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Several new tools are presented for determining the number of cliques needed to
(edge-)partition a graph . For a graph on n vertices, the clique partition number can grow cn z
times as fast as the clique covering number, where c is at least 1/64. If in a clique on n vertices,
the edges between en° vertices are deleted, Z--a < 1, then the number of cliques needed to
partition what is left is asymptotic to c 2n~ ; this fills in a gap between results of Wallis for a <
and Pullman and Donald for a =1, c > q . Clique coverings of a clique minus a matching are
also investigated .

1. Introduction

Only undirected graphs without loops or multiple edges are considered . The
graph K„ on n vertices for which every pair of distinct vertices induces an edge is
called a complete graph or the clique on n vertices. If G is any graph, we call a
complete subgraph of G a clique of G (we do not require that it be a maximal
complete subgraph) . A clique covering of G is a set of cliques of G which
together contain each edge of G at least once ; if each edge is covered exactly
once we call it a clique partition . The clique covering number cc(G) of G is the
smallest cardinality of any clique covering ; the clique partition number ep(G) is
the smallest cardinality of a clique partition .

The question of calculating these numbers was raised in 1977 by Orlin [6] .
Already in 1948 deBruijn and Erdős [2] had proved that partitioning K„ into
smaller cliques requires at least n cliques . Some more recent calculations
motivating this study include [8] by Wallis in 1982, where it is shown that if G has
o(Vn-) vertices, then cp(K, -G) is asymptotically equal to n ; [7] by Pullman and
Donald in 1981, where cp(K, - K,„) is calculated exactly for M -_ 2'n ; and in [1] by
Cacceta et al . in 1985, where it is found that at its largest cp(G) - cc(G) is
asymptotic to 4n Z, where G has n vertices .

Several questions left open in these earlier papers are explored . We obtain
asymptotic results for cp(K, - K-) for m in the range < m < n, connecting
the results of Wallis 1982 [8] and Pullman 1981 [7] ; for example if m = cn°,
i < a < 1, then cp(K„ - K,,,) is asymptotic to c 2 n 2° . We apply bounds developed
in this connection to bound the maximum value of cp(G)/cc(G) on graphs G with
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n vertices, showing it can grow as fast as cn 2 where c > q . We also provide simple
proofs of some bounds on cc(T) where T is K„ minus a matching .

2 . Lower bound techniques

Let G = G„ be a graph with n vertices, with these vertices divided into two
sets A and B with a and b elements, a + b = n . The edges of G now fall into three
classes which we call "A edges", "B edges", and "connecting edges" depending
as their endpoints lie both in A, both in B, or one in each . Suppose a clique in G
contains more than one of the connecting edges of G ; then it must contain some
A edges or B edges or both . If the number of connecting edges in G is large,
there will not be enough A edges or B edges of G available to combine the
connecting edges into just a few cliques . This technique is used in Theorem 3 of
[7], which says (here C + D is the graph that has vertex disjoint copies of graphs
C and D and all edges between vertices of C and vertices of D) :

Theorem . Let H be a graph with p vertices and m edges . Let q be at least the edge
chromatic number of H. Then cp(H + Kq ) =pq - m and any minimal clique
partition has edges and triangles only .

The proof depends on the fact that there are pq edges connecting H to K. ; two
lie in the same clique only if that clique contains at least one edge selected from
the m edges of H, since K9 has no edges .

A similar strategy is used in [1] to produce a sequence of graphs G, with n
vertices for which cp(G„) - cc(G) is asymptotic to 4nZ.

Our goal in this section is to give several lemmas that consider cases where the
cliques use more than one connecting edge . We are able to extend several
existing lower bounds on clique partition numbers by this strategy .

We begin with a purely numerical lemma .

Lemma 1 . Let EQ_, e, = c and E4-, e ; , d. Then q =c 2 /d .

Proof. Substituting the q equal values c/q for the (possibly distinct) e ; preserves
the sum of the e ; and can only reduce the sum of the e~, . thus E4-, (c/q)2 _ d so
q(c/q)'=d, and the result follows . O

Lemma 2 . Suppose the graph G has k edges in side A, no edges in side B, and c
connecting edges. Then

cp(G) - (2k + c)

Proof. If G is partitioned by q cliques and clique i has e; connecting edges, then
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clique i has e,(e i - 1)/2 edges in side A . Then EQ_, e ; = c, and

k-Y_e,(ei-1)/2=(ye, ye,)/2 - (Ye,-cl/2

and the result follows from Lemma 1 . F7

We thus obtain a lower bound for the clique partition number of a clique minus
a clique :

Theorem 1. From n , m ;1, and n * 1,

cp (K„ - Km ) , (n - m)m2
(n-1)

Proof. There are n - m points and Z(n - m)(n - m - 1) edges in "side A" and
m(n - m) connecting edges; Lemma 2 applies. O

Corollary 1 . If 0 < c < 1, then

cp(K„ - K_) -- (n - cn)(cn)2/(n - 1) (1 - c)c 2n 2.

Here f -=g means that as n x, f /g ~ 1 .
In [7] there is a corollary of Theorem 3 which gives an exact formula :

cp(K„ - Km) = i(n - m)(3m - n + 1) when n > m , 2(n - e) (where e = 0 for
n -m odd, e = 1 otherwise) . Our result is not as good as theirs for m > Zn (for
example, for n =12, m = 8, c = 3, we get cp(G) > 23 and they get cp(G) = 26)
but our result gives some indication of the value of cp(K„ - K,,) even if m = cn is
a small fraction of n.
Wallis has told us that Rose, a student of Pullman, has obtained exact results

for m < 2n ; we have not seen these independent results .
In a sense, our result fails to be tight for two reasons :
(1) there may be cliques using no connecting edges, if m is small .
(2) Lemma 1 uses an averaging process : in actual practice no clique can have a

fractional number of edges, so the e; are not normally equal in a minimal
partition .

Corollary 2. If 2 < a < 1 and m = cn°, then for n large enough cp (K„ - Km )

(n - cn ° )c 2 n z° /(n - 1) _ C2n 2° ,

This result will be discussed further once the corresponding upper bound is
found, in Section 4 .

We now turn to results that apply if there are edges in both `sides' of G. The
first pair of lemmas are useful when the cliques involved are typically very small .
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Lemma 3 . Let a clique K, have u edges in side A, v edges in side B, and s
connecting edges . Then

s-1-u+v+min(u, v) .

Proof. Suppose that A and B have a and b vertices as usual ; suppose for
concreteness that a -- b. Now s = ab, u = a(a - 1)/2, and v = b(b -1)/2. If a = b,
then clearly (defining P(u, v))

P(u, v)=u+v+min(u, v)+1-s
= 3a(a - 1)/2 + 1 - a 2
_ (a - 1)(a - 2)/2 -- 0

Now whenever b grows by 1, p(u, v) grows by b-a,0, so p(u, v) ,0 as
required . El

Aggregating a number of such cliques partitioning a graph G, we obtain :

Lemma 4. Let G have u edges in side A, v edges in side B, and s connecting
edges . Then

cp(G)%s-u-v-min(u, v).

Proof. Suppose G is covered by q cliques with the number of edges in the parts
of cliques i being u„ v„ and si . Thus Lemma 3 implies 1 ; s i - u i - vi -
min(u i , v i ), and summing for i = 1, . . , q, we have

q

	

Y

	

Y

	

Y

q = Y 1- Y- si - Y- ui - Y_ min(u i , v i)
i=1

	

i=1

	

i=1

	

i=1

Y

= s - u - v - Y. min(ui , v i)
i=1

Y

	

Y

	

\

;s-u-v -minc u i , vi l
=1

	

i=1

=s-u-v-min(u,v) .

Example 1 . Consider the graph G„. defined as follows : Zn vertices are in a clique
A; the other 2n vertices forming set B are divided into 4 cliques each of án
vertices ; all the vertices of A are connected to all the vertices of B . Then, there
are z(zn)(2n -1) edges in side A, 2(,n%'xn - 1) edges in side B, and 4n2

connecting edges. By Lemma 4,

cp(G„) =4n2-(sn - 4n) -2(32n2- 4n)

= 1,n2+ á(3n) .
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Since cc(G,) = 4 (each of the 4 cliques covers A and one clique of B, a total of
2n + ;n vertices), we conclude that

cp(G„)/cc(G„) > án2.

It follows that cp(G,)/cc(G„) can exceed cn` where c can be at least 64 .

Lemma 3 is wasteful when the number of clique covering connecting edges is
large (it is exact only for KZ, K,,j , and for K4 and KS when they have exactly two
vertices on one side) . Here is another approach useful when one or both sides of
some connecting cliques are moderately large . Lemma 5 says that goodsized
cliques (those with at least m vertices on the larger side) use up `side' edges at
least (m - 1)/m times as fast as 'connecting' edges .

Lemma 5 . Let a clique K, have its vertices partitioned into sets A and B of sizes a
and b, a + b = r . Suppose a -- m . Then

( ( rnm 1 ) )ab
a(a2

	 1) +
b(b2

	 1) .

Proof. It is easy to check that

P(a
b)_a(a-1)+b(b-1) (

(m-1))ab
2

	

2

	

rn

=(I)ab+ (a 2
b)2 - (a2b)

so we need only check that P(a, b) , 0.
If a , m and b , m, (1/m)ab = max(a, b) -- z(a + b) and P(a, b) = 0. For

a = m and 0 -- b -- m - 1, P(a, b) is a decreasing function of b and zero only at
b = m - 1, so P(m, b) -- 0 . Fixing b < m -1 and supposing a > m, P(a, b) is an
increasing function of a, completing the proof . 0

The use of Lemma 5 is somewhat tricky ; it is included primarily because it
allows us to cope with the following example .

Example 2. Dom de Caen asked (question communicated to us orally by Pullman
and by Wallis) about the clique partition number of the graph G 3„ composed of
three copies of K„ with all vertices in the second copy joined to all vertices in the
first and third (in our notation, loosely, K„ + K„ + K„) . In particular, does it grow
proportionally to n 2? We can prove that it does .
Treating the second K„ as side A and the other two as side B, A has n(n - 1)/2

edges and B has n(n - 1) edges, with n(2n) connecting edges. Suppose there are
q cliques in a clique partition, where the ith clique has a i vertices in side A and b i
vertices in side B (hence all b i vertices lie in the first K„ or all lie in the third Kn ;
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no edge connects those two cliques) . Suppose the q cliques are so ordered that
(a,, b,), . . , (a„ b,) all have a; < m and b; < m, while (a, + ,, b r+ ,), . . , (a9 , b q )
A have a; = m and/or b; , m . Now for j = 1, . . . , r we have

ai.(a2 1) + bi(bz		m1) __ oa ((m 1 ))(a;b; - (m -1)2)

while for j = r + 1, . . . , q we have

ai(a2 1) + bi (b2 1) ,
\(mm

1) la
i bi .J

Summing over all q cliques,

a;(ai - 1)
+ ~

b;(bi - 1) _. «m -1)\
~

	

q(m - 1)3
a' b' --i

	

2

	

,_,

	

2

	

m l ;=1

	

m
But

and

and

ai(a; - 1) - n(n - 1)
=1

	

2

	

2

e b;(b; -1)
=1 2

	

= n(n - 1),

so
3n(2-1),/(mm 1) 1 (2nz) ((m

m
1) 3

)
q
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((m-4)1n z>

	

.q

	

(m-1),
The right hand side of the above inequality, considered as a function of m, has a
maximum when m = 6 (m must be an integer) . Therefore, q > 2n'/ 125 .

Thus de Caen's conjecture that this graph has a fast-growing clique partition
number is correct . However, our methods do not establish a large enough value
of cp(G3 „) to suggest that cp(G3„)/cc(G3„) grows as fast as in Example 1 . Of
course, in neither case have we established an exact value for cp(G) ; we have
only a lower bound .

3. Upper bounds for a clique minus a clique and cp/cc

Here we modify a strategy used in [8] to provide an upper bound for some of
the clique partition numbers bounded below in Section 2 .

Theorem 2. If m = f (n) and for large enough n,

	

< m < n, then cp(K„ -
Km ) < m 2 + o(m2 ) .
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Proof. Let p be a prime power at most slightly larger than m ; there are constants
0 < c < 1 and 0 < b < 1 so that for large enough m, there is a p with
m < p < m + cm b. Then p 2 = m2 + O (M2) . In a projective plane of parameter p,
delete a line of p + 1 points leaving p2 points in p "parallel" lines . In one of those
lines, delete all but m points ; in the other lines, delete a total of (p 2 - n) - (p -
m) points . This leaves a total of n points, with m of them on a selected line . Use
this design to construct a clique partition of K„ - Km into at most p2 + p -1
cliques : each line is a clique, except the selected line of m points . There are p - 1
other "parallel" lines and p 2 "crossing" lines . Hence

cp(K -Km)_p2+p-1_ m2 +o(m2)

as desired. 0

Corollary 1 . If m = cn° with 2 < a < 1, then cp (K„ - K,„) is asymptotic to c 2n 2a .

Proof . An upper bound is given by Theorem 2 and a lower bound by Corollary 2
of Theorem 1 . O

This result fills in most of the gap between the results of Wallis (if m -- Vn-,
cp(K„ - Km) n) and of Pullman and Donald (if m = In, cp(K„ - K,,,) _
i(in)(zn + 1) z(zn) 2) . There is still a gap : our result is poorer than that of
Pullman and Donald by a factor of two .

More generally, we do not get as clean a result as Corollary 1 for the case
m = cn ; Corollary 1 to Theorem 1 gives a lower bound of (1- c)c 2n 2 while
Theorem 2 yields an upper bound of c2n 2 .

We now turn to providing an upper bound for cp(G)/cc(G) . We are able to do
little here other than some delineation of the problem . We have seen in Section 2
that if G has n vertices we can have cp(G)/cc(G) > fi4n2. How big can it get? It is
already known from [3] that 1-- cc(G) -- cp(G) -- ;n 2 . If cc(G) = 1, then also
cp(G) = 1 so we need consider only cases with 2 ; cc(G) . Hence, we already see
that cp(G)/cc(G),Rn 2 . The following proposition improves this result slightly
for large enough n .

Proposition 1. If G has n vertices, and n is large enough cp(G)lcc(G) -- í2n 2 .

Proof. If cc(G) -- 3, we are done . Thus we can suppose cc(G) = 2 and must show
that cp(G) -- in

2. In fact, we do better: we obtain cp(G) , $n2 .

Since cc(G) = 2, G can be covered by two cliques Kq and K b intersecting in a
clique K, ; a + b - c = n . Suppose for concreteness that a _ b . If c , 3n, cover Kb
with 1 clique and partition G - Kb = K, - K, with c2 + o(c 2 ) cliques. Since
C2 _ In', for n large enough cp(G) < $n 2 as desired .

If c > 3n, then let c = 3n + x for x > 0. Since a -- b, a - c -- ?(n - c) -- 3n - zx,
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and therefore c > za . By [7] Ka - K c can be partitioned by exactly Z(a - c)(3c -
a + 1) cliques . Also, there are (a - c)c edges between K, and Kay (the clique
with vertices in Ka not in Kj We will consider two clique partitions of G : (1) a
clique partition of Ka - K, along with the clique K,,, and (2) the edges between
K, and K_ along with the clique Kb and K,,_,. . If either of these partitions has at
most sn 2 elements, the proof is complete . Thus, we need one of the following
inequalities to hold .

\3 2\~+	
5x +

1) +
1` g

(1)

\3
2(3+z) +2_8

	

(2)

The inequality (2) is satisfied for Ix - ón I -- 2, and the inequality (1) is satisfied for
the remaining values of x . This completes the proof of the proposition . 0

4. A clique minus a matching

In [6] Orlin defines T„ (not a tree) to be the graph obtained by deleting a
perfect matching (a set of n edges, no vertex on two of them) from K2,, . He asks
about clique coverings and clique partitions of TZ,, . In [5] Gregory and Pullman
establish that cc(TZ„) -log n ; in [4] Gregory et al . show that cp(T) , n for n , 8
and that asymptotically, cp(T„) < n log log n . The last upper bound is proved by
methods strikingly similar to those in the previous section .
We here offer bounds on cc(T„) obtained by methods motivated by the

heuristic discussion in [6] . These results are less precise than those in [5], but may
be easier to visualize .

In order to discuss clique coverings of T, we need some notation for the
vertices . Suppose m = Zn ; T will be considered to have vertices a ; and b i for
i = 1, . . . , m . All edges are present except the edges from a, to b, for
i = l, . . . , m . Note that no clique in a covering can contain an a; and the
corresponding bi but that there must be cliques containing each a,, b; pair with
i j as well as ones containing each a i , a; pair and each b i , b; pair .

Theorem 3 . For all n, cc(T) , (log n) - 1 .

Proof . Clearly T cannot be covered by one clique . Given i j, there must be a
clique in the covering containing ai and b ;; that clique cannot also contain a, .
Hence, for each i # j, there is a clique containing ai but not a; . But it thus follows
easily that there are at least log(zn) cliques . (There is a clique containing a, but
not az . Since there are zn ai 's, this clique either includes at least ;n ai's or
excludes at least 1 n ai 's . Choose the larger such set-the included or excluded
ai's-and find a clique separating two of them. Continue log( 2 n) times) .



Theorem 4 . For all n, cc (T.) -- 2(log n) .

Proof. We construct an explicit clique covering . For each a i write our the
subscript i as a binary integer of log( 2 n) digits (e .g . 0001, 0010, 0011, 0100 . . . . ) .
If In is a power of two, code the last i as 0000 to avoid the need for an extra digit .
Clique A k will include all a; for which the kth digit of i is a 1, and all bt for which
the kth digit of i is 0 . Clique Bk has the vertices not in Ak . Since if i 4 j, i and j
differ in at least one binary digit, the edge from a t to b; is in at least one A k or Bk .
Finally, add a clique containing all the a; and a clique containing all the b„ this
yields a complete clique covering having at most 2(log(2n)) + 2 cliques . 0
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