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Several new tools are presented for determining the number of cliques needed to
(edge-)partition a graph. For a graph on n vertices, the clique partition number can grow cn®
times as fast as the clique covering number, where ¢ is at least 1/64. If in 4 chique on n vertices,
the edges between en” vertices are deleted, $=a <1, then the number of cliques needed to
partition what is left is asymptotic to ¢®n®*; this fills in a gap between results of Wallis for a < 1
and Pullman and Donald for e =1, ¢ > 1. Clique coverings of a clique minus 2 matching are
also investigated.

1. Introduction

Only undirected graphs without loops or multiple edges are considered. The
graph K, on n vertices for which every pair of distinct vertices induces an edge is
called a complete graph or the clique on n vertices. If G is any graph, we call a
complete subgraph of G a cfigue of G (we do not require that it be a maximal
complete subgraph). A cligue covering of G is a set of cliques of G which
together contain each edge of G at least once; if each edge is covered exactly
once we call it a cligue partition. The clique covering number cc(G) of G is the
smallest cardinality of any clique covering; the clique partition number cp(G) is
the smallest cardinality of a clique partition.

The question of calculating .these numbers was raised in 1977 by Orlin [6].
Already in 1948 deBruijn and Erdds [2] had proved that partitioning K, into
smaller cliques requires at least n cliques. Some more recent calculations
motivating this study include [8] by Wallis in 1982, where it is shown that if G has
o(Vn) vertices, then cp(K, — G) is asymptotically equal to n; [7] by Pullman and
Donald in 1981, where ¢p(K,, — K,,,) is calculated exactly for m = in; and in [1] by
Cacceta et al. in 1985, where it is found that at its largest cp(G) —cc(G) is
asymptotic to 1n?, where G has n vertices.

Several questions left open in these earlier papers are explored. We obtain
asymptotic results for cp(K, — K,,,) for m in the range Vrn<m <n, connecting
the results of Wallis 1982 [8] and Pullman 1981 [7]; for example if m =cn®
i<a<1, then cp(K, — K,,) is asymptotic to c’n**. We apply bounds developed
in this connection to bound the maximum value of cp(G)/cc(G) on graphs G with
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n vertices, showing it can grow as fast as cn? where ¢ > &. We also provide simple
proofs of some bounds on cc(T,) where T, is K, minus a matching.

2. Lower bound techniques

Let G =G, be a graph with n vertices, with these vertices divided into two
sets A and B with a and b elements, @ + b = n. The edges of G now fall into three
classes which we call “A edges”, “B edges”, and “connecting edges” depending
as their endpoints lie both in A, both in B, or one in each. Suppose a clique in G
contains more than one of the connecting edges of G; then it must contain some
A edges or B edges or both. If the number of connecting edges in G is large,
there will not be enough A edges or B edges of G available to combine the
connecting edges into just a few cliques, This technique is used in Theorem 3 of
[7], which says (here C + D) is the graph that has vertex disjoint copies of graphs
C and D and all edges between vertices of C and vertices of D):

Theorem. Let H be a graph with p vertices and m edges. Let q be at least the edge
chromatic number of H. Then cp(H +K,)=pg—m and any minimal clique
partition has edges and triangles only.

The proof depends on the fact that there are pq edges connecting H to K, ; two
lic in the same clique only if that clique contains at least one edge selected from
the m edges of H, since K, has no edges.

A similar strategy is used in [1] to produce a sequence of graphs G, with n
vertices for which cp(G,) —cc(G,) is asymptotic to jn’.

Our goal in this section is to give several lemmas that consider cases where the
cliques use more than one connecting edge. We are able to extend several
existing lower bounds on clique partition numbers by this strategy.

We begin with a purely numerical lemma.

Lemma 1. Let N e, =cand N2, e}<d. Then q=c*/d.

Proof. Substituting the g equal values ¢/q for the (possibly distinct) e, preserves
the sum of the ¢; and can only reduce the sum of the ¢}. thus L2, (c/g)*=d so
g(c/q)*=d, and the result follows. O

Lemma 2. Suppose the graph G has k edges in side A, no edges in side B, and ¢
connecting edges. Then
2

C

Proof. If G is partitioned by g cliques and clique i has e; connecting edges, then
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clique i has ¢;(¢; — 1)/2 edges in side A. Then £{_;e,=c, and

kzie,(ei~'l]i2=(§e§ e /2 ie,—c /2

=1 im]

and the result follows from Lemma 1. O

We thus obtain a lower bound for the clique partition number of a clique minus
a clique:

Theorem 1. Fromn=m=1, and n+#1,

(n —m)m®
K, —-K,)=——
ep( m) = 1)
Proof. There are n —m points and (n —m)(n —m — 1) edges in “side A" and
m(n —m) connecting edges; Lemma 2 applies. [

Corollary 1. I[f0<c<1, then
P (K, — Kop) = (n — cn)(en)?/(n — 1) = (1 - c)c*n?

Here f =g means that as n— o, f/g— 1.

In [7] there is a corollary of Theorem 3 which gives an exact formula:
cp(K, — K,.))=3(n—m)3m—n+1) when n>m=1(n—e) (where e=0 for
n—m odd, e =1 otherwise). Our result is not as good as theirs for m > in (for
example, for n =12, m=8, ¢ =4, we get cp(G)>23 and they get cp(G) = 26)
but our result gives some indication of the value of cp(K,, — K_,,) even if m =cn is
a small fraction of n.

Wallis has told us that Rose, a student of Pullman, has obtained exact results
for m < in; we have not seen these independent results.

In a sense, our result fails to be tight for two reasons:

(1) there may be cliques using no connecting edges, if m is small.

(2) Lemma 1 uses an averaging process: in actual practice no clique can have a
fractional number of edges, so the ¢; are not normally equal in a minimal
partition.

Corollary 2. If $<a <1 and m =cn®, then for n large enough cp(K,—K,,) =
(n—cn®)c?n®/(n — 1) =c*n™.

This result will be discussed further once the corresponding upper bound is
found, in Section 4.

We now turn to results that apply if there are edges in both ‘sides’ of G. The
first pair of lemmas are useful when the cliques involved are typically very small.
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Lemma 3. Let a cliqgue K, have u edges in side A, v edges in side B, and s
connecting edges. Then

s—1=su+v+min(u, v).

Proof. Suppose that A and B have a and b vertices as usual; suppose for
concreteness thata<b. Now s =ab, u=a(a—1)/2, andv=56(b—-1)/2. Ifa=0b,
then clearly (defining P(u, v))
Plu,v)=u+v+min(y, v)+1-5

=3a(a—1)/2+1—a?

={a—1)(a—2)/2=0
Now whenever b grows by 1, p(u, v) grows by b—a=0, so p(u,v)=0 as
required. [

Aggregating a number of such cliques partitioning a graph G, we obtain:

Lemma 4. Let G have u edges in side A, v edges in side B, and s connecting
edges. Then

cp(G)=5—u—v—min(u, v).

Proof. Suppose G is covered by g cliques with the number of edges in the parts

of cliques i being w;, v;, and s5;, Thus Lemma 3 implies 1=s,—w,—v, —
min(u,, v,), and summing fori=1, ..., g, we have

q:i laisi—iuimimin(“bvil
i=1 i=1 i=1 i=1

4
=5s—u—v- i min(u;, v;)
=1

=5—u—u- min(i U, i v,-)
i=1 i=1

=5 —u—v—min(u, v).

Example 1. Consider the graph G, defined as follows: 3n vertices are in a clique
A; the other in vertices forming set B are divided into 4 cliques each of #n
vertices; all the vertices of A are connected to all the vertices of B. Then, there
are 3(3n)(3n —1) edges in side A, 2(in)(in —1) edges in side B, and in®
connecting edges. By Lemma 4,

cp(G,) = in* — (§n — n) — 2(3n* — in)

=%+ 1(3n).
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Since ce(G,) =4 (each of the 4 cliques covers A and one clique of B, a total of
in + in vertices), we conclude that

ep(G,)/ce(G,) > qan’.

It follows that cp(G,)/ce(G,) can exceed cn® where ¢ can be at least &,

Lemma 3 is wasteful when the number of clique covering connecting edges is
large (it 1s exact only for K,, K5, and for K, and K5 when they have exactly two
vertices on one side). Here is another approach useful when one or both sides of
some connecting cliques are moderately large. Lemma 5 says that goodsized
cliques (those with at least m vertices on the larger side) use up ‘side’ edges at
least (m — 1)/m times as fast as ‘connecting’ edges.

Lemma 5. Let a cliqgue K, have its vertices partitioned into sets A and B of sizes a
and b, a +b =r. Suppose a=m. Then

(m—1) afa—1) b(b—-1)
( = )abﬁ = + 5 4

Proof. It is easy to check that

P, b}=a[a2— 1}+b(b2— D ((mr; ”)«b
=y (a—b)* (a+b)
-(m)ab+ 2 2

so we need only check that P(a, b)=0.

If a=m and b=m, (1/m)ab=max(a, b)=3(a+b) and P(a,b)=0. For
a=mand 0=b=m—1, P(a, b) is a decreasing function of b and zero only at
b=m-1, so P(m, b)=0. Fixing b=m — 1 and supposing a =m, P(a, b) is an
increasing function of @, completing the proof. O

The use of Lemma 5 is somewhat tricky; it is included primarily because it
allows us to cope with the following example.

Example 2. Dom de Caen asked (question communicated to us orally by Pullman
and by Wallis) about the clique partition number of the graph G, composed of
three copies of K, with all vertices in the second copy joined to all vertices in the
first and third (in our notation, loosely, K, + K,, + K,,). In particular, does it grow
proportionally to #*? We can prove that it does.

Treating the second K, as side A and the other two as side B, A has n(n —1)/2
edges and B has n(n — 1) edges, with n(2n) connecting edges. Suppose there are
g cliques in a clique partition, where the ith clique has a, vertices in side A and b;
vertices in side B (hence all b; vertices lie in the first K, or all lie in the third K,,;
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no edge connects those two cliques). Suppose the g cliques are so ordered that

(a1, By), ..., (a,, b,) all have a;<m and b; <m, while (a1, b,51), - .., (a4, by)
all have @;=m and/or b,=m. Now forj=1, ..., r we have
aa—1)  bib—1)_ ((m ) P
e J(@b, — (m = 17%)
while forj=r+1, ..., g we have
aa;—1) b, —1)_ ((m = 1)) i
2 + 2 = o a;b,.

Summing over all g cliques,

iﬂf(“x*l)+ib;(b; ({m—l))i o q(m-1)3
2

i=1 2 i=1 i=1
But

ia;-(a;--——l)_n(n—l)

= 2z 0 2 7
and

$SUbD

i=1 2
50

3n(n—1)_ (m—1)

(e (P

and

(=)

(m—1)°

The right hand side of the above inequality, considered as a function of m, has a
maximum when m = 6 (m must be an integer). Therefore, g >2n?/125.

Thus de Caen’s conjecture that this graph has a fast-growing clique partition
number is correct. However, our methods do not establish a large enough value
of cp(Gs,) to suggest that cp(Gs,)/cc(Gs,) grows as fast as in Example 1. Of
course, in neither case have we established an exact value for cp(G); we have
only a lower bound.

3. Upper bounds for a clique minus a clique and cp/cc

Here we modify a strategy used in [8] to provide an upper bound for some of
the clique partition numbers bounded below in Section 2.

Theorem 2. If m=f(n) and for large enough n, Vn<m<n, then cp(K, -
K,,) <m?+o(m®).
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Proof. Let p be a prime power at most slightly larger than m; there are constants
0<c<1 and 0<b<1 so that for large enough m, there is a p with
m<p<m+cm®. Then p?=m?+ o(m?). In a projective plane of parameter p,
delete a line of p + 1 points leaving p? points in p “parallel” lines. In one of those
lines, delete all but m points; in the other lines, delete a total of (p*—n) — (p —
m) points. This leaves a total of n points, with m of them on a selected line. Use
this design to construct a clique partition of K, — K,, into at most p+p — 1
cliques: each line is a clique, except the selected line of m points. There are p — 1
other “parallel” lines and p? “crossing” lines. Hence

cp(K, — K,)<p*+p—1=m?>+o(m?

as desired. O
Corollary 1. If m = cn” with } <a <1, then cp(K, — K,,) is asympiotic to c*n™.

Proof. An upper bound is given by Theorem 2 and a lower bound by Corollary 2
of Theorem 1. [

This result fills in most of the gap between the results of Wallis (if m =V,
cp(K, — K,,)=n) and of Pullman and Donald (if m=1n, cp(K,—K,)=
1(3n)(3n +1)=1(3n)%). There is still a gap: our result is poorer than that of
Pullman and Donald by a factor of two.

More generally, we do not get as clean a result as Corollary 1 for the case
m=cn; Corollary 1 to Theorem 1 gives a lower bound of (1 —¢)c’n® while
Theorem 2 yields an upper bound of ¢’n?

We now turn to providing an upper bound for ¢p(G)/ce(G). We are able to do
little here other than some delineation of the problem. We have seen in Section 2
that if G has n vertices we can have cp(G)/cc(G) = ¢&n’. How big can it get? It is
already known from [3] that 1=cc(G)=cp(G)=in". If cc(G)=1, then also
cp(G) = 1 so we need consider only cases with 2 =< cc(G). Hence, we already see
that cp(G)/cc(G) = in®. The following proposition improves this result slightly
for large enough n.

Proposition 1. If G has n vertices, and n is large enough cp(G)/cc(G) < sn’.

Proof. If cc(G) = 3, we are done, Thus we can suppose cc(G) = 2 and must show
that cp(G) < in”. In fact, we do better: we obtain cp(G) < in”.

Since cc(G) =2, G can be covered by two cliques K, and K, intersecting in a
clique K,; a+ b — ¢ =n. Suppose for concreteness that a <b. If ¢ = in, cover K,
with 1 clique and partition G — K, =K, — K, with ¢*+0(c?) cliques. Since
c?=4n?, for n large enough cp(G) < §n? as desired.

If ¢c=>14n, then let c=4n+x for x>0. Since a<bh, a—c=i(n—cy=in—1ix,
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and therefore ¢ > 1a. By [7] K, — K, can be partitioned by exactly 3(a — ¢)(3c —
a+1) cliques. Also, there are (a —c)c edges between K, and K,_. (the clique
with vertices in K, not in K.). We will consider two clique partitions of G: (1) a
clique partition of K, — K, along with the clique K;, and (2) the edges between
K. and K,_,. along with the clique K, and K,,__. If either of these partitions has at
most 4n* elements, the proof is complete. Thus, we need one of the following
inequalities to hold.

G-2)G+5+)
_

‘ d 1% (1)
CEICNIES:

The inequality (2) is satisfied for [x — }n| <2, and the inequality (1) is satisfied for
the remaining values of x. This completes the proof of the proposition. [

4. A clique minus a matching

In [6] Orlin defines T:, (not a tree) to be the graph obtained by deleting a
perfect matching (a set of n edges, no vertex on two of them) from K,,. He asks
about clique coverings and clique partitions of T.,. In [5] Gregory and Pullman
establish that cc(T:,) =logn; in [4] Gregory et al. show that cp(T,) =n forn =8
and that asymptotically, cp(T,) =n loglogn. The last upper bound is proved by
methods strikingly similar to those in the previous section.

We here offer bounds on cc(7),) obtained by methods motivated by the
heuristic discussion in [6]. These results are less precise than those in [5], but may
be easier to visualize.

In order to discuss clique coverings of 7,, we need some notation for the
vertices. Suppose m = in; T, will be considered to have vertices g, and b, for
i=1,...,m. All edges are present except the edges from g, to b, for
i=1,...,m. Note that no clique in a covering can contain an @, and the
corresponding b; but that there must be cliques containing each a;, b; pair with
i #j as well as ones containing each a;, a; pair and each b,, b, pair.

Theorem 3. For all n, cc(T,) = (logn) — L.

Proof. Clearly T, cannot be covered by one clique. Given i}, there must be a
clique in the covering containing @, and b;; that clique cannot also contain a;.
Hence, for each i #j, there is a clique containing a, but not a;. But it thus follows
easily that there are at least log(3n) cliques. (There is a clique containing a; but
not a,. Since there are in a's, this clique either includes at least in a's or
excludes at least {n a,'s. Choose the larger such set—the included or excluded
a;/'s—and find a clique separating two of them. Continue log(3n) times). O
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Theorem 4. For all n, cc(T,) = 2(log n).

Proof. We construct an explicit clique covering. For each a; write our the
subscript i as a binary integer of log(4n) digits (e.g. 0001, 0010, 0011, 0100, . . .).
If 4n is a power of two, code the last i as 0000 to avoid the need for an extra digit.
Clique A, will include all a; for which the kth digit of i is a 1, and all &, for which
the kth digit of i is 0. Clique B, has the vertices not in A,. Since if i #J, { and |
differ in at least one binary digit, the edge from &, to b, is in at least one A, or B;.
Finally, add a clique containing all the a; and a clique containing all the b;; this
yields a complete clique covering having at most 2(log(3n)) + 2 cliques. O
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