JOLURNAL OF NUMBER THEORY 29, 1-9 {1988)

Partitions of Bases into Disjoint Unions of Bases*
Paur Erpds

Muathematical Inscftute of the Hungarian Academy of Sciences,
Budapest, Hungary

AN

MELVYN B. NATHANSON

Offtee of the Provost and Vice President for Academie Affairs,
Lebman College (CUNY), Bronk, New York 10468

Communicated by P. T. Baternan

Received January 30, 1986

Let 4 be an ssymptotic basis of order bt in the sense of additive number theory,
and let fin) denote the maximum number of parrwise digjoinl representations of n
in (he form n=a, +a, + - a,, where a, e and @, a5 - 5o Let 122,
Il Anlzclogn for ¢ sulliciently large, then A can be written in the form A =
Ayu-cwd, where A, A, £ @ for 15i< j<rand A, is an asumptotic basis of
order & for j=1Ll.. 6 I hm, ., fin)legn=2o0, then A=) 4, wher
A;md, =@ Tor i#f and each A, is an asymptolic basis of order f These resulls
are obtained by means of some purely combinatorial theorems, Related open
problems are afso discussed. 90 1988 Academic Pres, Inc.

In this paper we shall prove some Ramsay-like theorems about
partitions of finite subsets of a countably infinite set, and then apply these
results to Waring's problem and other classical topics in additive number
theory.

Here is an example of the kind of results we obtain. Let A4 be an infinite
set, and let h= 2. For each nz 1, let Sin) be a collection of f(n) pairwise
disjoint subsets of 4 of cardinality at most i If f(n) tends to infinity suf-
ficiently fast, for example, il fin)=¢; logn for n2n;, then there is a par-
tition of 4 into two disjoint sets 4= A4, w4, such that for every n=n,
there exist sets U, L7, & 8(n) with the property that U, = 4, and U, = 4.,
This will be shewn to have the following anthmetical consequence: Let
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k=2 Then there is a partition of the set of positive kth powers
{n*ln=1}=A, u A, such that Waring's problem holds independently for
both 4, and 4,. That is, there is a number G=G(k, 4,, 4,) such that for
i=1, 2 every sufficiently large integer i3 the sum of G kth powers belonging
to A,

The paper is divided into three parts. Part | contains combinatorial
results. Part 2 applies these results to number theory. Part 3 discusses some
related unsolved problems.

1. COMBINATORIAL RESULTS

Let |U] denote the cardinality of the set U. Let 4 be a countably infinite
set, and let A= | be an integer. Denote by [ 41" the collection of all subsets
{/= A with |U| =k and by [4]=" the collection of all subsets /= 4 with
|G| < h.

The probability of an event £ is denoted prob( E).

Treorem 1. Let A be a countably mfinite set. Let h=z1 and 122 be
integers, For each nz1, let

Sinjc [A]1="

satisfyv the following conditions:
(1) U, VelSin)and U£V, then U V=g,

(i) There are constanis ¢ and ng, such that

1
<3 log(1"/(r"—1))

aned
Sy =|8{n)l = ¢logn

far all nzny. Then there exists a partition of A into ¢ disfoint sets A,, .., A,
sueh that

(i) Sin)n[A]="#0 for j=1,.,t and all n zn,.

 Proof. Let A="/(r"—1). Then 4i>1. By condition (ii), there exists
d =0 such that clog i=1+4
We construct a probability measure on the space of all partitions

A=A, - d,
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hj' setu'ng
rﬂh{aEA ]_—I
p )= >

forallaed and j=1, .., 1
Let n=ny. Il UeSin), then |Ul=h, <h and problUc=4,})=1"". It

follows that
e 8 L
prob{U & A}]—I—WQI—F_I
and so
b(S b _ ! 1 1
prob{Sim n [4;1%" = &) < 75 < e = 1vw
Therefore,

prob(S{n} [4,]%" = & for some j=1, .., 1) 5;1%,

Since the series X2 /(n' *") converges, the Borel-Cantelli lemma implies

that for almost all partitions 4 =4, v -+-- u 4, there exists n, such that
condition (ii1} is satisfied for j=1,..,1 and all n=n,. This proves the
theorem.

THEOREM 2. Lét A be a countably infinite set. Let hz= 1. For each n=1,
let
S(nyc[4]="
satisfy the following conditions:

(i) If U, VeSin)and UV, then Un V=g,
{ii) Define fin)=1S(n)|. Then

tim L) o
o - II}EH

Then there exists a partition A=\JF_| A, such that A.mA#£0 for
l<i<j<uw, and for each k there is an integer ny(k) such that

' Smyn[A4,]%"# &
for all nzny(k).




4 ERDS AND NATHANSON

Progf. Define a probability measure on the space of all partitions

by setting
1
problas 4,) =3

for all ae A. Let E,, denote the set of all partitions A=1)% , 4, such that
8{n)ri[4,]1%"= . The probability of the event E,, is

1 i
prob(E, )< (l _2_**) :

Define

Le=2"2"% —1).

Fix 4>10. Since f{n)/log » tends to infinity, there exist integers ny(k) such
that

F<myl(lb<ng(2)< - <nylk)< -
and
Sfin)log A, =z(2+d)logn

for ail n=ny(k). Then

b} z pmthk.n}ﬂZ Y Aghn
=1 n=mik) k= o= ngik)

]

n
= Z E "'lk 12 4 B3lesganlop i
K=l n=mlk)

= E ﬁ
k=l h= nulkl
1 = 1
£ —
I+='-r,,;. ann{k:—n'”

|+:'5 Z

k=1

k 1

= O,
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The Borel-Cantelli implies that for almost all partitions 4 =, 4, there
exists a sequence of integers {n (&)} | such that

S [A ] # @

forall k=1 and n=n (k). This concludes the proof,

2. APPLICATIONS TO NUMBER THEORY

The set A of mtegers is an asympiofic basis of arder h if every sufficiently
large integer can be represented as a sum of h (not necessarily distinct)
elements of A. The classical theorems in additive number theory assert that
special sequences of integers are asymplotic bases. Laprange's theorem, for
example, states that the squares form an asymptotic basis of order 4, and
Waring's problem is the assertion that the set of positive kth powers s an
asymptotic basis of some order G(k). We shall prove that if 4 is an
asvmptotic basis of order & and if every large integer has sufficiently many
representations as a sum of & elements of 4, then the basis 4 can be
decomposed into the union of a finite or infinite number of pairwise dis-
joint asymptotic bases of order f.

Let 4 be an asymptotic basis of order &, and let

Bt bl sl e kg,

be two representations of n as a sum of & elements of 4. These represen-
tations are disfeint if

g, gt e, a0, = @

Let U= {a,,..a,} Since the integers a, are not necessarily distinet, it
follows that (U] =hy, where L< h, < h

In general, let % = {F,} ., be a family of functions F,= Fi(x, .., x;,) in
fil{)= h variables, and let 4 be a countable set in the domain of #. Two
fepresentations

F,{al. iy ﬂh”|}=Fkljal| AR ﬂ;,[.t,'

are disjoint il {ay, .., aup} 0 {8}, 0 iy} = B

THEOREM 3. Let A be an asymptatic basis of order 2, and let f(n) denore
the number of representations of n in the form n=a, +a, where a;, a, e A
and a, <a,. Ler t=2 If c=log "(F*/(i*—1)) and if fin)=clogn for all
n=ny, then A can be partitioned into t pairwise disjoint sets, each of which is
an asymptotic basis of order 2.
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Proaf. For nz1, let S(n) consist of all sets {a;.a,} such that
a, +a, =n and a,,a, € A Then |S(n)| = f(n) and the sets {a,,a,} are
pairwise disjoint. Note that if n is even and n/2e A4, then {n/2} e Sin). If
UeSin) and U+ {n/2}, then |U|=2 Applying Theorem 1 in the case
h=2, we conclude that there is a partition d=4, w -« w 4, such that

Sy (4,17 #

for f=1,...1 and all n=n. If U={a;,a.}eSn)n[4,]%° then n=
i, +a;, and so A4, is an asymptotic basis of order 2 for all j=1, ..., t. This
proves the theorem.

THeOREM 4. Let A be an asympitotic hasiy of ovder h, and let fin) denote
the cardinality af a maximal set of pairwise disfoint representations of n as a
stm of b elements of A Let t=2. If fin)=zclogn for some constant
ex>log '(t"(t"—1)) and all n=n,, then A can be partitioned into the
disfoint union of 1 sets, each of which is an asymptotic basis of erder h.

Proof. This follows from Theorem |, exactly as in the prool of
Theorem 3.

Tueorem 5. Let 4 be an aspmprotic basis of order h, and ler f(n) denore
the cardinality of a maximal set of pairwise disjoint representations of n as a
sum af b elements of A. If im,, . fin)log n= oo, then A can be partitioned
into a countable wrion of pairwise disjoint sets, each of which is also an
asymprotic basis af order I

Proof. This follows immediately from Theorem 2.

THEOREM 6. Let k=2 and let A= {n*}F_,. There exists an integer s,(k)
such that for all s> sg(k) there is a partition A=\ | A, such that each set
A, is an asymptotic basis of order s,

Proof. Let d.,(n) denote the number of representations in some
maximal collection of pairwise disjoint representations of » as a sum of
5 k-th powers, Nathanson [ 5, p. 304 ] proved that there exists an s,(k) such
that for all s> s4(k) there is a constant ¢ > 0 such that d, (n) > en'™ for all
nz=1. Thus, d.,(n)logn tends to infinity, and so the result follows
immediately from Theorem 2 with f{n) =4, (n).

Lagrange proved that every positive integer is the sum of four sguares,
but it iz easy to see that it is not possible to partition the squares into even
two disjoint sets, each of which is an asymptotic basis of order 4. Let ry(n)
denote the number of solutions in intepers of the equation n=
a’+b* + ¢+ d*. Then r,(n)=8 ¥, m, where the summation runs over all
positive divisors of # that are not divisible by 4. In particular, if & = 1, then
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ral2*+')=24 and the only solutions of 2¥*H =g+ H + 744" are
permutations of the representation

PHH = (L 2P+ (L2 + 0P+ O

If S(n) comsists of all sets U={a® #, ¢, d°} such that n=
@'+ 5 +eP+ 4% then S(2**') consists of the single set [0,4%] and
f2* = |8(2** ) =1 for all k=1. It follows that if {A’ln=0}=
Ay d; and 4, n A, =@, then not both A4, and 4, are asymptotic bases
of order 4.

If we consider only numbers not divisible by 4, however, then it is
possible to establish a positive result,

THEOREM 7. Let T={n=0n £ 0 (mod 4)}. Then there is a partition
{Win=0} ==, A, such that for each j there is an integer n, such that if
neT and nzn;, then n is a sum of four elements of A,.

Progf. ForneT, let f(n) denote the number of representations in some
maximal collection of pairwise disjoint representations of # as a sum of four
squares. Erdos and Nathanson [2] proved that for every e >0 there exists
a constant ¢=c(g) >0 such that f{n)=en'" " for all ne T. The result
follows immediately from Theorem 2.

THeOREM 8. Let F, =F (X, .., Xy) be a function in h(j) < h variables,
and let F = {F};. ;. Let A be a set of integers. Let #(A) be the set of all
numbers of the form Fla,, .., ay ), where F, e F and a,, .., a,;, €A, Let
W={w,}>  cF(A) Let f(n) denote the maximum number of pairwise
disjoint representation of w,, in the form w, = Fla,, .. ay ) If f(n}=clogn
for some ¢=log '"(1"/(+" — 1)) and all n=ny, then there is a disjoint par-
tition A=\Ji_ | A, such that

':wrr}nm E'F{AJ]

e
far some integer ny and all j=1, .., .
if lim, . f(n)log n= oo, then there is a disjoint partition A=J7, A,
and integers n,( j) such rhai
{w,,,*;‘_,,ml =F(A)

Jorall j=12, ..

Proof. This follows immediately from Theorems 1 and 2.

3. OrEN PROBLEMS

I. In Theorem 1 the condition that f{n) = log n is best possible in the
following sense. In the case 4={1,2,3,..} and A=r=2, R L. Graham
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(personal communication) has constructed for each # a collection Sin) of
pairs of integers such that f(n)=|S(n)l =clogn for some ¢>0 and all
n =1, but there is no partition A=A, U 4, such that S(n)n[4,]1* =@
fori=1and i=2 and all nzn,. Let ¢k, ¢) denote the infimum of all real
numbers ¢ such that the conclusion of Theorem 1 holds whenever
fnt=elog n. Calculate efh, t).

2. Let A be an asymptotic basis of order 2 and let f{n) denote the num-
ber of representations of # in the form n=a, +4, where a, 4,4 and
a, =a, According to Theorem 3, il fin}=¢logn for some e>log '(4/3)
and all #n=n;, then 4 can be partitioned into the disjoint union of two
asymptotic bases of order 2, Can the condition that f{n)=clogn be
weakened? In particular, if we assume only that lim, . .. fin)= o, does
A=d,u A, where 4, nA, =5 and 4, and A are both asymptotic
bases of order 27

3. An asymptotic basis 4 of order /i is minmimal if no proper subset of 4
is an asymptotic basis of order h. Hirtter [3] and Nathanson [4] proved
that there exist asymptotic bases that do not contain any minimal
asymptotic bases. On the other hand, Erdds and Nathanson [1] proved
that if 4 is an asymptotic basis of order 2 such that fi{n) = ¢ log n for some
c=log '(4/3) and all n=n,, then A contains a minimal asymptotic basis
of order 2. The proof is similar to the proofl of Theorem I, but seems to
work only in the case i= 2. It is not known whether an asymptotic basis 4
of order h =2 for which f{n) = ¢ log » for some constant ¢ sulliciently large
must necessarily contain a minimal asymptotic basis of order 4. An old
problem of Erdds and Nathanson [1] is the following: If 4 is an
asymptotic basis of order h soch that lim, . f(r)=o, then does A
contain a minimal asymptotic basis of order A7 This is open even in the
case h=2,

4. 1t is not clear if there is a relationship between asymptotic bases that
contain minimal asymptotic bases and asymptotic bases that can be
decomposed into the disjoint union of two asymptotic bases. For example,
let 4, and 4, be asymptotic bases of order 2 such that 4, m 4, =, Let
A=4, v, Does A contain a minimal asymptotic basis of order 27

5. Under the conditions of Theorem 1, let f(n)=¢'logn for some
sufficiently large constant ¢', Then there exists 8 >0 such that

ISy [A4,]%" =dlogn

for j=1,.., t and n=n,. The proofl is essentially the same as the proof of
Theorem 1. Estimate the size of the constant ¢'.
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