (1) above for S5 in
place of LS .

(2) Repeat Exercises 3.2.3 (2) above for S5 in place of LS .

(3) (Important!) Repeat Exercises 3.2.3 (5) above for S5 in place of LS .

(4) Try doing Exercises 3.2.3 (4) for S5.

The following logic is discussed e.g. in Sain [69, 70], Venema [81], Roorda
[66], but see also Segerberg [74] who traces this logic back to von Wright.



3.2. Concrete logics in the new framework 105

Definition 3.2.7. (Difference logic LD) The set of connectives of difference logic
LD is {∧,¬, D}. The set of formulas (denoted as FD) of LD is defined as that of
propositional logic LS together with the following clause:

ϕ ∈ FD =⇒ Dϕ ∈ FD.

Let MD
def
= MS5(= MS). The definition of w v ϕ is the same as in the proposi-

tional case but we also have the case of D:

w v Dϕ
def
⇐⇒ (∃w′ ∈W r {w}) w′ v ϕ.

Then mngD(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity relation |=D is

defined as follows.

〈W, v〉 |=D ϕ
def
⇐⇒ (∀w ∈W ) w v ϕ.

Now, difference logic LD is LD
def
= 〈FD ,MD,mngD, |=D〉. We note that LD is also

called “Some-other-time logic” (cf. Sain [70], Segerberg [74]).

Exercises 3.2.8.

(1) (Important!) Try to guess whether Exercises 3.2.3 (1), (4), (5) extend to LD .
Try hard, do not give up too soon and remember that you are required to
guess only. Try to formulate some reasons why you are guessing the outcome
you do. Try to guess the same for Exercises 3.2.3 (2) and (3).

(2) Prove that Exercises 3.2.3 (1), (4), (5) do generalize to LD ! (Hint: Use the
same equivalence relation ∼ defined on W as in Exercises 3.2.6 (1). But now,
from each equivalence class keep two elements (if there are more than one
there) in W0.)

(3) Prove that the connective ♦ of S5 is expressible in LD . Prove that D is not
expressible in S5. (Hint: If the second one is too hard, postpone it to the end
of this subsection.)

The logics Lκ-times to be introduced below play quite an essential rôle in
Artificial Intelligence in the theory what is called there “stratified logic”, cf. e.g.
works of H. J. Ohlbach, see e.g. [33].

Definition 3.2.9. (κ-times logic Lκ-times, twice logic Tw) Let κ be any cardinal.
The set of connectives of κ-times logic Lκ-times is {∧,¬,♦κ}. The set of formulas
(denoted as F♦κ

) of Lκ-times is defined as that of propositional logic LS together
with the following clause:

ϕ ∈ F♦κ
=⇒ ♦κϕ ∈ F♦κ

.

Let M♦κ

def
= MS5(= MS). The definition of w v ϕ is the same as in the proposi-

tional case but we also have the case of ♦κ:

w v ♦κϕ
def
⇐⇒ (∃H ⊆W )

(
|H | = κ and (∀w′ ∈ H) w′ v ϕ

)
.
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Then mng♦κ
(ϕ, 〈W, v〉)

def
= {w ∈ W : w v ϕ}, and the validity relation |=♦κ

is
defined as follows.

〈W, v〉 |=♦κ
ϕ

def
⇐⇒ (∀w ∈ W ) w v ϕ.

Now, κ-times logic Lκ-times is Lκ-times
def
= 〈F♦κ

,M♦κ
,mng♦κ

, |=♦κ
〉. We note that

if κ = 2 then logic L2-times is also called Twice logic and is denoted as Tw.

Exercises 3.2.10.

(1) Prove that L0-times is equivalent to LS and that L1-times is equivalent to S5.
Prove that ♦2 is expressible in LD. (What do you think of the other direction
of expressing D in Ln-times, for some n ∈ ω?)

(2) Try to guess whether Exercises 3.2.3 (1), (4), (5) extend to Ln-times for finite
n (that is, for κ = n ∈ ω). How about n = 0?? How about n = 1?

(3) (Probably too hard. May be ignored.) Try to guess how the logics introduced
so far, especially the various Lκ-times logics for different cardinals κ, relate
to each other in terms of expressive power. (Do not spend all your time on
this!) Is the connective ♦ of S5 expressible in L2-times?

(4) Prove that Exercises 3.2.3 (1), (4), (5) generalize to L2-times. (Hint: The same
as given for LD in (the hints of) Exercises 3.2.8 (3), 3.2.6 (1).)

(5) Can you generalize Exercises 3.2.3 (1), (4), (5) to L3-times? If yes, how about
Ln-times, for finite n? (Hint: Keep n elements from each equivalence class of
∼.)

(6) What do you think, does the method of Exercises 3.2.6 (1), 3.2.8 (3) and
3.2.10 (5), (6) above generalize to Lκ-times when κ is infinite? (Hint: Look
at the hint of Exercise 3.2.14 below. Do not spend all your time with this
exercise.)

(7) Think about the logic with extra-Boolean logical connectives ♦2 and ♦3. Is
it equivalent to L2-times or to L3-times? (Hint: No.) Is it decidable?

(8) Think about the logic Lcount with extra-Boolean connectives {♦n : n ∈ ω}.
It can “count” up to any natural number. Is it decidable? (Hint: Yes.)

So far the extra-Boolean connectives ♦, D, ♦κ were all unary ones. Next we
will see examples in which the extra-Booleans are binary.

Definition 3.2.11. (Lbin) The set of connectives of Lbin is {∧,¬,�}, where � is a
new binary modality. The set of formulas (denoted as Fbin) of Lbin is defined as
that of propositional logic LS together with the following clause:

ϕ, ψ ∈ Fbin =⇒ �(ϕ, ψ) ∈ Fbin.
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Let Mbin
def
= MS . The definition of w v ϕ is the same as in the propositional case

but we also have the case of �:

w v �(ϕ, ψ)
def
⇐⇒ (∃u, z ∈ W )

[
w 6= u 6= z 6= w and u v ϕ and z v ψ

]
.

As usual, mngbin(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity relation |=bin

is defined as follows.

〈W, v〉 |=bin ϕ
def
⇐⇒ (∀w ∈W ) w v ϕ.

Now, let Lbin
def
= 〈Fbin,Mbin,mngbin, |=bin〉.

Exercises 3.2.12.

(1) Compare Lbin with the previous logics. E.g. show that ♦ and D are express-
ible in Lbin. Is ♦3 expressible in Lbin? (Hint: �

(
ϕ ∧ �(ϕ, ϕ)

)
.)

(2) Try to guess whether Exercises 3.2.3 (1), (4), (5) extend to Lbin. (Hint: The
method of extending Exercises 3.2.3 (1) to LD should be adaptable to the
present case, cf. hint of Exercises 3.2.8 (3). So validity in Lbin should be
decidable. To attack Exercises 3.2.3 (5) in this case, recall the equivalence ≡
on formulas in the hint for Exercises 3.2.3 (5). Check whether Fbin/≡ is still
finite!)

Definition 3.2.13. (Lmore) The set of connectives of Lmore is {∧,¬,�more}, where
�more is a new binary modality. The set of formulas (denoted as Fmore) of Lmore

is defined as that of propositional logic LS together with the following clause:

ϕ, ψ ∈ Fmore =⇒ �more(ϕ, ψ) ∈ Fmore.

Let Mmore
def
= MS. The definition of w v ϕ is the same as in the propositional

case but we also have the case of �more:

w v �more(ϕ, ψ)
def
⇐⇒ |{u ∈ W : u v ϕ} | ≥ | {u ∈ W : u v ψ} |.

As usual, mngmore(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity relation

|=more is defined as follows.

〈W, v〉 |=more ϕ
def
⇐⇒ (∀w ∈ W ) w v ϕ.

Now, Lmore
def
= 〈Fmore,Mmore,mngmore, |=more〉.

Exercises 3.2.14.

(1) Show that the connective ♦ of S5 is expressible in Lmore.

(2) Compare Lmore with the previous logics (concerning their expressive power).
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(3) Try to guess whether Exercises 3.2.3 (1) or (5) extend to Lmore. (Hint: Recall
the hint given for Exercises 3.2.3 (5). Try to prove that for any fixed M,
assuming that P is finite, the set Fmore/≡ is still finite.)

(4) (If too hard, might be postponed to the end of this paper, but give it a few
hours first, and then look at the detailed hints in subsection 3.2.3.) Prove
that Exercises 3.2.3 (1) does extend to Lmore (i.e. Lmore is decidable). (Hint:
If you followed the hints given for Exercises 3.2.6 (1), 3.2.8 (3), etc. then
you proved for those logics the so called finite model property (fmp). (“fmp”
says that a formula is valid [in L] iff it is valid in all finite models [of L].
The cardinality of a model 〈W, v〉 is that of W .) Decide whether Lmore has
the fmp. You will see, it does not. Thus the hint given for Exercises 3.2.6
(1), 3.2.8 (3), etc. has to be refined in order to make it applicable here. See
subsection 3.2.3 for a detailed hint.)

(5) Define ♦max to be �(ϕ,True), where True abbreviates (ϕ ∨ ¬ϕ). Define
Lmax by replacing ♦κ with ♦max in Lκ-times. What are the basic properties
of Lmax? Write up an explicit definition for Lmax without referring to Lmore.
Is ♦max expressible in one of the logics in Def’s. 3.2.1–3.2.13?

Beginning with Definition 3.2.15 below, we start discussing various Arrow
Logics. The field of Arrow Logics grew out of application areas in Logic, Language
and Computation, and plays an important rôle there, cf. e.g. van Benthem [78, 79],
[54], and the proceedings of the Arrow Logic day at the conference “Logic at Work”
(December 1992, Amsterdam [CCSOM of Univ. of Amsterdam]).

So far we strengthened LS without modifying the class MS of models. The
mildest way of modifying MS is to take a subclass (i.e. the models themselves do
not change, only some of them are excluded).

Definition 3.2.15. (Arrow logic LPAIR) The set of connectives of LPAIR is {∧,¬, ◦},
where ◦ is a binary connective. The set of formulas (denoted as FPAIR) of LPAIR

is defined as that of propositional logic LS together with the following clause:

ϕ, ψ ∈ FPAIR =⇒ ϕ ◦ ψ ∈ FPAIR.

Let MPAIR
def
= {〈W, v〉 ∈MS : W ⊆ U × U for some set U}.

The definition of w v ϕ is the same as in the propositional case but we also
have the case of ◦:

〈a, b〉 v ϕ ◦ ψ ⇐⇒ ∃c
[
〈a, c〉, 〈c, b〉 ∈ W and 〈a, c〉 v ϕ and 〈c, b〉 v ψ

]
.

As usual, mngPAIR(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity relation

|=PAIR is defined as follows.

〈W, v〉 |=PAIR ϕ
def
⇐⇒ (∀w ∈W ) w v ϕ.

Now, arrow logic LPAIR is LPAIR
def
= 〈FPAIR,MPAIR,mngPAIR, |=PAIR〉.
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Exercises 3.2.16.

(1) (Important!) Try to guess whether Exercises 3.2.3 (1), (4), (5) extend to
LPAIR. Guess separately (the answers need not be uniform). Concentrate
first only on Exercises 3.2.3 (1). This will be very hard but spend some
considerable time with guessing each of the exercises. Do not spend all your
time on this, but 8 hours is reasonable. Do not worry if you cannot prove
anything in this connection, the insight gained by trying is enough. The
solutions will be given in subsection 3.2.3, but wait one week at least before
reading them!!

(2) Assume that the set P of atomic formulas is finite. Is there a model M of
LPAIR such that ThLPAIR

(M) is not even recursively enumerable? Note that
this is a generalization of Exercises 3.2.3 (5). (Why?) (Hint: A set X is called
transitive if (∀y ∈ X) y ⊆ X . A set Y is called hereditarily finite if Y ⊆ X
for some finite transitive set X . Let M = 〈W, v〉 be defined as follows.

W
def
= “all hereditarily finite sets”

P
def
= {p0, p1, p2}

v(p0)
def
= {〈a, b〉 ∈W : a ∈ b}

v(p1)
def
= {〈a, b〉 ∈W : b ∈ a}

v(p2)
def
= {〈a, b〉 ∈W : a = b} .

Show first that many relations definable in the model W = 〈W,∈〉 of Finite
Set Theory (using first-order logic) are also definable in M using LPAIR.
Define first the relation {〈∅, ∅〉}. (Hint: p2 ∧¬(True ◦ p0).) Then the relation
{〈X,Y 〉 : Y ⊆ X ∈W}. Next try to define the relations {〈X,∪X〉 : X ∈W},
and {〈X,P(X)〉 : X ∈ W}. Eventually you will have to use the well known
fact that the set of first-order formulas involving only 3 variables (free or
bound) and valid in W is not recursively enumerable.

(This exercise is not easy if you are not experienced with first-order
logic and Gödel’s incompleteness theorem, so you may postpone doing it
after having spent about 7 hours with it.)

(3) Compare the answer to the previous exercise with the fact that Th(M) is
decidable for all the logics discussed so far. Observe the contrast! Try to find
a reason for the sudden change of behaviour (of the logics we are looking at)!

(4) Try to guess the answer (yes or no) to Exercises 3.2.3 (2), (3) when applied to
LPAIR. Is there e.g. a finite set Ax ⊆ FPAIR such that CsqLPAIR

(Ax) would
not be decidable? (Do not spend all your time here. But spend a few hours.)

Definition 3.2.17. (Arrow logic LREL) The set of connectives of LREL is {∧,¬, ◦}.
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We let FREL
def
= FPAIR and

MREL
def
= {〈W, v〉 ∈MS : W = U × U for some set U} .

The definition of w v ϕ is the same as in the case of LPAIR.

As usual, mngREL(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity relation

|=REL is defined as follows.

〈W, v〉 |=REL ϕ
def
⇐⇒ (∀w ∈W ) w v ϕ.

Now, arrow logic LREL is LREL
def
= 〈FREL,MREL,mngREL, |=REL〉.

Exercises 3.2.18.

(1) The logics LREL and LPAIR are among the most important ones discussed in
the whole material. So think about LREL and compare it with the previous
ones!

(2) Show that the connective ♦ of S5 is expressible in LREL.

(Hint: ♦ϕ is (True ◦ ϕ) ◦True .) Show that “◦” is associative in LREL (i.e.

|=REL

(
(ϕ1 ◦ ϕ2) ◦ ϕ3

)
↔

(
ϕ1 ◦ (ϕ2 ◦ ϕ3)

)
.

(Hence omitting brackets and writing “True ◦ϕ ◦True” [for ♦ϕ] is justified.)

(3) (Important!) Try to guess whether some of Exercises 3.2.3 (1)–(5) generalize
to LREL (give yes or no answers). (This is very hard, so concentrate on only
one item for a while. Do not spend all your time, but spend 6–8 hours.
Solutions will be in subsection 3.2.3, but wait a few weeks before looking at
them.)

(4) Try to prove that the set ThLREL
(MREL) of validities of LREL is recursively

enumerable. (Hint: To ϕ ∈ FREL associate a first-order formula f(ϕ) such
that

|=REL ϕ ⇐⇒ |= f(ϕ).

Then use the recursive enumerability of the validities of first-order logic (e.g.
via Gödel’s completeness theorem). If this would be too hard, you may post-
pone it to the end of the subsection, but do not postpone it forever.)

Definition 3.2.19. (Arrow logics LARW0, LARROW, LRA) The set of connectives of
arrow logics LARW0, LARROW, LRA is {∧,¬, ◦,`, Id}, where ◦ is a binary, ` is a
unary, and Id is a zero-ary modality.

• The set of formulas (denoted as FARW0) of LARW0 is defined as that of
propositional logic LS together with the following clauses:

ϕ, ψ ∈ FARW0 =⇒ (ϕ ◦ ψ), ϕ` ∈ FARW0

Id ∈ FARW0.
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The models are those of propositional logic LS enriched with three relations,
called accessibility relations. That is,

MARW0
def
= {

〈
〈W, v〉, C1, C2, C3

〉
: 〈W, v〉 ∈MS , C1 ⊆W ×W ×W,

C2 ⊆W ×W, C3 ⊆W}.

For propositional connectives ¬ and ∧ the definition of w v ϕ is the same
as in the propositional case. For the new connectives we have:

w v (ϕ ◦ ψ)
def
⇐⇒ (∃w1, w2 ∈W )

(
C1(w,w1, w2) and w1 v ϕ and w2 v ψ

)

w v ϕ
` def
⇐⇒ (∃w′ ∈W )

(
C2(w,w′) and w′ v ϕ

)

w v Id
def
⇐⇒ C3(w).

As usual, mngARW0(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity

relation |=ARW0 is defined as follows.

〈W, v〉 |=ARW0 ϕ
def
⇐⇒ (∀w ∈ W ) w v ϕ.

Then arrow logic LARW0 is

LARW0
def
= 〈FARW0,MARW0,mngARW0, |=ARW0〉.

• FARROW
def
= FARW0. MARROW

def
= MPAIR. For connectives ¬, ∧ and ◦ the def-

inition of w v ϕ is the same as in the case of LPAIR. For the new connectives
we have:

〈a, b〉 v ϕ
` def

⇐⇒
[
〈b, a〉 ∈ W and 〈b, a〉 v ϕ

]
,

〈a, b〉 v Id
def
⇐⇒ a = b.

As usual, mngARROW(ϕ, 〈W, v〉)
def
= {w ∈ W : w v ϕ}, and the validity

relation |=ARROW is defined by

〈W, v〉 |=ARROW ϕ
def
⇐⇒ (∀w ∈W ) w v ϕ.

Arrow logic LARROW is defined by

LARROW
def
= 〈FARROW,MARROW,mngARROW, |=ARROW〉.

• FRA
def
= FARROW. MRA

def
= MREL. The definitions of w v ϕ, mngRA and

|=RA are the same as in the case of LARROW.

Arrow logic LRA is LRA
def
= 〈FRA,MRA,mngRA,mngRA〉. LRA is also

called the logic of relation algebras .
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Exercise 3.2.20. Consider the fragment

L0
ARW0 = 〈F 0

ARW0,M
0
ARW0,mng0

ARW0 |=
0
ARW0〉

of arrow logic LARW0 defined above which differ from the original version only in
that it does not contain the logical connectives ` and Id . Prove that LARW0 is
equivalent to LPAIR in the sense that they have the same semantical consequence
relation that is, for all Σ ∪ {ϕ} ⊆ F 0

ARW0 = FPAIR

Σ |=0
ARW0 ϕ ⇐⇒ Σ |=PAIR ϕ.

Prove that LARW0 is not equivalent, in the above sense, to LARROW.

Definition 3.2.21. (First-order logic with n variables Ln) Let V
def
= {v0, . . . , vn−1}

be a set, called the set of variables of Ln. Let the set P of atomic formulas of Ln

be defined as P
def
= {ri(v0 . . . vn−1) : i ∈ I} for some set I .

(i) The set Fn of formulas is the smallest set H satisfying

• P ⊆ H

• (vi = vj) ∈ H for each i, j < n

• ϕ, ψ ∈ H, vi ∈ V =⇒ (ϕ ∧ ψ), ¬ϕ, ∃viϕ ∈ H .

(ii) The class Mn of models of Ln is defined by

Mn
def
= {〈M,Ri〉i∈I : M is a non-empty set and for all i ∈ I, Ri ⊆

nM} .

If M = 〈M,Ri〉i∈I ∈Mn then M is called the universe (or carrier) of M.

(iii) Let M = 〈M,Ri〉i∈I ∈ Mn, q ∈ nM and ϕ ∈ Fn. We define the ternary
relation M |= ϕ[q] by recursion on the complexity of ϕ as follows.

• M |= ri(v0 . . . vn−1)[q]
def
⇐⇒ q ∈ Ri (i ∈ I)

• M |= (vi = vj)[q]
def
⇐⇒ qi = qj (i, j < n)

• if ψ1, ψ2 ∈ Fn, then

M |= ¬ψ1[q]
def
⇐⇒ not M |= ψ1[q]

M |= (ψ1 ∧ ψ2)[q]
def
⇐⇒ M |= ψ1[q] and M |= ψ2[q]

M |= ∃viψ1[q]
def
⇐⇒ (∃q′ ∈ nM)(∀j < n)

(
j 6= i ⇒

(q′j = qj and M |= ψ1[q′])
)
.

If M |= ϕ[q] then we say that the evaluation q satisfies ϕ in the model M.

Now we define mngn as follows.

mngn(ϕ,M)
def
= {q ∈ nM : M |= ϕ[q]}.
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(iv) Validity is defined by

M |=n ϕ
def
⇐⇒ (∀q ∈ nM) M |= ϕ[q] .

First-order logic with n variables

Ln
def
= 〈Fn,Mn,mngn, |=n〉

has been defined.

Intuitive explanation

Our Ln might look somewhat unusual because we do not allow substitution of
variables in atomic formulas ri(v0 . . . ). This does not restrict generality, because
substitution is expressible by using quantifiers and equality. This is explained in
more detail in Remark 3.2.24 (2) below.

Exercises 3.2.22.

(1) Write up a detailed definition of Ln as a modal logic. (Hint: Define the class
of models by

Mn
def
= {〈W, v〉 ∈MS : W = nU for some set U} .

The extra-Boolean connectives are “∃vi” and “vi = vj” for i, j < n. Here
(∃vi) is a unary modality while (vi = vj) is a zero-ary modality.)

(2) Show that in some sense L1 is equivalent to modal logic S5. (In what sense?
Try to define!)

(3) Show that in some sense LD and L2-times are comparable with L2. Show
that LD and L2-times are strictly weaker than L2.

Next we define first-order logic in a non-traditional form. Therefore, below
the definition, we will give intuitive explanations for our present definition.

Definition 3.2.23. (First-order logic LFOL, rank-free formulation) Recall that ω is the

set of natural numbers. Let V
def
= {vi : i ∈ ω} be a set, called the set of variables

of LFOL. As before, let P be an arbitrary set, called the set of atomic formulas of
LFOL. (Now, we will think of atomic formulas as relation symbols, hence we will
use the letter R for elements of P rather than p as in case of LS .)

(i) The set FFOL is the smallest set H satisfying

• P ⊆ H

• (vi = vj) ∈ H for each i, j ∈ ω

• ϕ, ψ ∈ H, i ∈ ω =⇒ (ϕ ∧ ψ), ¬ϕ, ∃viϕ ∈ H .
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(ii) The class MFOL of models of LFOL is

MFOL
def
= {M : M = 〈M,RM〉R∈P ,M is a non-empty set and

for all R ∈ P,RM ⊆ nM for some n ∈ ω
}
.

If M ∈ MFOL then M denotes the universe of M. Further, for R ∈ P , RM

denotes the meaning of R in M.

(iii) Validity relation |=FOL.

In LS5 the “basic semantical units” were the possible situations w ∈ W .
In FOL the basic semantical units are the evaluations of individual variables
into models M, where q ∈ ωM and q evaluates variables vi as element qi ∈M
in the model M. To follow model theoretic tradition, instead of M, q  ϕ we
will write M |= ϕ[q] (though the former would be more in the line with our
definitions of LS5 etc.).

Let M = 〈M,RM〉R∈P ∈MFOL, q ∈ ωM and ϕ ∈ FFOL. We define the
ternary relation “M |= ϕ[q]” by recursion on the complexity of ϕ as follows:

• M |= R[q]
def
⇐⇒ 〈q0, . . . , qn−1〉 ∈ RM for some n ∈ ω (R ∈ P )

• M |= (vi = vj)[q]
def
⇐⇒ qi = qj (i, j ∈ ω)

• if ψ1, ψ2 ∈ FFOL, then

M |= ¬ψ1[q]
def
⇐⇒ not M |= ψ1[q]

M |= (ψ1 ∧ ψ2)[q]
def
⇐⇒ M |= ψ1[q] and M |= ψ2[q]

M |= ∃viψ1[q]
def
⇐⇒ (∃q′ ∈ ωM)(∀j ∈ ω)

(
j 6= i⇒ (q′j = qj and M |= ψ1[q′])

)
.

If M |= ϕ[q] holds then we say that q satisfies ϕ in M.

Now we define mngFOL as follows.

|=FOL (ϕ,M)
def
= {q ∈ ωM : M |= ϕ[q]}.

(iv) Validity is defined by

M |=FOL ϕ
def
⇐⇒ (∀q ∈ ωM) M |= ϕ[q].

(v) First-order logic (in rank-free form) is

LFOL
def
= 〈FFOL,MFOL,mngFOL, |=FOL〉 .

For more on LFOL see e.g. Henkin–Tarski [39], Simon [75], Venema [81],
Henkin–Monk–Tarski [37, §4.3].
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Intuitive explanations for LFOL

There are two kinds of explanations needed. Namely,
(i) Why does the definition go as it does?

and
(ii) Why do we say that LFOL is first-order logic? That is, what are the

connections between LFOL and the more traditional formulations of first-order
logic?

We discuss (ii) in Remark 3.2.24 below. Let us first turn to (i).

Let R be a relation symbol, that is R ∈ P . Then instead of the traditional
formula R(v0, v1, v2, . . . ) we simply write R. That is, we treat R as a shorthand
for R(v0, v1, v2, . . . ).

So this is why R is an atomic formula. The next part of the definition which
may need intuitive explanation is the definition of the satisfaction relation’s be-
haviour on R. That is, the definition of M |= R[q]. So let RM ⊆ nM be given.
Recall that R abbreviatesR(v0, v1, v2, . . . ) here. Clearly we want M |= R[q] to hold
if in the traditional sense M |= R(v0, v1, v2, . . . )[q] holds. But by the traditional
definition this holds iff 〈q0, . . . , qn−1〉 ∈ RM. Which agrees with our definition. The
rest of the definition of LFOL coincides with the definition of the most traditional
version of first-order logic.

Remark 3.2.24. (Connections between LFOL and the more traditional form of first-
order logic)

Szerintem kellene valahol altalanosan foglalkozni azzal, hogy ket logika hanyfele
es milyen ertelemben lehet ekvivalens es akkor itt lehetne majd precizen beszelni.
Akkor nem kene ez az egesz ceco, itt lehetne fol-t tradicionalisan is defni [egye-
bkent is, hiszen az is logic Def. 3.1.3 ertelmeben, csak nem nice], es pontosan
megadni, hogy a ket logika milyen ertelemben ekvivalens. Egy altalanos ekvivalencia-
definicio(k) meg sok egyeb helyen is jol jonne az anyagban. Agi

(1) The logic LFOL is slightly more general than the more traditional forms
of first-order logic in that here the logic does not tell us in advance which rela-
tion symbol has what rank (that is why it is called rank-free). This information is
postponed slightly, because it is not considered to be purely logical. The informa-
tion about the ranks of the relation symbols will be provided by the models, or
equivalently, by the non-logical axioms of some theory. However, we can simulate
the more traditional form of first-order logic in LFOL as follows.

Any language (or similarity type) of traditional first-order logic is a theory of
our LFOL. Namely, such a language includes the rank %(R) of each relation symbol
R ∈ P . So, a traditional language is given by a pair 〈P, %〉. To such a language we
associate the following theory T% (given as a set of formulas):

T%
def
= {∀vi

(
(∃viR)↔ R

)
: R ∈ P and i > %(R)} .

The theory T% spells out for each R ∈ P that the rank of R is %(R). After T% has
been postulated, whenever one sees R as a formula, one can read it as an abbre-
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viation of R(v0 . . . v%(R)−1). To any theory T it is usual to associate a “sublogic”
of LFOL as follows:

LT
def
= 〈FFOL,Mod(T ),mngFOL, |=FOL〉.

For our T%, the sublogic LT%
is strongly equivalent with the most traditional first-

order logic of language 〈P, %〉.6

(2) The other feature of traditional first-order logic which might seem to be
missing from LFOL is substitution of individual variables, that is, LFOL includes
atomic formulas with a fixed order of variables only. The reason for this is that
Tarski discovered in the 40’s that substitution can be expressed with quantification
and equality. Namely, if we want to substitute v1 for v0 in formula ϕ then the
resulting formula is equivalent to ∃v0(v0 = v1 ∧ ϕ). E.g. R(v1, v1, v2) is equivalent
to

∃v0
(
v0 = v1 ∧ R(v0, v1, v2)

)
.

What happens if we want to interchange v0 and v1, i.e. we want to express
R(v1, v0, v2). Then write

∃v3∃v4
[
v3 = v0 ∧ v4 = v1 ∧ ∃v0∃v1

(
v0 = v4 ∧ v1 = v3 ∧R(v0, v1, v2)

)]
.

Someone might object that before writing up the theory T% (cf. item (1) above)
one cannot interchange variables. There are two answers: (i) This does not really
matter if we want to simulate traditional first-order logic. (ii) This can be easily
done by adding extra unary connectives pij (i, j ∈ ω) to those of LFOL. The
semantics of pij is given by

M |= pijϕ[q]
def
⇐⇒ M |= ϕ[〈q0, . . . , qi−1, qj , qi+1, . . . , qj−1, qi, qj+1, . . .〉],

if i 6 j, and similarly otherwise. Adding such connectives does not change the basic
properties of the logic. For more on the properties of LFOL see e.g. the Appendix of
Blok–Pigozzi [22], Andréka–Gergely–Németi [4] and reference Henkin–Tarski [39]
of [37, Part I].

Exercises 3.2.25.

(1) Write up a detailed definition of LFOL as a multi-modal logic.

Hint: Define the modal models as

Mm
def
= {〈W, v〉 ∈MS : W ⊆ ωU for some set U , and for each R ∈ P,

(∃n ∈ ω)(∃R1 ⊆
nM)v(R) = {s ∈ ωU : 〈s0, . . . , sn〉 ∈ R1}} .

The rest of the hint is in Exercise 3.2.22 (1).

6This equivalence is the strongest possible one. The models are practically the same, and the
formulas are alphabetical variants of each other in the following sense. To each “traditional”
formula ψ of 〈P, %〉 there is ϕ ∈ FFOL such that their meanings coincide in every model. (Same
holds in the other direction: for every ϕ ∈ FFOL there is a “traditional” ψ, etc.)
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(2) Take the multi-modal form of LFOL obtained in (1) above. Consider the
“modality” (∃vi). Can you write down its meaning definition in the -style
of modal logics, that is, the logics studied before Ln ?

Hint: Let s ∈ W . (Recall that W = ωU .) Then

s  ∃viϕ iff (∃q ∈ W )∀j(j 6= i⇒ si = qi and q  ϕ) .

What is the -style definition of the zero-ary modality (vi = vj) ?

(3) Consider the modal forms of Ln and LFOL. Prove that D is expressible in
Ln. Prove that ♦2 is expressible in Ln if n > 3. Is D expressible in LFOL ?
Is ♦2 expressible in LFOL ?

(4) Prove that the following are expressible in LFOL about its models

M = 〈M,RM〉R∈P ∈MFOL.

(4.1) |M | > 1.

(4.2) |M | = 2.

(4.3) |M | > n for any fixed number n.

(4.4) |M | < n for any fixed number n.

(5) What part of (4) above carries over to Ln ?

(6) Prove that L1 is decidable. Do you think that L2 is decidable? Do you think
that L3 is decidable? Do you think that LFOL is decidable??

(7) Do you think that the valid formulas of LFOL are recursively enumerable?

Exercises 3.2.26. (1) Write up a detailed definition of LFOL as a modal logic.
(Hint: See Exercise 3.2.25 (1) above.)

(2) Prove that LFOL is as expressive as the traditional form of first-order logic.
Prove that traditional first-order logic with a language 〈P, ρ〉 is strongly
equivalent with the sublogic LTρ

as described in Remark 3.2.24.

(3) Assume M = 〈M,RM〉 ∈MFOL with RM ⊆M ×M .

Express that R is a transitive relation. (This means that you are asked
to write up a formula ϕ ∈ FFOL such that for every 〈M,R〉 with R ⊆M×M ,
if 〈M,R〉 |= ϕ then R is transitive.)

Express that R is a partial ordering (transitive, reflexive and antisym-
metric).

Express that R is a dense ordering (density is the property ∀x, y(xRy ⇒
∃z(xRz and zRy)).)

Express that R is an equivalence relation.
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(4) Think of LFOL again as a multi-modal logic as in the previous list of exercises.
Are there two models M,N such that they are not distinguishable in LFOL

but they are distinguishable in any of LD, Ln-times for n ∈ ω ? (Hint: no.)
What is the answer for Lκ-times with some infinite κ (say κ > 2ω)?

Exercises 3.2.27.

(1) Let Li = 〈Fi,Mi,mng i, |=i〉 with i 6 2 be two logics. Call L0 and L1 weakly
equivalent iff

F0 = F1 and (∀Γ ⊆ F0)(∀ϕ ∈ F0)(Γ |=0 ϕ⇔ Γ |=1 ϕ) .

Prove that the following logics are weakly equivalent: LS and L0
S from Exer-

cise 3.1.1.

(2) Let Li, i 6 2 be as above. Assume that Fi ⊆ Zi for some set of “symbols”
Zi. That is, we are assuming that the formulas are finite sets of symbols. For
a function f : Z0 −→ Z1 define its natural extension f̃ : Z∗0 −→ Z∗1 the usual
way: f〈a + 1, . . . , an〉 = 〈f(a1), . . . , f(an)〉. We call L0 and L1 reasonably
equivalent iff there is a function f : Z0 −→ Z1 such that f̃(F0) = F1 and

(i) (∀Γ ∪ {ϕ} ⊆ F0)
(
Γ |=0 ϕ iff f̃(Γ) |=1 f̃(ϕ)

)
,

(ii) (∀Γ ∪ {ϕ} ⊆ F1)
(
Γ |=1 ϕ iff f̃−1(Γ) |=0 f̃

−1(ϕ)
)
, and

(iii) (∀ϕ, ψ ∈ F0)
(
f̃(ϕ) = f̃(ψ)⇒ (ϕ |=0 ψ and ψ |=0 ϕ)

)
.

Prove that any two weakly equivalent logics are reasonably equivalent.

(3) Consider propositional logic with logical connectives {∧,∨,¬} and another
version of the same logic with {∧,→, false}. Clearly these two versions of
propositional logic are equivalent in some natural sense. Prove that they are
not equivalent in the sense of (1), (2) above. Try to broaden the scope of
equivalence such that these two versions of LS become equivalent.

(4) Let Li be as in (1). Consider the existence of two “semantical” functions

m01 : M0 −→ (Subsets of M1) and m10 : M1 −→ (Subsets of M0) .

We call L0 and L1 semantically equivalent iff F1 = F2 and there are m01,
m10 as above such that for every ϕ ∈ F0, M ∈M0 and N ∈M1,

(M |= ϕ⇔ m01(M) |= ϕ) and (N |= ϕ⇔ m10(N) |= ϕ) .

Prove that LS and L0
S (in Exercise 3.1.1) are strongly semantically equivalent.

(5) Combine the equivalences defined in (2) and (4) above. Call this combined
concept semantical equivalence. Find logics which are semantically equiva-
lent.

(6) Try to combine (5) and (3) above!
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3.2.2 Summary

DISTINGUISHED LOGICS

LS propositional logic

S5 modal logic, where the accessibility relation is W ×W
for some set W

LD difference logic (or “some-other-time” logic)

Tw twice logic

Lκ-times κ-times logic (κ is any cardinal)

Lbin

Lmore

LPAIR set of worlds is arbitrary W ⊆ U × U for some U ,
extra-Boolean is ◦

LREL set of worlds is U × U for some U , extra-Boolean is ◦

LARROW set of worlds is arbitrary W ⊆ U × U for some U ,
extra-Booleans are ◦, `, Id

LRA (logic of relation algebras) set of worlds is U × U ,
extra-Booleans are ◦, `, Id

Ln first-order logic restricted to the first n variables (n ∈ ω

LFOL (rank-free) first-order logic

DISTINGUISHED PROPERTIES to be checked for every logic L:

The reason for looking at these properties is that they distinguish first-order like
logics from propositional-like logics.
dec The set of all valid formulas of L is decidable.

(Briefly: L is decidable.)
r.e. The set of all valid formulas of L is recursively enumerable.

(Briefly: L is r.e. .)
fmp L has the finite model property that is,
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Figure 3.2: Comparison

(∀ϕ ∈ FL)
(
|=L ϕ⇐⇒ (∀M ∈ML)(M is finite7 ⇒M |=L ϕ)

)
.

Gip L has Gödel’s incompleteness property , that is,
(∃ϕ ∈ FL)(∀T ⊆ FL)

(
(ϕ ∈ T and T is consistent) =⇒

=⇒ CsqL(T ) is undecidable)
)
.

clm We say that the distinction between set-models and class-models
counts in L (L has clm for short) iff (roughly speaking)8 even in
the case when the set P of atomic formulas of L is finite, we have
(∃ class-model M)
(
ThL(M) is not definable without parameters in our Set Theory

)
.

unm Assuming again that the set P of atomic formulas of L is finite,
there is some M ∈ML such that ThL(M) is undecidable
(unm abbreviates existence of undecidable model).

Exercise 3.2.28. Prove that if L is r.e. and L has the fmp the L is decidable.

COMPARISON OF LOGICS w.r.t. the properties above:

(An arrow points to the place where the property in question becomes true “mov-
ing from left to right”. Hence in principle it should always point to a gap between
two logics.)

7M = 〈W,v〉 is called finite iff W is a finite set.
8Recall that for fixed M, mngM(ϕ) was defined by recursion on the complexity of ϕ in case of

each of our distinguished logics discussed so far. (This was so in LS , . . . , in Ln, and also in LFOL

to mention only a few.) Saying that Th(M) is undefinable implies that our recursive definition
of mngM becomes incorrect as a definition if we permit M to be a class model. Roughly, L has
clm of Tarski’s Undefinability of Truth Theorem is applicable to L. For more on this property
of logics see [17, Appendix B].
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Exercise 3.2.29. Check which claims represented on Figure 3.2 were asked as an
exercise in the text. Try to prove (and claim, if necessary) the missing ones too.

∗ ∗ ∗

The following logics are of a different “flavor” than the ones seen so far. They
include Lambek Calculus, some fragments of Linear Logic, Pratt’s Action Logic,
Dynamic Logic, different kinds of semantics than seen so far. The main purpose
of giving them is to indicate that the methods of algebraic logic are applicable
almost to any unusual logic coming from completely different paradigms of logical
or linguistic or computer science research areas, and are not restricted to the kinds
of logics discussed so far. If the reader is already convinced, then he may safely
skip Definitions 3.2.30–3.2.33.

Some further logics , which are even less similar to the ones discussed so far,
are collected in chapter 7. It is advisable to look into the chapter 7 because our
theorems apply to all the logics discussed there. The only reason why those logics
are postponed to chapter 7 is that we did not want to postpone the main theorems
too much. For example, infinite valued logics, relevant logics and partial logics are
in chapter 7.

Definition 3.2.30. (Lambek Calculus [slightly extended]) Recall the logic LRA from
Def. 3.2.19. The connectives of Lambek calculus LLC are {∧, ◦, \, /,→}. This de-
fines the formulas FLC of Lambek Calculus. Now,

LLC
def
= 〈FLC,MRA,mngLC, |=LC〉 ,

where for all ϕ, ψ ∈ FLC and all M ∈MRA

mngLC(ϕ\ψ,M)
def
= mngRA

(
¬(ϕ` ◦ ¬ψ),M

)
,

mngLC(ϕ/ψ,M)
def
= mngRA

(
¬(¬ϕ ◦ ψ`),M

)
,

mngLC(ϕ→ ψ,M)
def
= mngRA(¬ϕ ∨ ψ,M),

and |=LC is defined analogously to |=RA.

Remark 3.2.31. Original Lambek Calculus is only a fragment of LLC because in
the original case the use of “→” is restricted. (In any formula, “→” can be used
only once, and it is the outer most connective.) The methods of the present work
yielded quite a few results for Lambek Calculus and for some further fragments of
Linear Logic, cf. Andréka–Mikulás [10].

Definition 3.2.32. (Language model for Lambek Calculus and other logics [e.g. arrow
logic])

(1) Notation: Recall that U∗ denotes the set of all finite sequences over the set
U . A set X ⊆ U∗ is called a language (in the syntactic sense). Let X,Y ⊆ U ∗.
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Then X ∗ Y = {s∩q : s ∈ X and q ∈ Y }, where s∩q is the concatenation of s
and q.

ML
def
= {〈U, f〉 : U is a set and f : P −→ P(U∗)} .

We write mng(ϕ) instead of mngL(ϕ, 〈U, f〉).

mng(pi)
def
= f(pi) for pi ∈ P,

mng(ϕ ∧ ψ)
def
= mng(ϕ) ∩mng(ψ),

mng(ϕ ◦ ψ)
def
= mng(ϕ) ∗mng(ψ),

mng(ϕ→ ψ)
def
= [U∗ r mng(ϕ)] ∪mng(ψ),

mng(ϕ\ψ)
def
= {q :

(
∀s ∈ mng(ϕ)

)
s∩q ∈ mng(ψ)},

mng(ϕ/ψ)
def
= {s :

(
∀q ∈ mng(ψ)

)
s∩q ∈ mng(ϕ)} .

Now, |=L is defined as before.

(2) Lambek calculus with language models is

LLCL
def
= 〈FLC,ML,mngL, |=L〉 .

This is quite a well investigated logic, and in some respects behaves slightly
differently from LLC.

Now we can extend the definition of mngL to the connectives ¬, ` and
Id as follows:

mng(¬ϕ)
def
= U∗ r mng(ϕ),

mng(ϕ`)
def
= {〈sn, . . . , s1〉 : 〈s1, . . . , sn〉 ∈ mng(ϕ)},

mng(Id)
def
= {〈〉},

where 〈〉 denotes the sequence of length 0.

(3) Extended Lambek calculus with language models : F+
LC has all the Booleans as

connectives in addition to FLC, and the semantics described in (1) above.

L+
LCL = 〈F+

LC,ML,mngL, |=L〉 .

(4) Arrow Logic with language models is

LARROWL = 〈F+
ARROW,ML,mngL, |=L〉 .

Definition 3.2.33. (Dynamic Arrow Logic) Recall the definition of LRA. Add the
unary connective ∗ sending ϕ to ϕ∗. The set of formulas (denoted as FDL) of
Dynamic Arrow Logic is defined as that of LRA together with the following clause:

ϕ ∈ FDL =⇒ ϕ∗ ∈ FDL .
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The semantics of this connective is defined by

mngDL(ϕ∗,M)
def
=

“reflexive and transitive closure of the relation mngDL(ϕ,M)”.

This defines |=∗ from |=RA. Now, Dynamic Arrow Logic is

LDL = 〈FDL,MRA,mngDL, |=
∗〉 .

Pratt’s original dynamic logic can easily and naturally be interpreted into LDL.
For more on Dynamic Arrow Logic cf. e.g. van Benthem [79], Marx [53].

3.2.3 Solutions for some exercises of subsections 3.2.1 and 3.2.2

Exercises 3.2.8

(2) LPAIR is decidable.

There is a model M ∈MPAIR such that ThLPAIR
(M) is not even recursively

enumerable. See the hint for Exercises 3.2.16 (3).

(5) A. Simon proved that for finite Ax, CsqLPAIR
(Ax) is decidable. He proved

that the logic LPAIR+“♦ of S5” is still decidable; then, using ♦, Ax |= ϕ is
equivalent to validity of a single formula (see Simon [76]).

Exercises 3.2.18

(3) LREL is undecidable. This hint is for the case you know that the word problem
of semigroups (or equivalently, the quasi-equational theory of semigroups) is
undecidable. Define a computable function f which to every quasi-equation
q in the language of semigroups associates f(q) ∈ FREL such that

|=REL f(q) ⇐⇒ Semigroups |= q.

Conclude that LREL cannot be decidable because that would provide a deci-
sion algorithm for the quasi-equations of semigroups. There are other ways
of handling this problem besides the “semigroup” one, cf. e.g. the important
book Tarski–Givant [77].

There is a formula ϕ ∈ FREL such that CsqLREL
({ϕ}) is undecidable. More-

over, LREL has the Gödel’s incompleteness property that is,

(∃ϕ ∈ FREL)(∀T ⊆ FREL)
(
(ϕ ∈ T and T is consistent) =⇒

=⇒ CsqLREL
(T ) is undecidable)

)
.

Observe the contrast between LPAIR and LREL!
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(4) The others (Exercises 3.2.3 (3)–(5) for LREL) follow from the corresponding
answers for Exercises 3.2.16 above.

Exercises 3.2.14(4) Here we give a very detailed hint for solving this exercise, i.e.
for proving that Lmore is decidable.

Let A = 〈A,6,+, O, I〉 be a structure where 6 is a binary relation on A, +
is a partial binary operation on A (i.e. Dom(+) ⊆ A × A), I ⊆ A and O ∈ I .
The diagram of A, in symbols ∆(A), is defined as follows. Let a0, . . . , an be a
repetition-free enumeration of Ar I . Let x0, . . . , xn be variables. For any i, j 6 n
let

π(xi, xj)
def
=

{

xi + xj = xk if ai + aj = ak in A

xi = xj if ai + aj is not defined in A,

%(xi, xj)
def
=

{

xi 6 xj if ai 6 aj in A

xi 66 xj if ai 66 aj in A,

δ(xi, xj)
def
= π(xi, xj) ∧ %(xi, xj).

∆(A)
def
= ∃x0 . . . xn

(∧

{δ(xi, xj) : i, j 6 n}
)
.

We note that ∆(A) is a (first-order) formula containing only + and 6, therefore
it is decidable whether this formula is valid in standard arithmetic or not.

We say that A is a cardinality structure iff the following hold for all a, b ∈ A:

6 is a linear ordering on A;

O is the smallest element, i.e. O 6 a for every a ∈ A;

I is an end segment, i.e. a ∈ I and a 6 b imply b ∈ I ;

O + a = a+ O = a, a+ b = b if a 6 b and b ∈ I ;

a+ b ∈ I implies (a ∈ I or b ∈ I);

+ is commutative and associative in the sense that

if a+ b exists then b+ a exists and a+ b = b+ a;

a+b, (a+b)+c exist iff b+c, a+(b+c) exist and (a+b)+c = a+(b+c);

〈N,6,+〉 |= ∆(A).

We say that (A, κ) is an abstract cardinality model , in symbols (A, κ) ∈
ACMod, iff

A is a cardinality structure;

κ : P(P )→ A (where P is the set of atomic formulas of Lmore);
∑
〈κ(H) : H ∈ H〉 exists for all H ⊆ P(P ), where

∑
refers to addition in A.
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Now let (A, κ) ∈ ACMod and χ ∈ Fmore. We define σ(χ) ⊆ P(P ) by induc-
tion on the complexity of the formula χ as follows.

σ(p)
def
= {H ∈ P(P ) : p ∈ H} if p ∈ P ;

σ(ϕ ∧ ψ)
def
= σ(ϕ) ∩ σ(ψ);

σ(¬ϕ)
def
= P(P ) r σ(ϕ);

σ
(
�(ϕ, ψ)

) def
=

{

P(P ) if
∑
〈κ(H) : H ∈ σ(ϕ)〉 ≥

∑
〈κ(H) : H ∈ σ(ψ)〉

∅ otherwise.

(A, κ) |= ϕ
def
⇐⇒ σ(ϕ) = P(P ).

Show that the following gives an algorithm for deciding validity of ϕ:

ϕ is valid in Lmore

iff
(A, κ) |= ϕ for all (A, κ) ∈ ACMod such that |A| 6 22|P |

.
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Chapter 4

Bridge between the world of
logics and the world of algebras

Many of our readers might enjoy looking up section 5 of [62] where we discuss the
question of what logic is.

The algebraic counterpart of classical sentential logic LS is the variety BA
of Boolean algebras. Why is this so important? The answer lies in the general
experience that it is usually much easier to solve a problem concerning LS by
translating it to BA, solving the algebraic problem, and then translating the result
back to LS (than solving it directly in LS).

In this section we extend applicability of BA to LS to applicability of algebra
in general to logics in general. We will introduce a standard translation method
from logic to algebra, which to each logic L associates a class of algebras Alg|=(L).
(Of course, Alg|=(LS) will be BA.) Further, this translation method will tell us
how to find the algebraic question corresponding to a logical question. If the log-
ical question is about L then its algebraic equivalent will be about Alg|=(L). For
example, if we want to decide whether L has the proof theoretic property called
Craig’s interpolation property, then it is sufficient to decide whether Alg|=(L) has
the so called amalgamation property (for which there are powerful methods in the
literature of algebra). If the logical question concerns connections between several
logics, say between L1 and L2, then the algebraic question will be about connec-
tions between Alg|=(L1) and Alg|=(L2). (The latter are quite often simpler, hence
easier to investigate.)

A feature of the present approach seems to be striving for flexibility and
building bridges between appearantly distant areas. This gives us hope for bringing
Tarski’s main research directions together explicitly into a single coherent theory. It
seems no coincidence that Tarski’s main research fields included (i) algebraic logic,
(ii) definability theory, (iii) logical foundation of geometry. Today there seems to be
a convergence between areas (i)-(iii) together with the theory of spacetime, hence
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with logical foundation of relativity theory. This is not too surprising if we recall
that the first originator of definability was Einstein’s friend Hans Reichenbach who,
around 1924, argued for the importance of creating a logical theory of definability
and the motivation he gave for this was that relativity theory needed such a tool.
Further, area (iii) of Tarski naturally generalizes to logical foundation of spacetime,
since relativity theory is often identified with a geometrization of certain parts of
physics. Recent works on the combination of (i)-(iii) with logic of spacetime and
logical analysis of relativity are [9], [50], [7], [8]. [63] is a point where relativity
gives a potential feedback to logic (or to the foundation of mathematics).

4.1 Fine-tuning the framework

The definition of a logic in section 3.1 is very wide. Actually, it is too wide for
proving interesting theorems about logics. Now we will define a subclass of logics
which we will call nice logics . Our notion of a nice logic is wide enough to cover
the logics mentioned in the previous section, moreover, it is broad enough to cover
almost all logics investigated in the literature. (Certain quantifier logics might need
a little reformulation for this, but that reformulation does not effect the essential
aspects of the logic in question as we will see.) On the other hand, the class of nice
logics is narrow enough for proving interesting theorems about them, that is, we
will be able to establish typical logical facts that hold for most logics studied in the
literature. For more on this “bridge” and its generalizations, recent applications
we refer to [49] under the keyword “duality theories”, in particular in Appendix
A and pp.280-282, 293-296, 325, A1-A18 therein.

4.1.1 Nice and strongly nice logics

In this subsection, L = 〈F,M,mng , |=〉 denotes an arbitrary but fixed logic in
the sense of Definition 3.1.3 (i.e. F is a set, M is a class, mng is a function with
domain F ×M , and |= ⊆M × F ).

We will define the concept of a nice logic (and its variants: strongly nice logic,
structural logic) via conditions each of which is interesting on its own right. When
reading these conditions, it might be useful to contemplate the common features
of the logics studied so far, e.g. LS , S5, LARW0, Ln (cf. section 3.2).

The formulas of each of these logics were built up by means of some logical
connectives . This property is phrased, in general, as follows.

Definition 4.1.1. (L has logical connectives) We say that L has logical connectives
iff (i) and (ii) below hold.

(i) A set Cn(L), called the set of logical connectives of L, is fixed. Every
c ∈ Cn(L) has some rank rank(c) ∈ ω. The set of all logical connectives of rank k
is denoted by Cnk(L).

(ii) There is a set P , called the set of atomic formulas (or proposition letters
or parameters or propositional variables), such that F is the smallest set satisfying
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conditions (a–b) below.
(a) P ⊆ F ,
(b) if c ∈ Cnk(L) and ϕ1, . . . , ϕk ∈ F then c(ϕ1, . . . , ϕk) ∈ F .

The word-algebra generated by P using the logical connectives from Cn(L) as
algebraic operations is denoted by F , that is, F = 〈F, c〉c∈Cn(L). F is called the
formula algebra of L.

Definition 4.1.2. (compositionality) We say that L is compositional iff it has logical
connectives and the function

mngM

def
= 〈mng(ϕ,M) : ϕ ∈ F 〉

is a homomorphism from F, for every M ∈M .

In words, compositionality means that the meanings of formulas are built up
from the meanings of their subformulas in a “regular” and “uniform” way. This is
just Frége’s principle of compositionality (a well-known purely logical criterion).

An equivalent formulation of compositionality is that the kernel ker(ϕ) =
{〈a, b〉 : mngM(a) = mngM(b)} of the function mngM is a congruence relation of
the formula lagebra F (cf. subsection 2.2.4, Exercises 2.2.15). Thus L is composi-
tional iff condition (4.1) below is satisfied for all k-ary connective c ∈ Cnk(L) and
ϕi, ψi ∈ FL, 1 6 i 6 k:

k∧

i=1

mngM(ϕi) = mngM(ψi) =⇒

mngM(c(ϕ1, . . . , ϕk)) = mngM(c(ψ1, . . . , ψk)) . (4.1)

By a derived connective we mean a term (more precisely, a scheme of terms,
cf. Def.4.1.19) in the language of the word-algebra F. For example, in all the logics
studied so far the biconditional↔ is available as a derived connective, cf. Exercises
3.2.2(2). Other examples for derived connectives are ∨ and True: ϕ∨ ψ is defined
as ¬(¬ϕ ∧ ¬ψ) while True is defined by the scheme ϕ ∨ ¬ϕ. It is easy to see that
in all our logics defined so far, we have

(a) mngM(ϕ) = mngM(ψ)⇐⇒M |= ϕ↔ ψ
and

(b) M |= ϕ⇐⇒M |= True ↔ ϕ

for every model M and formulas ϕ and ψ. The following property, called the
filter property, is a generalization of the above (a) and (b) (choosing m = n = 1,
∆0 =↔, ε0(ϕ) = True, δ0(ϕ) = ϕ in Def.4.1.3). As you will see, the filter property
is a weaker condition than the above (a) and (b) together.

Definition 4.1.3. (filter property) We say that L has the filter property iff there
are derived connectives ε0, . . . , εm−1 and δ0, . . . , δm−1 (unary) and ∆0, . . . ,∆n−1

(binary) (m,n ∈ ω) of L with the following properties:
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(i) For every M ∈M and ϕ, ψ ∈ F ,

mngM(ϕ) = mngM(ψ)⇐⇒ (∀i < n)M |= ϕ∆iψ .

(ii) For every M ∈M and ϕ ∈ F ,

M |= ϕ⇐⇒ (∀j < m)(∀i < n)M |= εj(ϕ)∆iδj(ϕ) .

Exercises 4.1.4. 1. Assume that L is compositional and has the filter property.
Prove that condition (3.1) of Def.3.1.3(v) holds for L.

2. We have seen that conditions (a) and (b) together provide a special case
of the filter property. Prove that (a) plus (b) imply the following connectio
between |= and mng .

(∀ϕ, ψ ∈ F )
(
(|= ϕ and |= ψ)⇒ (∀M ∈M)mngM(ϕ) = mngM(ψ)

)
. (4.2)

This does not follow from the filter property in general.

3. Prove that if L is compositional and conditions (a) and (b) concerning True
and ↔ are satisfied by L then condition (4.3) below holds.

(∀ϕ ∈ F )(∀M ∈M)M |= ϕ⇐⇒ mngM(ϕ) = mngM(True) . (4.3)

The last two properties we list here are two different substitution properties .

Definition 4.1.5. ((syntactical) substitution property) We say that L has the (syn-
tactical) substitution property iff

(∀ψ, ϕ0, . . . , ϕk ∈ F )(∀p0, . . . , pk ∈ P )
(
|= ψ(p) =⇒ |= ψ(p/ϕ)

)
,

where p = 〈p0, . . . , pk〉, ϕ = 〈ϕ0, . . . , ϕk〉, and ψ(p/ϕ) denotes the formula that we
get from ψ after simultaneously substituting ϕi for every occurrence of pi (i 6 k)
in ψ.

Definition 4.1.6. (semantactical substitution property) We say that L has the se-
mantical substitution property iff condition (4.4) below holds.

(∀s ∈ PF )(∀M ∈M)(∃N ∈M)(∀ϕ(pi0 , . . . , pik
) ∈ F )

mngN(ϕ) = mngM

(
ϕ(pi0/s(pi0), . . . , pik

/s(pik
))

)
. (4.4)

Let ŝ ∈ FF be the natural extension of s to F. Then (4.4) says that

mngN(ϕ) = mngM(ŝ(ϕ)).

The model N is called the substituted version of M along substitution s.
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An equivalent form of (4.4) above is the very natural condition

(∀h ∈ Hom(F,F)) (∀M ∈M)(∃N ∈M) mngN = mngM ◦ h .

Since h is just a substitution, this form makes it explicit that N is the h-substituted
version of M. Another equivalent form of (4.4) is the following.

(∀M ∈M)
(
∀h ∈ Hom(F,mngM(F))

)
(∃N ∈M) mngN = h.

Exercise 4.1.7. Prove that if L is compositional, has the filter property and the
semantical substitution property then L has the syntactical substitution property
as well. Is this true in general?

Definition 4.1.8. (nice logic, strongly nice logic, structural logic) We say that L
is a nice logic iff it is compositional, has the filter property and the syntactical
substitution property. L is called a strongly nice logic iff it is a nice logic and it has
the semantical substitution property as well. Following the terminology of Blok
and Pigozzi (cf. e.g. [22]), logics that are compositional and have both substitution
properties are called structural logics .

Remark 4.1.9. (Connections with the Blok–Pigozzi approach) Here we mention only
a small part of these connections.

The 〈FL, |=L〉 part1 of a strongly nice, consequence compact (see Def. 4.2.14
below) logic L is always an algebraizable deductive system in the sense of Blok–
Pigozzi [22] (which is an algebraizable 1-deductive system in [21]). Conversely, if
〈F,`〉 is an algebraizable deductive system then L`, as defined in Remark 3.1.2
above, is always a strongly nice consequence compact logic in our sense. Sructural
logics and the connections between the two approaches are discussed in more detail
in Font–Jansana [30].

A small sample of references of the Blok–Pigozzi approach is [22], [21], [23],
[64], Czelakowski [28], Font–Jansana [30].

Exercises 4.1.10.

(1) (Important! ) Show that all the logics introduced in Defs. 3.2.1–3.2.21 above
are strongly nice logics. It is especially important to do it for Ln!

(2) Show that LFOL (cf. Def. 3.2.23) is a nice logic.

Exercises 4.1.11. Show logics where n = 1 but ∆0 is not our old biconditional ↔.
(E.g., in S5 we can also take �(Φ1 ↔ Φ2) as Φ1∆0Φ2.) Show logics where n > 1.

4.1.2 The algebraic counterpart of 〈F, M,mng, |=〉

Recall from Def.2.2.10 that for any class K of similar algebras,

IK
def
= {M : (∃N ∈ K)M is isomorphic to N} .

1Here |=L denotes the semantical consequence relation induced by the validity relation of L.
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Definition 4.1.12. (algebraic counterpart of a logic) Let L = 〈F,M,mng , |=〉 be a
compositional logic.

(i) Let K ⊆M . Then for every ϕ, ψ ∈ F

ϕ ∼K ψ
def
⇐⇒ (∀M ∈ K) mngM(ϕ) = mngM(ψ).

Then ∼K is an equivalence relation, which is a congruence on F by composition-
ality. F/∼K denotes the factor-algebra of F, factorized by ∼K . Now,

Alg|=(L)
def
= I{F/∼K : K ⊆M} .

(ii) Further

Algm(L)
def
= {mngM(F) : M ∈M} ,

where mngM was defined in Definition 4.1.2, and for any homomorphism h :
A −→ B, h(A) is the homomorphic image of A along h i.e., h(A) is the smallest
subalgebra of B such that h : A −→ h(A) (cf. p.??).

Remark 4.1.13. In the definition of Algm(L) above, it is important that Algm(L)
is not an abstract class in the sense that it is not closed under isomorphisms.
The reason for defining Algm(L) in such a way is that since Algm(L) is the class
of algebraic counterparts of the models of L, we need these algebras as concrete
algebras and replacing them with their isomophic copies would lead to loss of
information (about semantic-model theoretic matters). See e.g. items 6.0.44–6.0.50
in section 6 about the algebraic characterization of the weak Beth definability
property .

Fact 4.1.14. Let L be a compositional logic satisfying condition (i) of the filter
property (see Definition 4.1.3) Then

Alg|=(L) = I〈F/∼ModL(Γ) : Γ ⊆ F 〉.

Proof. For every K ⊆M , F/∼K= F/∼ModL(ThL(K)) holds (cf. Definitions 3.1.5
and 3.1.6). �

Theorem 4.1.15. For any compositional logic L = 〈F,M,mng , |=〉, (i)–(iii) below
hold.

(i) Algm(L) ⊆ Alg|=(L).

(ii) Alg|= ⊆ SPAlgm(L).

(iii) SPAlg|=(L) = SPAlgm(L).

Proof. (i): Let A ∈ Algm(L), that is, assume that (∃M ∈ M)A = mngM(F). Let

K
def
= {M}. Then ∼K= ker(mngM), and A ∼= F/∼K∈ Alg|=(L). Thus A ∈ Alg|=(L)

since Alg|=(L) is closed under isomorphisms.
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(ii): Let A ∈ Alg|=(L), that is, assume that (∃K ⊆ M)A ∼= F/∼K . Since F
is a set, (∃K ′ ⊆ K)(K ′ is a set and F/∼K= F/∼K′). From now on, let K denote
such a K ′. Consider the following function

h : F/∼K −→ Π〈mngM(F) : M ∈ K〉 .

For any ϕ ∈ F , h(ϕ/∼K)
def
= 〈mngM(ϕ) : M ∈ K〉. It is easy to see that h is a

homomorphism, moreover, it is an embedding. Thus A ∈ SPAlgm(L).

(iii): SPAlgm(L) ⊆ SPAlg|=(L) holds by (i) and by the fact that SP is isotone
(by being a closure operator). The other direction SPAlgm(L) ⊇ SPAlg|=(L) holds
by (ii) and by the fact that SP is idempotent. �

Corollary 4.1.16. Alg|=(L) and Algm(L) have the same quasi-equational and equa-
tional theories.

Proof. This follows from Theorems 4.1.15, 2.5.10, and 2.5.11. �

Exercise 4.1.17. Why did we need the fact that K in the proof of (ii) of Thm.4.1.15
is a set and not a proper class?

Exercises 4.1.18. Prove that

(i) Algm(LS) ⊆“class of all Boolean set algebras”

(ii) Algm(S5) ⊆“class of all one-dimensional cylindric set algebras”.

4.1.3 Hilbert-type inference systems

By Def.3.1.3, by a logic we meant only a 4-tuple 〈F,M,mng , |=〉, even though, at
the beginning of section 3.2, we said that, often, a syntactical consequence relation
`⊆ P(F ) × F also belongs to the picture. ` is also called an inference system,
referring to its “computational” nature. Namely, inference systems are syntactical
devices serving to recapture (or at least approximate) the semantical consequence
relation |=⊆ P(F )×F of the logic. The idea is the following. Suppose Σ|=Lϕ. This
means that, in the logic L, the assumptions collected in Σ semantically imply the
conclusion ϕ. (In any model M of L, that is, in any M ∈ML, whenever Σ is valid
in M, then also ϕ is valid in M.) Then we would like to be able to reproduce this
relationship between Σ and ϕ by purely syntactical, “finitistic” means. That is, by
applying some formal rules of inference (and some axioms of the logic L) we would
like to be able to derive ϕ from Σ by using “paper and pencil” only. In particular,
such a derivation will always be a finite string of symbols. If we can do this, that
will be denoted by Σ ` ϕ.

Definition 4.1.19. (formula scheme) Let L be a logic having the set Cn(L) of
logical connectives. Fix a countable set A = {Ai : i < ω}, called the set of formula
variables . The set FmsL of formula schemes of L is the smallest set satisfying
conditions (a–b) below.
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(a) A ⊆ FmsL,

(b) if c ∈ Cnk(L) and Φ1, . . . ,Φk ∈ FmsL then c(Φ1, . . . ,Φk) ∈ FmsL.

An instance of a formula scheme is given by substituting formulas for the
formula variables in it.

Definition 4.1.20. (Hilbert-style inference system) Assume that a logic L has logical
connectives (see Definition 4.1.1). An inference rule of L is a pair

〈
〈B1, . . . , Bn〉, B0

〉
,

where every Bi (i 6 n) is a formula scheme. This inference rule will be denoted
by

B1, . . . , Bn

B0
.

An instance of an inference rule is given by substituting formulas for the
formula variables in the formula schemes occurring in the rule.

A Hilbert-style inference system (or calculus) for L is a finite set of formula
schemes (called axiom schemes or axioms) together with a finite set of inference
rules.

Definition 4.1.21. (derivability) Let L be a logic and assume that L has logical
connectives. Let ` be a Hilbert-style inference system for L. Assume Σ∪{ϕ} ⊆ FL.
We say that ϕ is `-derivable (or `-provable) from Σ iff there is a finite sequence
〈ϕ1, . . . , ϕn〉 of formulas (an `-proof of ϕ from Σ) such that ϕn is ϕ and for every
1 6 i 6 n

• ϕi ∈ Σ or

• ϕi is an instance of an axiom scheme (an axiom for short) of ` or

• there are j1, . . . , jk < i, and there is an inference rule of ` such that
ϕj1

,...,ϕjk

ϕi

is an instance of this rule.

We write Σ ` ϕ if ϕ is `-provable from Σ. (We will often identify an inference
system ` with the corresponding derivability relation.)

Definition 4.1.22. (complete and sound Hilbert-type inference system) Let L be a
logic and assume that L has logical connectives. Let ` be a Hilbert-type inference
system for L. Then

• ` is weakly complete for L iff (∀ϕ ∈ FL) (|=L ϕ⇒ ` ϕ) ;

• ` is strongly complete for L iff (∀Σ ⊆ FL)(∀ϕ ∈ FL) (Σ |=L ϕ⇒ Σ ` ϕ) ;

• ` is finitely complete for L iff (∀Σ ⊆ω FL)(∀ϕ ∈ FL) (Σ |=L ϕ⇒ Σ ` ϕ)

(we consider only finite Σ’s);

• ` is weakly sound for L iff (∀ϕ ∈ FL) (` ϕ⇒ |=L ϕ) ;

• ` is strongly sound for L iff (∀Σ ⊆ FL)(∀ϕ ∈ FL) (Σ ` ϕ⇒ Σ |=L ϕ) .
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4.2 Algebraic characterizations of completeness and com-
pactness properties

In the proofs of the main theorems we make a careful distinction between |=L and
|=, using the former symbol for the validity (and semantical consequence) relation
of logic L and |= for the usual first-order validity relation.

Theorem 4.2.1. (i) Let L = 〈F,M,mng , |=L〉 be a strongly nice logic. Let m be
as in Def. 4.1.3. Then for any formulas ϕ0, ϕ1, . . . , ϕk,

{ϕ1, . . . , ϕk} |=L ϕ0 iff for each j < m,

Algm(L) |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} →
(
εj(ϕ0) = δj(ϕ0)

)
.

(ii) Let L be a strongly nice logic in the sense of Def. 4.1.8. Let n be as in
Def. 4.1.3. Then for any quasi-equation q of form

(τ1 = τ ′1 ∧ · · · ∧ τk = τ ′k)→ τ0 = τ ′0,

Algm(L) |= q ⇐⇒ {τs∆jτ
′
s : 1 6 s 6 k, j < n} |=L τ0∆iτ

′
0

for each i < n.

Proof. Proof of (i):

Direction “=⇒”: Assume p0, . . . , p` are the only atomic formulas occurring
in ϕ0, . . . , ϕk and assume that

{ϕ1(p0, . . . , p`), . . . , ϕk(p0, . . . , p`)} |=L ϕ0(p0, . . . , p`).

Let A ∈ Algm(L). Then A = mngM(F) for some M ∈M . Let a ∈ PA be arbitrary.

For every i 6 ` we denote ai
def
= a(pi). Clearly, for every i 6 `, ai = mngM(γi) for

some γi ∈ F . For every s 6 k,

ϕs[a0, . . . , a`]
A = ϕs[mngM(γ0), . . . ,mngM(γ`)]

A = mngM

(
ϕs(γ0, . . . , γ`)

)
,

since mngM is a homomorphism by compositionality.

Assume that for every 1 6 s 6 k and j < m, A |=
(
εj(ϕs) = δj(ϕs)

)
[a]. This

holds iff

mngM

(
εj(ϕs(γ0, . . . , γ`))

)
= mngM

(
δj(ϕs(γ0, . . . , γ`))

)
(1 6 s 6 k, j < m).

Then, by the semantical substitution property, there exists an N as described in
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Def. 4.1.6 for s sending p0 to γ0, . . . , pk to γk an for M. Let this N be fixed.

=⇒ mngN

(
εj(ϕs)

)
= mngN

(
δj(ϕs)

)
(1 6 s 6 k, j < m)

(by Def. 4.1.3)
⇐⇒ N |=L ϕs (1 6 s 6 k)

(by our assumption)
=⇒ N |=L ϕ0

(by Def. 4.1.3)
⇐⇒ mngN

(
εj(ϕ0)

)
= mngN

(
δj(ϕ0)

)
(j < m)

(by Def. 4.1.6)
=⇒ mngM

(
εj(ϕ0(γ0, . . . , γ`))

)
= mngM

(
δj(ϕ0(γ0, . . . , γ`))

)
(j < m)

⇐⇒ A |=
(
εj(ϕ0) = δj(ϕ0)

)
[a], (j < m)

proving Thm. 4.2.1 (i) direction “=⇒”, since a was chosen arbitrarily.

Direction “⇐=”: Assume that

Algm(L) |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} →
(
εj(ϕ0) = δj(ϕ0)

)
.

Let M ∈M . Assume that for every 1 6 s 6 k M |=L ϕs.

(by Def. 4.1.3)
=⇒ mngM

(
εj(ϕs)

)
= mngM

(
δj(ϕs)

)
(1 6 s 6 k, j < m)

(by our assumption)
⇐⇒ mngM

(
εj(ϕ0)

)
= mngM

(
δj(ϕ0)

)
(j < m)

(by Def. 4.1.3)
=⇒ M |=L ϕ0

proving Thm. 4.2.1 (i) direction “⇐=”.

Proof of (ii):
Direction “=⇒”: Assume that for every A ∈ Algm(L) and for every valuation

a ∈ PA A |= q[a]. Let M ∈M such that

M |=L {τs∆iτ
′
s : 1 6 s 6 k, i < n}.

Then by Def. 4.1.3 (i), mngM(τs) = mngM(τ ′s) for each 1 6 s 6 k. Now we let

A
def
= mngM(F) and let a ∈ PA be such that for each p ∈ P , a(p)

def
= mngM(p).

Then
A |= (τ1 = τ ′1 ∧ · · · ∧ τk = τ ′k)[a],

which implies by our assumption that A |= (τ0 = τ ′0)[a]. This is the same as
mngM(τ0) = mngM(τ ′0), thus again by Definition 4.1.3 (i), M |=L τ0∆iτ

′
0 for each

i < n, which proves direction “=⇒” of Thm. 4.2.1(ii).

Direction “⇐=”: Assume {τs∆jτ
′
s : 1 6 s 6 k, j < n} |=L τ0∆iτ

′
0 for each i <

n. Assume p0, . . . , p` are the only atomic formulas occurring in τ0, τ
′
0, . . . , τk, τ

′
k.



4.2. Algebraic characterizations of completeness and compactness properties 137

Let A ∈ Algm(L). Then A = mngM(F) for some M ∈M . Let a ∈ PA be arbitrary.

For every i 6 ` we denote ai
def
= a(pi). Clearly for every i 6 ` ai = mngM(γi) for

some γi ∈ F . For every ϕ ∈ F

ϕ[a0, . . . , a`]
A = ϕ[mngM(γ0), . . . ,mngM(γ`)]

A = mngM

(
ϕ(γ0, . . . , γ`

)
)

since mngM is a homomorphism by compositionality. Assume that for every 1 6

s 6 k, A |= τs = τ ′s[a].

⇐⇒ mngM

(
τs(γ0, . . . , γ`)

)
= mngM

(
τ ′s(γ0, . . . , γ`)

)

(by Def. 4.1.6)
=⇒ There is N as described in Def. 4.1.6 for s sending

p0 to γ0, . . . , pk to γk and for M. Let this N be fixed.

=⇒ mngN(τs) = mngN(τ ′s) (1 6 s 6 k)

(by Def. 4.1.3 (i))
⇐⇒ N |=L τs∆iτ

′
s (1 6 s 6 k, i < n)

(by our assumption)
=⇒ N |= τ0∆iτ

′
0 (i < n)

(by Def. 4.1.6)
=⇒ mngM

(
τ0(γ0, . . . , γ`)

)
= mngM

(
τ ′0(γ0, . . . , γ`)

)

⇐⇒ A |=
(
τ0 = τ ′0

)
[a],

proving Thm. 4.2.1 (ii) direction “⇐=”, since a was chosen arbitrarily.
�

Discussion: of Theorem 4.2.1: For proving the “⇐=” direction of (i), it is enough
to assume that L is compositional and has the filter property. For proving the
“=⇒” direction of (ii), it is enough to assume that L is compositional and sati-
fies condition (i) of the filter property. However, there exist compositional logics
satisfying (i) of the filter property for which direction “⇐=” of (ii) does not hold.
For proving this direction we do not have to assume condition (ii) of the filter
property.

Corollary 4.2.2. Let L be a nice logic. Let ε, δ,∆,m, n be as in Def. 4.1.3. Then
(i) and (ii) below hold.

(i) For any formula ϕ,

|=L ϕ ⇐⇒ Algm(L) |= εj(ϕ) = δj(ϕ) for each j < m.

(ii) For any equation τ = τ ′,

Algm(L) |= τ = τ ′ ⇐⇒ |=L τ∆iτ
′ for each i < n.
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Proof. Item (ii) is a special case of item (ii) of Thm. 4.2.1, but now we have to
prove (i) for nice logics, cf. Def. 4.1.8.

Assume |=L ϕ(p0, . . . , p`). Let A ∈ Algm(L). Then A = mngM(F) for some

M ∈M . Let a ∈ PA be arbitrary. We denote a0
def
= a(p0), . . . , a`

def
= a(p`). Clearly

(∀s 6 `) (as = mngM(γs) for some γs ∈ F ).

ϕ[a0, . . . , a`]
A = ϕ[mngM(γ0), . . . ,mngM(γ`)]

A = mngM (ϕ(γ0, . . . , γ`)) ,

since mngM is a homomorphism.

|=L ϕ(p0, . . . , p`) implies, by the substitution property, that |=L ϕ(γ0, . . . , γ`).
Thus by the filter property, for each j < m

mngM

(
εj(ϕ(γ0, . . . , γ`))

)
= mngM

(
δj(ϕ(γ0, . . . , γ`))

)
.

But

mngM

(
εj(ϕ(γ0, . . . , γ`))

)
= εj(ϕ)[a]A and

mngM

(
δj(ϕ(γ0, . . . , γ`))

)
= δj(ϕ)[a]A (j < m).

Thus we have A |=
(
εj(ϕ) = δj(ϕ)

)
[a] for each j < m, completing the proof since

a was chosen arbitrarily. �

In Theorem 4.2.3 below, we will give a sufficent and necessary condition for
a strongly nice logic to have a finitely complete Hilbert-style inference system.

Theorem 4.2.3. Assume L is a strongly nice logic and Cn(L) is finite2. Then
Algm(L) generates a finitely axiomatizable quasi-variety

⇐⇒
(∃ Hilbert-style `)(` is finitely complete and strongly sound for L).

Proof. (Proof of (=⇒))

Notation Let Φ0,Φ1, . . . denote formula variables, τ0, τ1, . . . denote formula
schemes, Φ denote sequence of formula variables and x denote sequence of vari-
ables. Let m and n (m,n ∈ ω) denote the number of εj ’s and ∆i’s, respectively. For
any formula schemes τ , τ ′, let τ∆τ ′ abbreviate the system τ∆0τ

′, . . . , τ∆n−1τ
′ of

formula schemes.

Now assume that Ax is a finite set of quasi-equations axiomatizing the quasi-
variety generated by Algm(L) and define a Hilbert-style inference system `Ax as
follows:

2One can eliminate the assumption of Cn(L) being finite. Then the finitary character of a
Hilbert-style inference system has to be ensured in a more subtle way. Also, “finitely axiom-
atizable quasi-variety” must be replaced by “finite schema axiomatizable quasi-variety” in the
second clause, cf. e.g. Monk [55], Németi [60].
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Axiom schemes: Φ0∆iΦ0 (i < n).
Inference rules: If

[(
τ1(x) = τ ′1(x) ∧ · · · ∧ τk(x) = τ ′k(x)

)
⇒ τ0(x) = τ ′0(x)

]
∈

Ax , then
τ1(Φ)∆τ ′1(Φ), . . . , τk(Φ)∆τ ′k(Φ)

τ0(Φ)∆iτ ′0(Φ)

is a rule for each i < n. Other rules are:

(∀i < n)
Φ0∆Φ1, Φ1∆Φ2

Φ0∆iΦ2
,

(∀i < n)
Φ0∆Φ1

Φ1∆iΦ0
,

(∀c ∈ Cn`(L))(∀i < n)
Φ1∆Φ′1, . . . ,Φ`∆Φ′`

c(Φ1, . . . ,Φ`)∆ic(Φ′1, . . . ,Φ
′
`)
,

ε0(Φ0)∆δ0(Φ0), . . . , εm−1(Φ0)∆δm−1(Φ0)

Φ0
,

(∀i < n)(∀j < m)
Φ0

εj(Φ0)∆iδj(Φ0)
.

We will show that the inference system `Ax is finitely complete and strongly
sound for L.

For any set Σ of formulas we define

ψ ∼Σ ψ′
def
⇐⇒ Σ `Ax {ψ∆iψ

′ : i < n}.

Note that, by the definition of `Ax and by the definition of derivability (Def. 4.1.21),
∼Σ is a congruence relation on F for any Σ. �

Claim 4.2.4. For any Σ ⊆ F , (F/∼Σ) |= Ax.

Proof. (Proof of Claim 4.2.4) Let q ∈ Ax and assume that q is of form
(
τ1(x) = τ ′1(x) ∧ · · · ∧ τk(x) = τ ′k(x)

)
⇒ τ0(x) = τ ′0(x) .

Let A
def
= (F/∼Σ). We want to prove that, for every valuation a of the variables

into A, A |= q[a].
So let a be an arbitrary valuation into A. Then (∀i ∈ ω) a(xi) = ϕi/∼Σ for

some ϕi ∈ F . Assume that

A |= τ1
[
ϕ/∼Σ

]
= τ ′1

[
ϕ/∼Σ

]
∧ · · · ∧ τk

[
ϕ/∼Σ

]
= τ ′k

[
ϕ/∼Σ

]
.

Then
(
τ1(ϕ)

)
/∼Σ=

(
τ ′1(ϕ)

)
/∼Σ, . . . ,

(
τk(ϕ)

)
/∼Σ=

(
τ ′k(ϕ)

)
/∼Σ,

since ∼Σ is a congruence on F. Then

τ1 (ϕ) ∼Σ τ ′1 (ϕ) , . . . , τk (ϕ) ∼Σ τ ′k (ϕ)
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that is,
Σ `Ax {τj (ϕ) ∆iτ

′
j (ϕ) : 1 6 j 6 k, i < n}

by the definition of ∼Σ. In `Ax, we have the following rule for each i < n (corre-
sponding to quasiequation q):

τ1(Φ)∆τ ′1(Φ), . . . , τk(Φ)∆τ ′k(Φ)

τ0(Φ)∆iτ ′0(Φ)
.

By these rules, we get that Σ `Ax τ0 (ϕ) ∆iτ
′
0 (ϕ) for each i < n. Then τ0 (ϕ) ∼Σ

τ ′0 (ϕ), whence
(
τ0 (ϕ)

)
/∼Σ=

(
τ ′0 (ϕ)

)
/∼Σ that is, A |= τ0

[
ϕ/∼Σ

]
= τ ′0

[
ϕ/ ∼Σ

]

which implies A |=
(
τ0(x) = τ ′0(x)

)
[a]. By this we proved Claim 4.2.4. �

Now let Σ
def
= {ϕ1, . . . , ϕk} and assume Σ |=L ϕ0. Then, by Thm. 4.2.1 (i),

Algm(L) |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} →
(
εj(ϕ0) = δj(ϕ0)

)
(j < m)

=⇒ Ax |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} →
(
εj(ϕ0) = δj(ϕ0)

)
(j < m)

(Claim 4.2.4)
=⇒ (F/∼Σ) |=

∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} ⇒

⇒
(
εj(ϕ0) = δj(ϕ0)

)
(j < m)

=⇒
[
if

(
(∀i < m)(∀1 6 s 6 k) εi(ϕs) ∼Σ δi(ϕs)

)
then (∀j < m) εj(ϕ0) ∼Σ δj(ϕ0)

]

⇐⇒
[
if

(
(∀` < n)(∀i < m)(∀1 6 s 6 k) Σ `Ax εi(ϕs)∆`δi(ϕs)

)

then (∀` < n)(∀j < m) Σ `Ax εj(ϕ0)∆`δj(ϕ0)
]
. (•)

By the rules Φ0

εi(Φ0)∆`δi(Φ0) we have Σ `Ax εi(ϕs)∆`δi(ϕs) for every i < m, ` < n,

1 6 s 6 k. Thus, by (•), Σ `Ax εj(ϕ0)∆`δj(ϕ0) holds for each ` < n, j < m.

Now using the rule ε0(Φ0)∆δ0(Φ0),...,εm−1(Φ0)∆δm−1(Φ0)
Φ0

we get Σ `Ax ϕ0, proving
the finite completeness of `Ax.

The strong soundness of `Ax can be proved by induction on the length of the
`Ax-proof of ϕ0 from {ϕ1, . . . , ϕk}. We only show one part of the induction step,
namely the case when ϕ0 is ’obtained’ by one of the inference rules corresponding
to a quasi-equation q ∈ Ax. Say q has the form

(
τ1(x) = τ ′1(x) ∧ · · · ∧ τr(x) = τ ′r(x)

)
⇒ τ0(x) = τ ′0(x) ,

where x = 〈x1, . . . , xz〉. Then a corresponding inference rule is

τ1(Φ)∆τ ′1(Φ), . . . , τr(Φ)∆τ ′r(Φ)

τ0(Φ)∆iτ ′0(Φ)
,

for some i < n. Assume that ϕ0 is obtained with the help of this rule by sub-
stituting the members of the sequence γ = 〈γ1, . . . , γz〉 of formulas for the mem-
bers of the sequence Φ = 〈Φ1, . . . ,Φz〉 of formula variables, i.e. ϕ0 has the form
τ0(γ)∆iτ

′
0(γ).
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Now fix a model M and assume that

M |=L τ1(γ)∆τ ′1(γ), . . . ,M |=L τr(γ)∆τ ′r(γ).

We have to show that M |=L τ0(γ)∆iτ
′
0(γ).

Let A
def
= mngM(F) ∈ Algm(L). and let a be a valuation of A such that for

every 1 6 v 6 z a(xv)
def
= mngM(γv). Then by condition (i) of the filter property,

(∀1 6 j 6 r) mngM

(
τj(γ)

)
= mngM

(
τ ′j(γ)

)

⇐⇒ A |=
(
τ1(x) = τ ′1(x) ∧ · · · ∧ τr(x) = τ ′r(x)

)
[a]

(by Algm(L) |= Ax) =⇒ A |=
(
τ0(x) = τ ′0(x)

)
[a]

(by (i) of filter prop.) =⇒ M |=L τ0(γ)∆iτ
′
0(γ).

This completes the proof of direction “=⇒” of Theorem 4.2.3. �

Proof. (Proof of (⇐=)) Let Φ1, . . . ,Φz denote formula variables, τ0, τ1, . . . , τk de-

note formula schemes, let Φ
def
= 〈Φ1, . . . ,Φz〉, and let x

def
= 〈x1, . . . , xz〉 be a

sequence of variables. Assume that ` is a finitely complete and strongly sound
Hilbert-type inference system for the logic L, and define the finite set Ax of quasi-
equations as follows:

(1) If τ0(Φ) is an axiom scheme of ` then let “εj

(
τ0(x)

)
= δj

(
τ0(x)

)
” belong to

Ax for each j < m.

(2) If τ1(Φ),...,τk(Φ)

τ0(Φ)
is an inference rule of ` then let

“
∧

{εi

(
τs(x)

)
= δi

(
τs(x)

)
: 1 6 s 6 k, i < m} ⇒ εj

(
τ0(x)

)
= δj

(
τ0(x)

)
”

belong to Ax for each j < m.

(3) Let “εj(x0∆ix0) = δj(x0∆ix0)” belong to Ax for each i < n, j < m.

(4) Let “
∧
{εj(x0∆ix1) = δj(x0∆ix1) : j < m, i < n} ⇒ (x0 = x1)” belong to

Ax.

We will show that Ax axiomatizes the quasi-variety generated by Algm(L).

Claim 4.2.5. Algm(L) |= Ax.

Proof. (Proof of Claim 4.2.5) Quasi-equations of type (3) and (4) above obviously
hold in Algm(L) by the filter property.

Now consider a quasi-equation of type (2). Let A ∈ Algm(L) and let a be an
arbitrary valuation of the variables into A. Let M be such that A = mngM(F).
Then for every i ∈ ω a(xi) = mngM(ϕi) for some ϕi ∈ F . Assume that

A |=
∧

{εi

(
τs(x)

)
= δi

(
τs(x)

)
: 1 6 s 6 k, i < m}[a].
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Then the filter property

M |=L τs(x1/ϕ1, . . . , xz/ϕz) (for each 1 6 s 6 k). (••)

But τ1(Φ),...,τk(Φ)

τ0(Φ)
is an inference rule of `, therefore {τ1(ϕ), . . . , τk(ϕ)} ` τ0(ϕ).

This implies by the strong soundness of ` that {τ1(ϕ), . . . , τk(ϕ)} |=L τ0(ϕ). Now,
by (••) above, M |= τ0(ϕ), hence again by the filter property, A |=

(
εj(τ0(x)) =

δj(τ0(x))
)
[a] for each j < m, which was desired. �

The case of equations of type (1) can be proved similarly. �

Claim 4.2.6. For any formulas ϕ0, ϕ1, . . . , ϕk,

{ϕ1, . . . , ϕk} ` ϕ0 =⇒

=⇒ Ax |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} →
(
εj(ϕ0) = δj(ϕ0)

)

for each j < m.

Proof. (Proof of Claim 4.2.6) It can be proved by induction on the length of the
`-proof of ϕ0 from {ϕ1, . . . , ϕk}. We only show one part of the induction step,

namely the case when ϕ0 is ’obtained’ by an inference rule τ1(Φ),...,τr(Φ)

τ0(Φ)
, where

Φ = 〈Φ1, . . . ,Φz〉. Then there are formulas γ1, . . . , γz such that ϕ0 = τ0(γ1, . . . , γz)
and for every 1 6 ` 6 r {ϕ1, . . . , ϕk} ` τ`(γ). Then by the induction hypothesis

Ax |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} ⇒

⇒ εj

(
τ`(γ)

)
= δj

(
τ`(γ)

)
(for each j < m, 1 6 ` 6 r). (4.5)

By the definition of Ax

Ax |=
∧

{εi

(
τ`(x)

)
= δi

(
τ`(x)

)
: 1 6 ` 6 r, i < m} ⇒

⇒ εj

(
τ0(x)

)
= δj

(
τ0(x)

)
(for each j < m). (4.6)

Let B be an algebra with B |= Ax and let b be any valuation of the variables into

B. Now we can define a valuation b′ with b′(xv)
def
= γv [b]B (1 6 v 6 z). Then for

every 0 6 ` 6 r τ`(x)[b′]B = τ`(γ)[b]B. Thus, by (4.5) and (4.6),

B |=
∧

{εi(ϕs) = δi(ϕs) : 1 6 s 6 k, i < m} ⇒
(
εj(τ0(γ)) = δj(τ0(γ))

)
[b]

for each j < m, which was desired. �
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Now we can prove that each quasi-equation which holds in Algm(L) is a
consequence of Ax. Assume that

Algm(L) |=
(
τ1 = τ ′1 ∧ · · · ∧ τk = τ ′k

)
⇒ τ0 = τ ′0.

(Thm. 4.2.1 (ii))
=⇒ {τs∆jτ

′
s : 1 6 s 6 k, j < n} |=L τ0∆iτ

′
0 for each i < n

(finite completeness)
=⇒ {τs∆jτ

′
s : 1 6 s 6 k, j < n} ` τ0∆iτ

′
0 for each i < n

(Claim 4.2.6)
=⇒ Ax |=

∧

{ε`(τs∆jτ
′
s) = δ`(τs∆jτ

′
s) : ` < m, 1 6 s 6 k, j < n} ⇒

⇒
(
εp(τ0∆iτ

′
0) = δp(τ0∆iτ

′
0)

)
for all p < m, i < n.

But, since quasi-equations of type (3) and (4) belong to Ax, this implies to

Ax |=
(
τ1 = τ ′1 ∧ · · · ∧ τk = τ ′k

)
⇒ τ0 = τ ′0,

completing the proof of direction “⇐=” of Theorem 4.2.3. �

Having found the algebraic counterpart of “finitely complete”, let us try
to characterize “weakly complete”. Since weak completeness is slightly weaker
than finite completeness, we have to weaken the algebraic counterpart of finite
completeness for characterizing weak completeness. This way we obtain condition
(4.7) below, where EqL and QeqL denote the set of all equations and the set of
all quasi-equations, respectively, of the language of Algm(L) (cf. [71]).

(∃Ax ⊆ω QeqL)
(
(∀e ∈ EqL) (Algm(L) |= e =⇒ Ax |= e) and Algm(L) |= Ax

)
. (4.7)

That is, the equational theory of Algm(L) is finitely axiomatizable by quasi-
equations valid in Algm(L). In other words, (4.7) says that there is a finitely
axiomatizable quasi-variety K such that HSPAlgm(L) = HK.

Theorem 4.2.7. Assume that L is nice and Cn(L) is finite3. Then

(4.7) ⇐⇒ (∃ Hilbert-style `)

(` is weakly complete and strongly sound for L) . (4.8)

In particular, if the equational theory of Algm(L) is finitely axiomatizable, then L
admits a weakly complete Hilbert-style inference system.

Proof. It is similar to the proof of Theorem 4.2.3. The only important difference
is that Theorem 4.2.7 already holds for nice logics. However, the only part of
the proof of Theorem 4.2.3 which used the additional criterion for strong niceness
(Definition 4.1.6) was Thm. 4.2.1 (i). Here one has to use Cor. 4.2.2 (i) instead. �

3Cf. the footnote of Theorem 4.2.3.



144 Chapter 4. Bridge between the world of logics and the world of algebras

Exercise 4.2.8. Give weakly complete and sound calculi for the logics LS and
S5. (Hint: Use that the SP-closure of the Algm-image of these logics are finitely
axiomatizable varieties, so (4.7) is satisfied.)

Theorem 4.2.7 motivates the following question. Recall from, e.g. [15], that
RCAn denotes the variety of n-dimensional representable cylindric algebras.

Problem 4.2.9. Is there a finitely axiomatizable quasi-variety K ⊆ RCAn such that
HK = RCAn? In other words, K should be such that RCAn is the variety generated
by K.

The above Problem is the corrected version of Open Problem 3.24 in [62]
where the original one contains a fatal typo.

Definition 4.2.10. (deduction theorem, deduction term)
Let L = 〈FL,ML,mngL, |=L〉 be a logic having logical connectives. We say that L
has a deduction theorem, iff

(∃(Φ1∇Φ2) ∈ FmsL)) (∀Σ ⊆ FL)(∀ϕ, ψ ∈ FL)

(Σ ∪ {ϕ} |=L ψ ⇐⇒ Σ |=L ϕ∇ψ) , (4.9)

where “ϕ∇ψ” denotes an instance of scheme “Φ1∇Φ2”. Such a “Φ1∇Φ2” is called
a deduction term for L.

Proposition 4.2.11. LS and S5 have deduction terms.

Proof. It is not hard to show that “Φ1 → Φ2” and “�Φ1 → �Φ2” (where � is the
abbreviation of ¬♦¬) are suitable deduction terms for LS and S5, respectively. �

The following theorem states that for any nice logic the existence of a deduc-
tion term and that of a weakly complete Hilbert-style calculus provides a finitely
complete inference system.

Theorem 4.2.12. Assume L is a logic having logical connectives. Assume L has a
deduction theorem, and there is some Hilbert-style inference system which is weakly
complete and strongly sound for L. Then

(∃ Hilbert-style `)(` is finitely complete and strongly sound for L) .

First we note the following fact (its proof is straightforward by the assumptions
on ∇).

Fact 4.2.13. The inference rule modus ponens w.r.t. ∇ (MP∇) that is,

Φ1, Φ1∇Φ2

Φ2
(MP∇)

is strongly sound for L. �



4.2. Algebraic characterizations of completeness and compactness properties 145

Proof. (Proof of Theorem 4.2.12) Assume that there is some Hilbert-style inference
system which is weakly complete and strongly sound for L. Let such an inference
system be fixed and let us add (MP∇) to it. We denote this (extended) inference
system by `.

To prove finite completeness, assume {ϕ0, . . . , ϕn} |= ψ. Then, applying the
deduction theorem n+ 1 times, we get:

{ϕ0, . . . , ϕn−1} |= (ϕn∇ψ)

{ϕ0, . . . , ϕn−2} |= (ϕn−1∇(ϕn∇ψ))

...

|= (ϕ0∇(ϕ1∇ . . . (ϕn∇ψ) . . .)
︸ ︷︷ ︸

γ0

.

Then ` γ0 by weak completeness of `. Then, using (MP∇) n+ 1 times, we get:

{ϕ0} ` {ϕ0, γ0} ` ϕ1∇(ϕ2∇ . . . (ϕn∇ψ) . . . )
︸ ︷︷ ︸

γ1

{ϕ0, ϕ1} ` {ϕ1, γ1} ` ϕ2∇(ϕ2∇ . . . (ϕn∇ψ) . . . )
︸ ︷︷ ︸

γ2

...
...

{ϕ0, ϕ1, . . . , ϕn} ` {ϕn, γn} ` ψ , where γn = (ϕn∇ψ).

Thus we received the following `-proof of ψ from {ϕ0, . . . , ϕn}:

〈γ0, ϕ0, γ1, ϕ1, γ2, ϕ2, . . . , γnϕn, ψ〉 ,

which proves Theorem 4.2.12. �

We will study strong completeness in item 4.2.28. As a preparation, first we
study compactness.

Definition 4.2.14. (compactness of a logic) Let L = 〈FL,ML,mngL, |=L〉 be a logic.
We say that

(i) L is satisfiability compact (sat. compact for short), if

(∀Γ ⊆ FL)
[
(∀Σ ⊆ω Γ) (Σ has a model) =⇒ (Γ has a model)

]
, and

(ii) L is consequence compact (cons. compact), if for every Γ ∪ {ϕ} ⊆ FL

Γ |=L ϕ =⇒ (∃Σ ⊆ω Γ) Σ |=L ϕ.
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Exercise 4.2.15. Prove that even for nice logics we have

• sat. compact 6=⇒ cons. compact;

• sat. compact 6⇐= cons. compact.

(Hint for (1): Let the logical connectives be ∆ (binary), and True,
k0, . . . , kn, . . . all zero-ary. A model M is a function M : {True, pi, ki : i ∈
ω} → {0, 1}. mngM(True) = 1 for every M and meaning of ∆ is the stan-
dard meaning of the biconditional ↔. Exclude those models from M in which
(∀ i > 0) M(ki) = 1 but M(k0) = 0. [This logic is not strongly nice!] Observe that
for M = {True, pi, ki : i ∈ ω} × {1} we have M |=L FL. Hence sat. completeness
trivially holds.)

(Hint for (2): Let L have True and ∆ as the only logical connectives. Exclude
the models M with M |=L FL. Then sat. completeness fails (we have infinitely
many propositional variables). Show that cons. completeness remains true.)

Exercise 4.2.16. Find natural conditions under which “=⇒” and/or “⇐=” of Ex-
ercise 4.2.15 above hold.

• We say that L has weak false if (∃ϕ ∈ FL) such that (∀M ∈ ML) M 6|=L ϕ.
Show that under this assumption

cons. compact =⇒ sat. compact.

• We say that L has negation if

(∀ϕ ∈ FL)(∃ψ ∈ FL)(∀M ∈ML)[M |=L ψ ⇐⇒M 6|=L ϕ] .

Show that under this assumption

sat. compact =⇒ cons. compact.

• Try to find weaker sufficient conditions.

• Show that for nice logics

L has weak false ⇐⇒ L has negation.

For more information about the two notions of compactness, see [17].

∗ ∗ ∗
Recall that in Definition 4.1.8 (and also in the logics studied so far), there was

a parameter P , which was the set of atomic formulas. The choice of P influenced
what the set F of formulas would be. Thus in fact, our old definition of a logic
yields a family

〈
〈FP ,MP ,mngP , |=P 〉 : P is a set

〉

of logics.
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Definition 4.2.17. (general logic) A general logic is a class

L
def
= 〈LP : P is a set〉,

where for each set P , LP = 〈FP ,MP ,mngP , |=P 〉 is a logic in the sense of
Def. 3.1.3.

L is called a nice [strongly nice, structural] general logic iff conditions (1–4)
below hold for L.

(1) LP is a nice [strongly nice, structural] logic (cf. Def. 4.1.8) for each set P ,
and P is the set of atomic formulas of logic LP .

(2) For any sets P and Q, Cn(LP ) = Cn(LQ)
def
= Cn(L). The “special” con-

nectives εj , δj (j < m) and ∆i (i < n) are the same for any logic LP (cf.
Def. 4.1.3).

(3) For any sets P,Q, if there is a bijection f : P → Q then logic LQ is an
“isomorphic copy” of logic LP , i.e. there are bijections fF : FP → FQ and
fM : MP →MQ such that

(a) fF is an isomorphism from FP onto FQ extending f ;

(b) for all ϕ ∈ FP , M ∈MP

mngP (ϕ,M) = mngQ
(
fF (ϕ), fM (M)

)

M |=P ϕ ⇐⇒ fM (M) |=Q fF (ϕ).

(4) For all sets P ⊆ Q,

{
mngP

M : M ∈MP
}

=
{

(mngQ
M)dFP : M ∈MQ

}

.

(Intuitively, condition (4) says that LP is the “natural” restriction of LQ.)

Remark 4.2.18. We note that if L is a nice general logic then L has the following
property. For all sets P ⊆ Q,

{{ϕ ∈ FP : M |=P ϕ} : M ∈MP } = {{ϕ ∈ FP : N |=Q ϕ} : N ∈MQ} .

Moreover, for all Γ ∪ {ϕ} ⊆ F P ,

Γ |=P ϕ ⇐⇒ Γ |=Q ϕ.

However, (5) below does not automatically hold for all strongly nice logics.

(5) For each P ⊆ Q there is a “reduct-function” r : MQ −→MP with Rng(r) =
MP such that (∀M ∈MQ)(∀ϕ ∈ FP )

[(M |=Q ϕ⇐⇒ r(M) |=P ϕ) and mngQ
M(ϕ) = mngP

r(M)(ϕ)] .
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We will not assume and use condition (5), but it can be useful for investigations
of the Beth definability properties (and related issues).

Definition 4.2.19. (algebraic counterpart of a general logic) Let L = 〈LP : P is a set〉
be a nice or structural general logic. Then

Alg|=(L)
def
=

⋃ {

Alg|=(LP ) : P is a set
}

,

Algm(L)
def
=

⋃ {
Algm(LP ) : P is a set

}

(cf. Def. 4.1.12).

Exercise 4.2.20. Prove that

(i) Algm(LS) =“class of all Boolean set algebras”

(ii) Algm(LS5) =“class of all one-dimensional cylindric set algebras”

(cf. Defs. 3.2.1 and 3.2.4). (Hint: The part “⊆” will be easy. If you would encounter
cardinality difficulties in the other direction, e.g. a Boolean algebra A with |A| too
big, then choose the set P of atomic formulas to be bigger than |A|.)

Theorem 4.2.21. For structural general logics

Alg|=(L) = SPAlgm(L).

Proof. Proof First we not that, by Thm. 4.1.15, Alg|=(LP ) ⊆ SPAlgm(LP ) for any
set P , thus Alg|=(L) ⊆ SPAlgm(L) holds. �

To prove SPAlgm(L) ⊆ Alg|=(L) we need Claims 4.2.22 and 4.2.23 below.

Claim 4.2.22. For any sets P,Q, algebra A ∈ Algm(LQ) and homomorphism
h : FP → A,

(∃N ∈MP )(∀ϕ ∈ FP ) h(ϕ) = mngP
N(ϕ).

Proof. (Proof of Claim 4.2.22) Let M ∈MQ be such that A = mngQ
M. Then

(∀p ∈ P )(∃ϕp ∈ F
Q) h(p) = mngQ

M(ϕp). (∗)

Because of condition (3) of Def. 4.2.17 without loss of generality we can assume
that either P ⊆ Q or Q ⊆ P hold.

1st case : Q ⊆ P
Then, by (4) of Def. 4.2.17,

(∃M′ ∈MP )(∀p ∈ P ) mngP
M′(ϕp) = mngQ

M(ϕp) = h(p). (∗∗)

Let s : P → FP be defined by s(p)
def
= ϕp, for any p ∈ P . Then, by the semantical

substitution property,

(∃N ∈MP )(∀p ∈ P ) mngP
N(p) = mngP

M′(ϕp). (∗ ∗ ∗)
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Now (∗), (∗∗) and (∗ ∗ ∗) together imply that (∀p ∈ P ) h(p) = mngP
N(p).

2nd case : P ⊆ Q
Let s : Q→ FQ be defined by

s(p)
def
=

{

ϕp, if p ∈ P

any element of FQ, else.

Then, by the semantical substitution property,

(∃M′ ∈MQ)(∀p ∈ P ) mngQ
M′(p) = mngQ

M(ϕp). (†)

By (4) of Def. 4.2.17,

(∃N ∈MP )(∀p ∈ P ) mngP
N(p) = mngQ

M′(p). (††)

Then, by (∗), (†) and (††), (∀p ∈ P ) mngP
N(p) = h(p) holds again. �

Claim 4.2.23. Let A ∈ SPAlgm(L) and let h : FP � A be a surjective homomor-
phism for some set P . Then

(∃K ⊆MP ) (ker(h) =∼K that is, A ∼= FP /∼K).

Proof. (Proof of Claim 4.2.23) Let A ∈ SPAlgm(L). Then there are some sets I
and Qi (i ∈ I) and Ai ∈ Algm(LQi ) such that A ⊆ Πi∈IAi. For each i ∈ I let
πi denote the projection function into Ai. Then, by Claim 4.2.22, (∀i ∈ I)(∃Ni ∈

MP )(∀p ∈ P ) (πi ◦ h)(p) = mngP
Ni

(p). Let K
def
= {Ni : i ∈ I}. Then it is easy to

check that for any ϕ, ψ ∈ F P ,

h(ϕ) = h(ψ) iff ϕ ∼K ψ

that is, A ∼= FP /∼K . �

Now, to prove SPAlgm(L) ⊆ Alg|=(L), assume A ∈ SPAlgm(L). Let h : FA �

A be the usual extension of the identity map of A to a homomorphism. Then, by
Claim 4.2.23, (∃K ⊆ MA) A ∼= FA/∼K that is, A ∈ Alg|=(L), completing the
proof of Theorem 4.2.21. �

Definition 4.2.24. (compactness of a general logic) A general logic L = 〈LP :
P is a set〉 is satisfiability (consequence) compact if for each set P the logic LP is
satisfiability (consequence) compact.

Recall that for an arbitrary class K of algebras,

UpK
def
= I {Πi∈IAi/F : F is an ultrafilter over the set I, and (∀i ∈ I) Ai ∈ K} .

We say that K is Up-closed if UpK ⊆ K, in other words, K is Up-closed if it is
closed under taking ultraproducts (cf. [71]).

Our next theorem gives a sufficent condition for sat. compactness of a strongly
nice general logic.
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Figure 4.1: Proof of Theorem 4.2.25

Theorem 4.2.25. Let L be a strongly nice general logic. Then

(Alg|=(L) is Up-closed) =⇒ (L is sat. compact) .

Proof. We let L = 〈LP : P is a set〉 We give a proof for the case of P = ω that
is, for the compactness of Lω = 〈Fω,Mω,mngω, |=ω〉. For other sets the proof is
similar and is left to the reader. Assume Γ ⊆ F ω and

(∀Σ ⊆ω Γ) Σ has a model .

Then we may assume that Γ is countable, say Γ = {ϕ0, ϕ1, . . . , ϕn, . . . }n∈ω and

(∀k ∈ ω)(∃Mk ∈M
ω) Mk |=

ω {ϕ0, . . . , ϕk} .

Let such Mk’s be fixed. Let Ak
def
= mngω

Mk
(Fω) ∈ Algm(L). Then Ak ∈ Alg|=(L)

also holds (by Thm.4.1.15). Let mngk
def
= mngω

Mk
dω. Since ω is the set of atomic

formulas of Lω, the function mngk : ω −→ Ak is a valuation of the (propo-
sitional) variables into Ak. Let F be a non-principal ultrafilter over ω, and let

A
def
= Πk∈ωAk/F denote the ultraproduct of algebras Ak w.r.t. F . We define the

function v : ω −→ A as follows:

v(i)
def
= 〈mngk(i) : k ∈ ω〉/F .

See Figure 4.1 below.
By assumption, Mk |=ω ϕi for every i 6 k. Thus, for every i 6 k ∈ ω, we

have the following:

Mk |=
ω ϕi

m by (ii) of filter prop.

Mk |=
ω εj(ϕi)∆`δj(ϕi) for each j < m, ` < n

m by (i) of the filter prop.

mngω
Mk

(
εj(ϕi)

)
= mngω

Mk

(
δj(ϕi)

)
for each j < m

m

Ak |=
(
εj(ϕi) = δj(ϕi)

)
[mngk] for each j < m.
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We derived that (∀k ∈ ω)(∀i 6 k) Ak |=
∧

j<m

(
εj(ϕi) = δj(ϕi)

)
[mngk], i.e. for

every i ∈ ω, {k ∈ ω : Ak |=
∧

j<m

(
εj(ϕi) = δj(ϕi)

)
[mngk]} ∈ F . Using  Los’s

theorem (cf. [71]), we have that

(∀i ∈ ω) A |=
∧

j<m

(
εj(ϕi) = δj(ϕi)

)
[v] .

Since by our assumption Alg|=(L) is Up-closed, A ∈ Alg|=(L). Thus, Def. 4.2.17

(3), (∃ set P ⊇ ω) (∃K ⊆ MP ) A ∼= FP /∼K . Let iso denote this isomorphism.

Let B
def
= FP /∼K , and let w

def
= iso ◦ v. Then

(∀i ∈ ω) B |=
∧

j<m

(
εj(ϕi) = δj(ϕi)

)
[w]

that is,

(∀i ∈ ω)(∀j < m) εj(ϕi)[w(pi0 ), . . . , w(piz
)]B = δj(ϕi)[w(pi0 ), . . . , w(piz

)]B,

where all the atomic formulas (elements of ω) occurring in ϕi are among {pi0 , . . . , piz
}.

Let s : P −→ FP be such that for all p ∈ ω s(p) is an element of the congruence
class w(p). For every i ∈ ω, let ϕ̂i ∈ FP be ϕi(pi0/s(pi0), . . . , piz

/s(piz
)). Then for

every i ∈ ω, j < m we have,

εj(ϕi)[s(pi0 )/∼K , . . . , s(piz
)/∼K ]B = δj(ϕi)[s(pi0)/∼K , . . . , s(piz

)/∼K ]B

⇓ (∼K is a congruence on FP )

εj

(
ϕi(s(pi0), . . . , s(piz

))
)
/∼K = δj

(
ϕi(s(pi0 ), . . . , s(piz

))
)
/∼K

m

εj(ϕ̂i) ∼K δj(ϕ̂i).

(†)

We have that (∀M ∈ K)(∀i ∈ ω)(∀j < m)

mngP
M

(
εj(ϕ̂i)

)
= mngP

M

(
δj(ϕ̂i)

)
.

Let M be any model belonging to K. Then, by the semantical substitution prop-
erty, (∃N′ ∈MP ) (∀i ∈ ω) (∀j < m)

mngP
N′

(
εj(ϕi)

)
= mngP

M

(
εj(ϕ̂i)

)
= mngP

M

(
δj(ϕ̂i)

)
= mngP

N′

(
δj(ϕi)

)
.

Since for each i ∈ ω, ϕi belongs to Fω, by (3) of Def. 4.2.17,

(∃N ∈Mω)(∀i ∈ ω)(∀j < m) mngω
N

(
εj(ϕi)

)
= mngω

N

(
δj(ϕi)

)
.

Then, by the filter property,

(∀i ∈ ω) N |=ω ϕi,

which proves Theorem 4.2.25. �
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Our next theorem states that the condition of Theorem 4.2.25 above is suf-
ficient and also necessary for cons. compactness, and so for strong completeness
(cf. Theorem 4.2.28 below).

Theorem 4.2.26 (cf. [17] Thm. 2.8). Assume L is a strongly nice general logic.
Then

(Alg|=(L) is Up-closed) ⇐⇒ (L is cons. compact) .

Proof. (Proof of (=⇒)) One can push through the proof of Thm. 4.2.25 for this
case, as follows. Now we want to prove {ϕi : i ∈ ω} 6|=ω ψ from the assumption
{ϕ0, . . . , ϕk} 6|=ω ψ for each k ∈ ω. Change Mk in the above proof such that
Mk |=ω {ϕ0, . . . , ϕk} and Mk 6|=ω ψ. Drag this “6|=ω ψ” part through the whole
argument in exactly the same style as “|=ω ϕk” was treated in the original proof.
Then in line (†) of the proof above we have

(∀i ∈ ω)(∀j < m) εj(ϕ̂i) ∼K δj(ϕ̂i) and

(∃j < m) εj(ψ̂) 6∼K δj(ψ̂).
(‡)

Now we cannot choose an arbitrary M ∈ K but we can infer that there exists
some M ∈ K such that (∀i ∈ ω) (∀j < m)

mngP
M

(
εj(ϕ̂i)

)
= mngP

M

(
δj(ϕ̂i)

)

and (∃j < m)

mngP
M

(
εj(ψ̂)

)
6= mngP

M

(
δj(ψ̂)

)
.

Thus, again by the semantical substitution property and by (3) of Def. 4.2.17,
there is an N ∈Mω with N |=ω {ϕi : i ∈ ω} and N 6|=ω ψ, as was desired. �

Proof. (Proof of (⇐=)) Fix any set I and assume that for each i ∈ I, Ai ∈ Alg|=(L).

We let P
def
= Πi∈IAi. For each X ⊆ I define the congruence RX of P as

follows.

RX
def
= {(a, b) ∈ P × P : adX = bdX} .

Then for each X ⊆ I , P/RX
∼= Πi∈XAi obviously holds. Therefore

P/RX ∈ PAlg|=(L)
Thm. 4.1.15

⊆ PSPAlgm(L) ⊆ SPAlgm(L)

(cf. e.g. [71] for PSP ⊆ SP). Let h : FP � P be the natural extension of the
identity map on P to a homomorphism and let gX : P � P/RX be the quotient
map corresponding to RX . Then, by Claim 4.2.23, for each X ⊆ I there is some
class KX ⊆MP such that ker(gX ◦ h) =∼KX

that is,

(∀ϕ, ψ ∈ FP )
[(
h(ϕ), h(ψ)

)
∈ RX ⇐⇒ ϕ ∼KX

ψ
]
. (∗)
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Moreover, an inspection of the proof of Claim 4.2.23 shows, that

X ⊆ Y ⊆ I =⇒ KX ⊆ KY . (∗∗)

For eachX ⊆ I , let ΓX
def
= Th(KX). Recall (cf. Fact 4.1.14) that∼KX

=∼Mod(ΓX)

holds.

Claim 4.2.27. Let F be any filter on I and let Γ
def
=

⋃
{ΓX : X ∈ F}. Then for

every ϕ, ψ ∈ FP

ϕ ∼Mod(Γ) ψ ⇐⇒ (∃X ∈ F) ϕ ∼Mod(ΓX) ψ.

Proof. (Proof of Claim 4.2.27) First, assume that (∃X ∈ F) ϕ ∼Mod(ΓX) ψ. Then,
since ΓX ⊆ Γ, ϕ ∼Mod(Γ) ψ obviously holds.

On the other hand, assume ϕ ∼Mod(Γ) ψ. Then, by the filter property, (∀i <
n) Γ |=P ϕ∆iψ. Then, by the cons. compactness of LP , for each i < n there
is some Σi ⊆ω Γ with Σi |=P ϕ∆iψ. Then there is some Σ ⊆ω Γ such that for
each i < n Σ |=P ϕ∆iψ. Say, Σ = {χ0, . . . , χz−1}. Since Σ ⊆ Γ, (∀j < z)(∃Xj ∈

F) χj ∈ ΓXj
. Let X

def
=

⋂
{Xj : j < z}. Then X ∈ F , since F is a filter. Now

Σ ⊆ ΓX0
∪· · ·∪ΓXz−1

⊆ ΓX holds by (∗∗) above, thus for each i < n, ΓX |=P ϕ∆iψ,
which implies ϕ ∼Mod(ΓX) ψ. �

Now we want to prove that P/F ∈ Alg|=(L). We show that P/F ∼= FP /∼Mod(Γ)

(cf. Claim 4.2.27 above for the definition of Γ). That is,

(∀ϕ, ψ ∈ FP )
[
h(ϕ) ∼F h(ψ) ⇐⇒ ϕ ∼Mod(Γ) ψ

]

holds. Indeed,

h(ϕ) ∼F h(ψ)

⇐⇒ (∃X ∈ F)
(
h(ϕ), h(ψ)

)
∈ RX

(∗)
⇐⇒ (∃X ∈ F) ϕ ∼Mod(ΓX) ψ

Cl. 4.2.27
⇐⇒ ϕ ∼Mod(Γ) ψ,

which completes the proof of Theorem 4.2.26. We note that we proved that
Alg|=(L) is closed under taking arbitrary reduced products (not only ultraprod-
ucts). �

Theorem 4.2.28. Assume L = 〈LP : P is a set〉 is a strongly nice general logic.
Then

Alg|=(L) is a finitely axiomatizable quasi-variety
⇐⇒

(∃ Hilbert-style `)(∀ set P )(` is strongly complete and strongly sound for LP ).

Proof. To prove Theorem 4.2.28 we need the following lemma.
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Lemma 4.2.29. For every infinite set P and for every quasi-equation q

Algm(LP ) |= q =⇒ Algm(L) |= q.

Proof. (Proof of Lemma 4.2.29) Fix an infinite set P and a quasi-equation q such
that Algm(LP ) |= q. Let A ∈ Algm(LQ) for some set Q. Then there is some

M ∈ MQ with A = mngQ
M(FQ). By (3) of Def. 4.2.17, without loss of generality

we can assume that either P ⊆ Q or Q ⊆ P hold.
First assume thatQ ⊆ P . Then, by (4) of Def. 4.2.17, (∃N ∈MP ) mngP

NdF
Q =

mngQ
M. Then A ⊆ mngP

N(FP ) ∈ Algm(LP ), thus A |= q, since quasi-equations are
preserved under taking subalgebras.

Now let Q ⊇ P and assume that A 6|= q[k] for some evaluation k of the

variables. Say, let k(xi)
def
= mngQ

M(γi)) (1 6 i 6 n), assuming that x1, . . . , xn are
the only variables occurring free in q. Assume that the atomic formulas occur-
ring in the formulas γ1, . . . , γn are among pi1 , . . . , pim

and let s be the following
substitution:

(∀1 6 j 6 m) s(pj)
def
= pij

.

Then, by the semantical substitution property,

(∃N ∈MQ)(∀1 6 i 6 n) mngQ
M(γi) = mngQ

N

(
γi(pi1/p1, . . . , pim

/pm)
)
.

By (4) of Definition 4.2.17, (∃N′ ∈MP )mngQ
NdF

P = mngP
N′ . Now, let B

def
= mngP

N′

and let k′(xi)
def
= mngP

N′

(
γi(p1, . . . , pm)

)
. Then A 6|= q[k] implies B 6|= q[k′], which

contradicts to B ∈ Algm(LP ). �

�

Proof. (Proof of (=⇒) of Theorem 4.2.28) Assume that Ax is a finite set of
quasi-equations axiomatizing Alg|=(L). Since Alg|=(L) = SPAlgm(L) (cf. Theo-
rem 4.2.21), by Lemma 4.2.29 above, Ax also axiomatizes the quasi-variety gener-
ated by Algm(LP ) for each infinite set P . Thus, by Theorem 4.2.3, for each infinite
P there is a finitely complete and strongly sound Hilbert-style inference system `
for LP . Moreover, checking the proof of Theorem 4.2.3 one can observe that the
same inference system ` works for all infinite sets P .

We show that for any set Q, ` is strongly complete for LQ. Assume that
for some Γ ∪ {ϕ} ⊆ FQ Γ |=Q ϕ. Then there is some infinite set P such that
Γ∪{ϕ} ⊆ FP and Γ |=P ϕ (cf. Remark 4.2.18 above). Since quasi-varieties are Up-
closed, LP is cons. compact by Theorem 4.2.26. Therefore there is a finite subset
Σ of Γ such that Σ |=P ϕ. Thus, by finite completeness Σ ` ϕ, which implies Γ ` ϕ
by the definition of derivability (Def. 4.1.21). �

Proof. (Proof of (⇐=) of Theorem 4.2.28) If ` is strongly complete then it is
also finitely complete. Thus, by Theorem 4.2.3, the quasi-variety generated by
Algm(LP ) is finitely axiomatizable for each set P .
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On the other hand, strong completeness implies cons. compactness, as follows.
Assume that for some P , Γ ∪ {ϕ} ⊆ F P Γ |=P ϕ. Then Γ ` ϕ, which implies by
Definition 4.1.21 that there is a finite subset Σ of Γ such that Σ ` ϕ. Then, by
strong soundness, Σ |=P ϕ. Now, by Theorem 4.2.26, Alg|=(L) is Up-closed. But
by Theorem 4.2.21, it is also closed under S and P, thus it is a quasi-variety (cf.
“quasi-variety characterization” in [71]). This and the fact that the quasi-varieties
generated by Algm(LP ) are finitely axiomatizable (with the same set Ax of quasi-
equations, as the proof of Theorem 4.2.3 shows) imply that Alg|=(L) is a finitely
axiomatizable quasi-variety. �

Exercise 4.2.30. Show that LS and S5 have strongly complete and sound Hilbert-
style inference systems. Give such calculi. (Hint: Use that the corresponding classes
of algebras (Algm(LS) = BA and Algm(LS5) = Cs1) generate finitely axiomatizable
varieties.)

In all the above we investigated only some logical properties, e.g. complete-
ness and compactness. However, the literature contains similar theorems for a
very large number of further logical properties . Such are e.g. Craig’s interpolation
property, the various definability properties (e.g. Beth’s), the property of having
a deduction theorem, the property of admitting Gabbay-style inference systems,
to mention only a few. Some of these are discussed in chapter 6.



156 Chapter 4. Bridge between the world of logics and the world of algebras



Chapter 5

Generalizations

First we relax the assumption on our logic having derived connectives “εj”, “δj”
(j < m) (cf. Def. 4.1.3). We will omit condition (ii) of Def. 4.1.3, obtaining the
notion of a semi-nice logic.

Definition 5.0.31. ((strongly) semi-nice (general) logic)
Let L = 〈F,M,mng , |=〉 be a logic in the sense of Def. 3.1.3. Then

(i) L is said to be semi-nice iff it is compositional, satifies (i) of the filter
property, and has the syntactical substitution property.

(ii) L is said to be strongly semi-nice if L is semi-nice and it also has the
semantical substitution property (Def. 4.1.6).

(iii) A (strongly) semi-nice general logic is obtained by replacing “nice logic”
with “semi-nice logic” in condition (1) of Def. 4.2.17 (i.e. by doing the natural
change in the definition of a (strongly) nice general logic).

Semi-nice logics, even without condition the syntactical substitution prop-
erty, were investigated in [17] but investigation of the |= relation was restricted to
the case of one ∆i and to formulas of the form (ϕ∆0ψ). Below we indicate how
to extend investigation to all formulas, i.e. how to extend the theory described in
the present work to semi-nice logics.

To algebraize (in a reversible way) these more general logics, we add a new
unary operation symbol “c” to (the language of) our algebras. So the new version
Alg+

i (L) of Algi(L) (i ∈ {|=,m}) will consist of algebras which have an extra
operation “C” not available in Algi(L). However, in order to make our approach
work, we have to permit “c” to be a partial operation. This means that for certain
elements of our algebras “c” may not be defined. (A classical example of a partial
operation is inversion x→ x−1 in the field of real numbers. Zero has no inverse, so
−1 is undefined at argument 0.) Universal algebra for partial algebras (i.e. algebras
with partial operations) is well defined, cf. e.g. Burmeister [24], Andréka–Németi
[12]. Therefore generalizing our previous theorems to the new algebras causes no
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real difficulty. Those readers who would prefer avoiding partial algebras are asked
to consult Remark 5.0.33 below. It is shown there how to eliminate the partial
operation symbol “c”.

Definition 5.0.32. (Alg+
|=(L), Alg+

m(L)) Let L = 〈F,M,mng , |=〉 be a logic. Assume
L is compositional.

Let K ⊆M . Then we define the partial function cK : F → F in the following
way. For any ϕ ∈ F ,

if K |= ϕ then cK(ϕ) is defined and cK(ϕ) = ϕ; while

if K 6|= ϕ then cK(ϕ) is undefined.

Clearly, 〈F, cK〉 is a partial algebra for every K ⊆ M . The equivalence relation
∼K (defined in Def. 4.1.12) is a congruence not only on F but also on 〈F, cK〉 (cK
was defined in a way to ensure this). Now,

Alg+
|=(L)

def
= I {〈F, cK〉/∼K : K ⊆M} .

Let us turn to defining Alg+
m(L). First we define a new partial function c on

the algebra A(M)
def
= mngM(F) as follows. For every ϕ ∈ F ,

c
(
mngM(ϕ)

) def
= mngM(ϕ) if M |= ϕ; else

c
(
mngM(ϕ)

)
is undefined.

The new partial algebra A+(M) associated to M is

A+(M)
def
= 〈A(M), c〉.

Now
Alg+

m(L)
def
=

{
A+(M) : M ∈M

}
.

As we mentioned, universal algebra for partial algebras is well developed (cf.
op cit). For completeness we recall those notions which are most needed. Since
any partial algebra 〈A, c〉 is a model in the model theoretic sense (consider “c”
as a binary relation), the model theoretic operations like direct products (P),
ultraproducts (Up), reduced products (Pr) need not de defined. Subalgebras are
submodels closed under “c”, i.e. to each element x of our subalgebra, if c is defined
on x then c(x) is also in our subalgebra.

Let τ be a term, A a partial algebra and k ∈ ωA an evaluation of the variables.
Then, τ is said to be defined at evaluation k (in A) iff every subterm of τ is defined
at k.1

Now, A |= (τ = σ)[k] (i.e. evaluation k satisfies the equation τ = σ) iff both
τ and σ are defined at evaluation k and their values coincide.

1Variables are always defined and c(τ) is defined if
ˆ

τ is defined and c is defined at the value

of τ
˜

.
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With this we defined the satisfaction for atomic formulas (i.e. equations) of
the language of partial algebras. The logical connectives are interpreted the usual
way, hence satisfaction (and thus validity) is defined for all formulas of partial
algebras. In particular, quasi-equations (τ1 = σ1 ∧ · · · ∧ τn = σn) → τ0 = σ0 are
defined and interpreted in the usual way. A class K is said to be a quasi-variety
iff it is definable by a set of quasi-equations. It is a variety iff it is definable by
equations. The usual theorems carry over, e.g.

K is a quasi-variety iff K = SPUp K = SPr K.

For more cf. [24], [12].
With the above in mind, it seems reasonable to repeat for semi-nice logics

and Alg+
i (L) (i ∈ {|=,m}) what we did in section 4.1 for nice logics and Algi(L)

(i ∈ {|=,m}).
We note that Blok and Pigozzi (cf. [22], [21] and the references therein) have

strong results in this direction (in perhaps a slightly different formulation). Before
turning to generalizing section 4.1 to the present more general setting, we should
mention an equivalent form of what we are doing.

Remark 5.0.33. If the reader would like to avoid using partial algebras, then the
following equivalent more natural approach works. Instead of “c” we add a new
unary predicate “T (x)” (T for truth). Imitating the definition of “cK”, we let

TK
def
= {ϕ ∈ F : K |= ϕ} for any K ⊆M . Similarly, the algebraic counterpart of a

model M looks like 〈A, T 〉, where A ∈ Algm(L) and T ⊆ A such that

(∀ϕ ∈ F )
(
M |= ϕ ⇐⇒ mngM(ϕ) ∈ T

)
;

holds for T .
This approach is practically equivalent to the one using “c” instead of “T”.

Further, this is very-very closely related to what is called “matrix semantics” in
Blok–Pigozzi [22], [21], Czelakowski [27] and in the papers quoted in these works. In
these papers there are several strong results about the presently outlined approach.

Now, many of the results proved for nice logics so far, can be pushed through
for semi-nice logics (with Alg+

|=, Alg+
m in place of Alg|=, Algm).

For example, the proof of

(Alg+
|=(L) is Up-closed) =⇒ (L is sat. compact)

(cf. Thm. 4.2.25) should go through with the natural modifications for semi-nice
logics.

For some of the results the formulation of the result needs a minor mod-
ification. E.g. the algebraic equation corresponding to logical formula ϕ is now
c(ϕ) = ϕ (instead of εj(ϕ) = δj(ϕ) for all j < m). But again we have

|=L ϕ ⇐⇒ Alg+
m(L) |= c(ϕ) = ϕ

(cf. Thm. 4.2.1).
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Exercises 5.0.34. (1) Replace the definition of the validity relation f |=∞ ϕ of
logic L∞ (cf. Def. 3.2.30) by

f |=′∞ ϕ
def
⇐⇒ mnf (ϕ) > 0.9

and show that the resulting logic is not nice but semi-nice.

(2) Push through the proof of Thm. 4.2.25 for strongly semi-nice general logics.

(3) Check what is needed for the other direction, i.e. for Thm. 4.2.26 to go
through.

(4) Repeat the proof of Fact 4.1.14 in the new (semi-nice) setting.

(5) Look at the major theorems in subsection 4.2 one by one and check if their
proofs can be pushed through in the new setting. Where it does not seem
to go through, check whether some change in the formulation of the result
permits you to push the proof through.

(6) Try to find out whether we could use a total operation instead of our partial
one “c”. E.g. try to define cK(ϕ) = ϕ if K |= ϕ else (ϕ∆0ϕ) (assume that only
∆0 is available as “special” connective). Now our algebra is not partial! Can
this approach work? Show that the validity relation |= can be recovered from
the new total “c”, so the coding is faithful. But do the results go through?
Check them! Show that Thm.4.1.15 fails. Show that Thm. 4.2.3 does not
want to go through even with modifications.

∗ ∗ ∗
If we want to drop condition the filter property altogether, then a possibility

is to restrict the validity relation |= to sequents (ϕ ⇒ ψ) of formulas (instead
of having it for all formulas). Here “⇒” is not a logical connective, but rather
a metalevel symbol. If ϕ, ψ ∈ F then (ϕ ⇒ ψ) is a sequent (sequents are not
formulas). Further,

M |= (ϕ⇒ ψ) iff mngM(ϕ) ⊆ mngM(ψ).

This approach is applicable to more logics, hence more kinds of algebras show up
in Algi(L) (i ∈ {|=,m}). However, similarly to the way we had to introduce “c”
above to code validity in a model, now we have to introduce a pre-ordering “6”
on our algebras to code “⇒”. However, this is not needed if we restrict the validity
relation |= a little bit more, namely to pairs {(ϕ⇒ ψ), (ψ ⇒ ϕ)} of sequents. Then
we do not need new symbols like “6” in our algebras. This approach is investigated
e.g. in [17] to quite some extent. See also investigations on k-deductive systems in
Blok–Pigozzi [21]. For a general method using sequents see Guzman–Verdu [34],
Font–Verdu [31].

We could also try to drop the two substitution properties i.e. permutability
of atomic formulas. This would enable us to treat traditional first-order logic more
comfortably (with less preparation to do). This can be done, the only thing needed
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is the universal algebraic concept of a free algebra over some defining relations .
The details are available in [17].
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Chapter 6

Further equivalence results

In this section we give algebraic characterizations for further logical properties,
such as decidability of the validity problem, various Beth’s definability properties
and Craig’s interpolation properties .

First recall that a logic is called decidable iff the set of its validities is a
decidable subset of the set of all formulas (cf. Definition 3.1.7).

Theorem 6.0.35. Assume that L is a nice logic. Then

(i) L is decidable ⇐⇒ the equational theory of Alg|=(L) is decidable.

(ii) The validities of L are recursively enumerable ⇐⇒ the equational theory
of Alg|=(L) is recursively enumerable.

Proof. It is a straightforward corollary of Cor. 4.2.2 way above. �

Let L be a nice logic. An inference rule B1, . . . , Bn ` B0 is called admissible
for L iff it is strongly sound for L. We note that, in the style of Theorem 6.0.35,
the set of admissible rules of L is decidable iff the quasi–equational theory of AlgL
is decidable.

Next we turn to the algebraic characterization of some definability properties.
Beth definability properties of logics were introduced, e.g., in Barwise–Feferman
[20] and in Sain [70]. Here we give the definitions in the framework of the present
paper. The proofs of Theorems 6.0.40 and 6.0.46 below can be found in Németi
[57] and in Hoogland [41].1

Definition 6.0.36. (implicit definition, explicit definition, local explicit definition) Let
L = 〈LP : P is a set〉 be a general logic. Let P $ Q be sets with F P 6= ∅, and let

R
def
= Q\P .

1Actually, Theorem 6.0.46 is not in [57], an early version of Theorem 6.0.46 is in [70] and the
full version is in [41].
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A set Σ ⊆ FQ of formulas defines R implicitly in Q iff
(
∀M,N ∈ModQ(Σ)

)(
mngQ

MdF
P = mngQ

NdF
P =⇒ mngQ

M = mngQ
N

)
.

Σ defines R explicitly in Q iff

(∀r ∈ R)(∃ϕr ∈ F
P )(∀M ∈ModQ(Σ)) mngQ

M(r) = mngQ
M(ϕr).

Σ defines R local-explicitly in Q iff

(∀M ∈ModQ(Σ))(∀r ∈ R)(∃ϕr ∈ F
P ) mngQ

M(r) = mngQ
M(ϕr).

Definition 6.0.37. ((strong) Beth definability property) Let L be a general logic. L

has the (strong) Beth definability property iff for all P,Q,R and Σ as in Def. 6.0.36
above

(Σ defines R implicitly in Q =⇒ Σ defines R explicitly in Q).

Definition 6.0.38. (patchwork property of models) Let L be a general logic. L has
the patchwork property of models iff

(∀sets P,Q)(∀M ∈MP )(∀N ∈MQ)
(
FP∩Q 6= ∅ and mngP

MdF
P∩Q = mngQ

NdF
P∩Q

)
=⇒

=⇒ (∃P ∈MP∪Q)
(
mngP∪Q

P dFP = mngP
M and mngP∪Q

P dFQ = mngQ
N

)
.

Definition 6.0.39. (morphism, epimorphism) Let K be a class of algebras. By a
morphism of K we understand a triple 〈A, h,B〉, where A,B ∈ K and h : A→ B

is a homomorphism.
A morphism 〈A, h,B〉 is an epimorphism of K iff for every C ∈ K and every

pair f : B→ C, k : B→ C of homomorphisms we have (f ◦ h = k ◦ h =⇒ f = k).

Typical examples of epimorphisms are the surjections. But for certain choices
of K there are epimorphisms of K which are not surjective. This is the case, e.g.,
when K is the class of distributive lattices.[17]

jó
itt?

Theorem 6.0.40 ([57], [17, sec. II.2], [41]). Let L be a strongly nice general logic
which has the patchwork property of models. Then

L has the (strong) Beth definability property
⇐⇒

all the epimorphisms of Alg|=(L) are surjective.

The proof is in [57] and Hoogland [41]. A less general version of this theorem is
proved in [37, Thm.5.6.10]. �

Definition 6.0.41. ((strong) local Beth definability property) Let L be a general logic.
L has the (strong) local Beth definability property iff for all P,Q,R and Σ as in
Definition 6.0.36 above

(Σ defines R implicitly in Q =⇒ Σ defines R local-explicitly in Q).
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Theorem 6.0.42. (J. X. Madarász) Let L be a strongly nice general logic which has
the patchwork property of models. Then

L has the (strong) local Beth definability property
⇐⇒

all the epimorphisms of Algm(L) are surjective. �

Definition 6.0.43. (strong implicit definition) Let L be a general logic. Let P,Q,R
and Σ be as in Def. 6.0.36 above. Σ defines R implicitly in Q in the strong sense
iff

Σ defines R implicitly in Q and
(
∀M ∈ModP (ThQModQ(Σ) ∩ FP )

)
(∃N ∈ModQ(Σ)) mngQ

NdF
P = mngP

M.

Definition 6.0.44. (weak Beth definability property) 2 Let L be a general logic. L

has the weak Beth definability property iff for all P,Q,R and Σ as in Def. 6.0.36
above

(Σ defines R implicitly in Q in a strong sense =⇒ Σ defines R explicitly in Q).

Definition 6.0.45. (K-extensible) Let K0 ⊆ K be two classes of algebras. Let
〈A, h,B〉 be a morphism of K. h is said to be K0-extensible iff for every alge-
bra C ∈ K0 and every homomorphism f : A → C there exists some N ∈ K0 and
g : B→ N such that C ⊆ N and g ◦ h = f .

It is important to emphasize that C is a concrete subalgebra of N and not
only is embeddable into N.

Theorem 6.0.46 (Hoogland [41], Sain [70]). Let L be a strongly nice general logic
which has the patchwork property of models. Then

L has the weak Beth definability property
⇐⇒

every Algm(L)-extensible epimorphism of Alg|=(L) is surjective. �

In the formulation of Theorem 6.0.46 above, it was important that Algm(L)
is not an abstract class in the sense that it is not closed under isomorphisms, since
the definition of K-extensibility strongly differentiates isomorphic algebras.

Theorem 6.0.46 and Theorem 6.0.48 below are solutions for Problem 14 in
[70]. On the other hand, Theorem 6.0.49 together with Definition 6.0.47 aims for
being a possible solution for Problem 15 of [70].

Definition 6.0.47. (full algebras of Algm(L)) Let L be a nice general logic. The class
FullAlgm(L) of algebras is defined as follows.

FullAlgm(L)
def
= {A ∈ Algm(L) : (∀B ∈ Algm(L))(A ⊆ B =⇒ A = B)}.

2The weak Beth definability property was introduced in Friedman [32] and has been investi-
gated since then, cf. e.g. [20, pp. 73–76, 689–716].
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We will use the notions of “reflective subcategory” and “limits of diagrams
of algebras” as in Mac Lane [45]. We will not recall these.

Throughout, by a reflective subcategory we will understand a full and iso-
morphism closed one.

Theorem 6.0.48. (Sain–Madarász–Németi (cf. [70, item(9) on p. 223])) Assume
the conditions of Theorem 6.0.46. Assume Algm(L) ⊆ SFullAlgm(L). Then

L has the weak Beth definability property
⇐⇒

Alg|=(L) is the smallest full reflective subcategory K of Alg|=(L) with
FullAlgm(L) ⊆ K. �

Theorem 6.0.49. Assume the conditions of Theorem 6.0.48. Then

L has the weak Beth definability property
⇐⇒

FullAlgm(L) generates Alg|=(L) by taking limits of diagrams of algebras.3

On the proof

The proof is based on Theorem 6.0.48 and on the simple lemma denoted as (†)
below.

(†) Assume K0 = SPK0 and K1 ⊆ K0 is a set of algebras in K0. Then the smallest
full reflective subcategory K of K0 containing K1 exists and coincides with
the smallest limit-closed class containing K1.4

Next one uses the fact that

(∃κ ∈ Card)
(
∀A ∈ FullAlgm(L)

)
(∀H ⊆ A)

(
|H | < κ =⇒ (∃B ⊆ A)(H ⊆ B & B ∈ FullAlgm(L) & |B| < κ)

)
.

(††)

(††) follows from the assumption that L is a structural nice general logic; cf. in
particular item (4) in the definition of “general logic”. �

Ln denotes the general logic which we get from Ln (cf. Def. 3.2.21). Recall
from [15] that Csn denotes the class of cylindric set algebras of dimension n.

Remark 6.0.50. Note that FullAlgm(Ln) = FullCsn.

Conjecture 6.0.1. We conjecture that item (4) in the definition of general logic
is essential for Theorem 6.0.49. Indeed, we conjecture that without this condition
Theorem 6.0.49 might become independent of ZFC set theory.

3I.e., there is no limit-closed class separating these two classes of algebras.
4We conjecture that (†) might become independent of set theory if the restriction that K1 is

a set is omitted. Clearly, (†) becomes false if K0 is permitted to be an arbitrary complete and
co-complete category.
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Terminology

Let L be a nice general logic. Then Mod(L)
def
=

⋃
{MP : P is a set} is the class of

all models of L.
Let M,M1 ∈ Mod(L). Then: M1 is an expansion of M iff M is a reduct of

M1 iff ∃P (M = M1dP ). Further:

Mng(M)
def
= set of meanings of M = universe of the meaning-algebra mngM(F)

of M.
Alg(M)

def
= mngM(F) = the meaning-algebra of M.

Conjecture 6.0.2. We conjecture that the characterizations of weak Beth in items
6.0.48–6.0.49 can be made more “logic oriented” (or more intuitive) the following
way: Let L be a nice general logic and M ∈ Mod(L). Then M is called full iff (∀
expansion M1 of M) Mng(M1) ⊆Mng(M). Now we define

FuAlgm(L)
def
= {Alg(M) : M is a full model of L}

Now, the assumption that

Algm(L) ⊆ SFullAlgm(L) (∗)

in items 6.0.48–6.0.49 can be replaced with the more intuitive assumption that

every M ∈ Mod(L) has a full expansion. (∗∗)

We conjecture that the characterizations of weak Beth property in items
6.0.48–6.0.49 remain true if we replace (∗) with (∗∗) and “Full” with “Fu” in
them. In particular, (∗∗) =⇒ Algm(L) ⊆ SFuAlgm(L) holds for structural general
logics with the patchwork property. For such a logics we also have FuAlgm(L) =
FullAlgm(L), hence we conclude that full meaning algebras are exactly the meaning
algebras of full models.

The purpose of the present conjecture is to find a natural (or logic-oriented)
characterization of FullAlgm(L), which in turn, might be a kind of solution of
Problem 15 from [70].

For the origins of our characterizations of weak Beth property (in items
6.0.46, 6.0.48, 6.0.49) see items (8), (9) below Problem 14 in [70]. (In this connec-
tion it is useful to read [70] beginning with Problem 12 to the end.)

Next we turn to characterizing Craig’s interpolation property.

Definition 6.0.51. ((|= interpolation) property) Let L = 〈F,M,mng , |=〉 be a nice
logic. For each formula ϕ ∈ F let atf(ϕ) denote the set of atomic formulas occur-
ring in ϕ. Then L has the (|= interpolation) property iff

(∀ϕ, ψ ∈ F )
(
{ϕ} |= ψ ⇒ (∃χ ∈ F )(atf(χ) ⊆ atf(ϕ) ∩ atf(ψ)

and {ϕ} |= χ and {χ} |= ψ)
)
.
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Recall that for any class K of algebras IK denotes the class of all isomorphic
copies of members of K.

Definition 6.0.52. (amalgamation property) Let K be a class of algebras. We say
that K has the amalgamation property iff for any A,B,C ∈ IK with B ⊇ A ⊆ C,
there are N ∈ K and injective homomorphisms (embeddings) f : B � N h : C �

N such that fdA = hdA.

Theorem 6.0.53 (J. Czelakowski). Let L be a strongly nice and consequence com-
pact logic. Assume that usual conjunction “∧” is in Cn(L). Assume that L has a
deduction theorem. Then

L has the (|= interpolation) property ⇐⇒ Alg|=(L) has the amalgamation prop-
erty.

Proof. It can be found in Czelakowski [27], cf. Thm.3 therein. �

Definition 6.0.54. ((→ interpolation) property) Let L be a general logic having
logical connectives, and let → be a binary connective of L. We say that L has the
(→ interpolation) property if

(∀ϕ, ψ ∈ F )
(
|= ϕ→ ψ ⇒ (∃χ ∈ F )(atf(χ) ⊆ atf(ϕ) ∩ atf(ψ)

and |= ϕ→ χ and |= χ→ ψ)
)
.

By a partially ordered algebra we mean a structure (A,6) where A is an
algebra and 6 is a partial ordering on the universe A of A.

Definition 6.0.55. (super–amalgamation property (cf. Maksimova [52])) A class K
of partially ordered algebras has the super–amalgamation property if for any
A0,A1,A2 ∈ K and for any embeddings
i1 : A0 −→ A1 and i2 : A0 −→ A2 there exist an A ∈ K and embeddings
m1 : A1 −→ A a nd m2 : A2 −→ A such that m1 ◦ i1 = m2 ◦ i2 and

(∀x ∈ Aj)(∀y ∈ Ak)(mj(x) 6 mk(y)⇒ (∃z ∈ A0)(x 6 ij(z) and ik(z) 6 y)),

where {j, k} = {1, 2}.

Theorem 6.0.56. (Madarász [48]) Let L be a strongly nice general logic such that L

contains the classical propositional logic as a fragment (i.e. Alg|=(L) has a Boolean
reduct). Assume that Alg|=(L) forms a variety. Let → be the usual Boolean impli-

cation. Assume that L has the local deduction property in the following sense:5

For all ϕ, ψ ∈ F there is a unary derived connective, say, � of L, such that

(ϕ |= ψ =⇒ |= �(ϕ)→ ψ) and ϕ |= �(ϕ).

Then

5The usual deduction property is also sufficient for the conclusion of this theorem.
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L has the (→ interpolation) property
⇐⇒

Alg|=(L) has the super–amalgamation property,

where super–amalgamation is understood via the following partial ordering: a 6

b⇔ a→ b = True. �

Further investigations concerning the (→ interpolation) property, its alge-
braic characterizability and related algebraic results are in [47], [48] and [46].

L2 and LARROW denotes the general logic which we get from L2 (cf. Definition
3.2.21) and LARROW (cf. Definition 3.2.19), respectively.

Definition 6.0.57. L+
2 is L2 expanded with atomic formulas of the form R(v1, v0).

Equivalently we could add the connective ` of LARROW to L2 and have the atomic
formulas unchanged.

Open problems:

(1) Are all the conditions of Theorem 6.0.53 needed? Try to characterize
(|= interpolation) property with fewer assumptions on the logic.

(2) What is the logical counterpart of the algebraic property that “Alg|=(L) has
the strong amalgamation property” (i.e., we also require f(BrA)∩h(CrA) =
∅ in Definition 6.0.52 above)?

(3) Does L+
2 have the weak Beth property? Does L2 have it? Does L+

2 without
equality have weak Beth property (or even (strong) Beth property)? We
note that the Alg|=

(
L+

2 without equality
)

= RPA2 where RPAn is the class of
representable polyadic algebras of dimension n.

We note that L+
2 restricted to models of cardinality 6 10 has the weak Beth

property but not the Beth property. Hence this logic “(L+
2 d6 10)” separates the

Beth property from the weak Beth property, showing that Theorems 6.0.46, 6.0.48,
6.0.49 above are not superfluous.

In connection with Figure 4.1 and Exercises 3.2.18 we note the following.
The proof theoretical version of L3 is weaker than L3. Further, it is proved in [58],
[59] that already the proof theoretic version of L3 enjoys a very strong version
of Gödel’s incompleteness property, namely Set Theory can be built up in proof
theoretic L3 using a finite number of axioms. In this L3 version of Set Theory, the
usual formula Con(Set Theory) expressing its consistence is expressible, but (of
course) is not derivable. Then the usual consequences of Gödel’s second (stronger)
incompleteness results do apply.

The following is open.

Problem 6.0.58. Does the above extend to L3 without equality? Here substitutions
are not allowed, i.e. the logical connectives are the Booleans and ∃v0, ∃v1, ∃v2.
The question is open for both the proof theoretical and the semantical versions of
L3 without equality.
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The algebraic counterpart of proof theoretical L3 is the class CA3 of cylindric
algebras of dimension 3. The equality-free reduct of CA3 is the class Df3 of diagonal-
free cylindric algebras, see e.g. [68]. So the following are in [58] and [59].

Theorem 6.0.59. ([58, Thm.1.6, Thm.1], [59, pp.107-108 and Thm.12 (p.65)]) Set
Theory can be built up in the equational theory (or language) of CA3 by a single
equation τ(x) = 1 in one variable x. Hence the usual consequences of Gödel’s
stronger (or second) incompleteness theorem apply to the equational theory of CA3.

Problem 6.0.60. Is the same (or part of it) true for Df3?

As a partial hint for an answer it is proved in [58], namely, that Set Theory
can be also built up in the reduct SCA3 of CA3 where SCA3 corresponds to L3

without equality but with substitutions instead. The operations of SCA3 are the
Booleans, c0, c1, c2 and the si

j ’s (i, j < 3) where si
j(x) = ci(x ∧ dij), where dij is

the algebraic counterpart of vi = vj ; and ci is the algebraic counterpart of ”∃vi”.
The above problem is regarded as quite important. It goes back to something

that we might call “Tarski’s quest for the weakest logic with Gödel’s incomplete-
ness property”. It has been extensively studied and discussed in [77].”



Chapter 7

New kinds of logics

In this chapter we collect a few logics which are of a different “flavor” than the
ones listed in subsection 3.2.1. The main purpose of these examples is showing
that the present Algebraic Logic framework is suitable for handling all sorts of
unusual logics coming from completely different paradigms of logical or linguistic
or computer science research areas.

Definition 7.0.61. (infinite valued logic L∞) Let P be any set, the set of atomic
formulas of L∞. The logical connectives of L∞ are ∧, ¬, ∨ and →. The set F∞
of formulas is defined the usual way. Recall that P ⊆ F∞ is the set of atomic
formulas.

M∞
def
= {f : (f : P → [0, 1])} ,

where [0, 1] denotes the usual interval of real numbers.

Let f ∈M∞. First we define mnf (ϕ):

mnf (p)
def
= f(p) for p ∈ P

mnf (ϕ ∧ ψ)
def
= min {mnf (ϕ),mnf (ψ)}

mnf (¬ϕ)
def
= 1−mnf (ϕ)

mnf (ϕ ∨ ψ)
def
= max {mnf (ϕ),mnf (ψ)}

mnf (ϕ→ ψ)
def
=

{

1, if mnf (ϕ) 6 mnf (ψ)

1−
(
mnf (ϕ)−mnf (ψ)

)
, else.

For any f ∈M∞, ϕ ∈ F∞,

mng∞(ϕ, f)
def
= 〈x ∈ [0, 1] : x 6 mnf (ϕ)〉;

f |=∞ ϕ
def
⇐⇒ mngf (ϕ) = [0, 1].
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With this the logic

L∞
def
= 〈F∞,M∞,mng∞, |=∞〉

is defined.

Even in intuitionistic logic we have |= ¬(ϕ∧¬ϕ). However, in L∞ this is not
so, the truth value of (ϕ ∧ ¬ϕ) can be as high as 1/2. So in a sense, L∞ tolerates
contradictions (and by a cheap joke, we could call it “dialectical” because of this,
but we will not do so). Also (ϕ ↔ ¬ϕ) can be valid in some of our models.
This again cannot happen even in intuitionistic logic. Further, mnf (ϕ) ≥ 1/2 is
expressible as (¬ϕ → ϕ), hence if we would want to have a new validity relation
|=1, where f |=1 ϕ iff mnf (ϕ) ≥ 1/2, then we can express this new |=1 by f |=1 ϕ
iff mng∞(¬ϕ→ ϕ) = mng∞(ϕ→ ϕ). We do not look into this new |=1 any more,
we only use it as an example of definability of |=1 from mng without identifying
truth with a greatest meaning or even with a single meaning.

L∞ is strongly nice since we can define ε0(ϕ)
def
= (ϕ → ϕ), δ0(ϕ)

def
= ϕ and

(ϕ∆0ψ)
def
= (ϕ→ ψ) ∧ (ψ → ϕ).

Remark 7.0.62. If we omit ∧ from the connectives then we will need ∆0
def
= “→ ”

and ∆1
def
= “← ”. If we replaced f |=∞ ϕ⇔ mnf (ϕ) = 1 by f |=∞ ϕ⇔ mnf (ϕ) >

0.9 then we would loose niceness. However, our logic would still remain semi-nice
as described in chapter 5.

Exercises 7.0.63. (1) Try to define logics similar to L∞ but perhaps with more
intuitive appeal to you.

(2) Prove that the intuitionistic tautology
(
ϕ∧ (ϕ→ ψ)

)
→ ψ is not valid in

L∞. Change the semantics in order to make this valid.
(3) Show that L∞ is strongly nice.
(4) Obtain a new logic LQ from L∞ by executing the following modifications

in the definition. Replace [0,1] with the set Q of rational numbers everywhere.

Define mnf (¬ϕ)
def
= −mnf (ϕ). Redefine the meaning of “→” as follows:

mnf (ϕ→ ψ)
def
= mnf (ψ)−mnf (ϕ) ,

and let mngQ(ϕ, f)
def
= {x ∈ Q : x 6 mnf (ϕ)}. Change the definition of f |=∞ ϕ

to the following:

f |=Q ϕ
def
⇐⇒ 0 ∈ mngq(ϕ, f) .

The rest remains unchanged.

(4.1) Investigate the logic LQ! Compare it with L∞.

(4.2) Prove that mngQ(¬ϕ ∨ ψ, f) 6= mngQ(ϕ → ψ, f), for some model f . Prove
that |=Q (p1 ∨ ¬p1).
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(4.3) Prove that 2Q p0 → (p1∨¬p1). (This property is aimed at by relevance logic,
the idea being, roughly, that the formulas p0 and (p1∨¬p1) have no common atomic
formulas, hence they are not relevant to each other, so they cannot “relevantly
imply” each other.)

(4.4) Prove that |=Q (ϕ→ ϕ).

(4.5) Prove that |=Q ϕ iff (∀f ∈MQ) mngQ(ϕ, f) = mngQ

(
(ϕ→ ϕ) ∨ ϕ, f

)
.

Definition 7.0.64. (Relevance Logic Lr) We obtain a new logic Lr from L∞ by
executing the following modifications in the definition. Replace [0, 1] with the set

Q of rational numbers everywhere. Define mnf (¬ϕ)
def
= −mnf (ϕ). Redefine the

meaning of “→” as follows:

mnf (ϕ→ ψ)
def
=

{

max{−mnf (ϕ),mnf (ψ)}, if mnf (ϕ) 6 mnf (ψ)

min{mnf(ϕ),−mnf (ψ)}, else.

The rest is exactly as in Ex. 7.0.63 (4).
Now, Relevance Logic is

Lr = 〈Fr,Mr,mngr, |=r〉 .

We note that logic Lr is also called R-Mingle (RM) in the literature.

Exercises 7.0.65. (1) Compare Lr, LQ and L∞! Compare them with LS . What
are the most striking differences?

(2) Prove that |=r (ϕ→ ϕ), and |=r (ϕ ∨ ¬ϕ).

(3) Prove that 2r (p0 → (p1∨¬p1)). Compare with what we said about Relevance
Logic in Ex. 7.0.63 (4)!

(4) Prove that (|=r ϕ)⇐⇒ [mngQ(ϕ, f) = mngQ(ϕ→ ϕ, f), for all f ∈MQ].

(5) Check what happens if we replace Q with Z (the set of integers) or with the
interval [−n, n] for some n ∈ ω.

(6) Prove that in Lr we have

[f |= ϕ and f |= ψ] 6=⇒ mngr(ϕ, f) = mngr(ψ, f).

Compare with Def. 3.1.3!

(7) Prove that |=r (ϕ→ ψ)→ (¬ϕ ∨ ψ) but 2r (¬ϕ ∨ ψ)→ (ϕ→ ψ).

(8) Compare the {∧,∨,¬}-fragment of Lr with that of LS ! (Prove e.g. that for
ϕ of this fragment, (|=r ϕ⇒|=S ϕ)). . . . Go on comparing!)

Next we define Partial Logics (LP ). Partial logics are designed to express the
fact that in certain situations, certain statements may be meaningless. For exam-
ple, the statement “the integer 2 is of pink color” may be meaningless in certain
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situations. If ϕ is meaningless then so is ¬ϕ. Also, according to the Copenhagen
interpretation of quantum mechanics, in certain situations certain statements are
meaningless, e.g. asking for the exact location of a particle in a situation where
the particle has only a probability distribution of locations is meaningless.

Definition 7.0.66. (Partial Logic, LP ) Connectives of LP are: ∧, ∨, ¬, N , where
the new kind of formula N(ϕ) intends to express that ϕ is either meaningless or
false (“It is not the case that ϕ” or perhaps “It is not the fact that ϕ”). (N is a
very strong negation.)

• The set of formulas FP is obtained from FS by adding the new unary con-
nective N .

• The class MP of models is

MP
def
=

{
f : f ∈ P {0, 1, 2}

}
.

Here 0, 1, 2 are intended to denote the truthvalues “false”, “true” and “un-
defined”, respectively.

• If 2 /∈ {mngP (ϕ, f),mngP (ψ, f)}, then mngP of (ϕ∧ψ), (ϕ∨ψ), ¬ϕ is defined
as in the case of LS . Else (if 2 is one of the meanings) then mngP of (ϕ∧ψ),
(ϕ ∨ ψ), ¬ϕ is 2 (so all three are the same and they all are 2).

mngP (Nϕ, f)
def
=

{

0, if mngP (ϕ, f) = 1

1, otherwise.

f |=P iff mngP (ϕ, f) = 1 .

With this, LP = 〈FP ,MP ,mngP , |=P 〉 is defined.

LP above is a quite important logic. It was introduced by Prior and was
further investigated by I. Ruzsa (cf. e.g. [67]).

Exercises 7.0.67. (1) Prove that LP is a nice logic. (Hint: Use ε0(ϕ)
def
= N(ϕ ∧

¬ϕ), δ0(ϕ)
def
= ϕ. Then use ϕ∆0ψ

def
= N¬(ϕ ↔ ψ) ∧ (u(ϕ) ↔ u(ψ)), where

u(ϕ)
def
⇐⇒ N(ϕ) ∧ N(¬ϕ). Here u(ϕ) means that ϕ is undefined [or mean-

ingless]).

(2) Try to characterize Alg|=(LP ) and Algm(LP ). How many non-isomorphic al-
gebras are there in Algm(LP ) ?

(3) Try to invent the partial version of our more sophisticated logics, e.g. of LS5

(or the others). (Warning: This might take too much time, because there are
too many logics. So try one or two and then try to develop an “intuition”
that you probably could do the rest.)
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Algebras of relations

To be written later.
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editors, Logic at Work. CCSOM of Univ. of Amsterdam, 1992.
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