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GENERATION OF ALTERNATING GROUPS
BY PAIRS OF CONJUGATES

L . B . BEASLEY (Logan), J . L . BRENNER (Palo Alto), P . ERDŐS (Budapest),
M. SZALAY (Budapest) and A . G . WILLIAMSON (Haywards Heath)

Abstract

Considering the conjugacy classes of the alternating group of degree n, those
classes that contain a pair of generators are in the majority . In fact, the proportion of
such classes is I - e(n), and e(n) - 0 as n

1. Introduction

In this article, we obtain the following result for the alternating groups
Alt (n) :

The proportion of eonjugacy classes in Alt (n) that contain a pair of genera-
tors approaches 1 as n - c--- .

In Section 2 we give a quick proof of a weaker form of this asymptotic
result . In the weaker form, "n - . o" is replaced by the condition "n increases
through some set Zo that has density 1 in the set Z of all integers" . The argu-
ment uses results of Erdős, Lehner, Cameron, Neumann and Teague ([9], [5])
together with a combinatorial construction .

The strong form of the theorem is proved in Section 3 .
Some results from number theory needed in the proofs are established

in Sections 2 and 3 .
The number of classes involved in the construction in Section 3 is large

enough to constitute an overwhelming majority in the set of all classes (as we
show). It is reasonable to suppose that many more classes contain a pair of
generators . ']'his is indeed true ; the proof would be too intricate to include,
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since no uniform arguments seem to be available . On the other hand, although
the discussion in Section 3 is not limpid in its simplicity, the argument does
use a single technique .

2. A preliminary result

We first recall a theorem, due to P . Erdős and J. Lehner, concerning the
number of summands in a partition .

2.01 . THEOREM [9] . Denote by p(n) the number of unrestricted partitions
of a positive integer n and by p k(n) the number of partitions of n which have at
most k summands . If

then

k = C - Ln 112 log n + xn1/ 2

lim pk(n) = exp [-2C -1 exp (112)Cx]

p(n)

as n --> o. Here C = n (2/3) 112 .

2 .02 . COROLLARY . If p (l) (n) denotes the number of partitions of n such that
the average size of a summand is at least l and 1 < l < n 112/log n, then

cl) n
lim p ( ) = 1

p(n)
as n - .

PROOF. 2.01 yields that, for almost all partitions of n (i .e . with the
exception of o(p(n)) partitions of n, as n , oo), the number of summands is

(1 + o( 1))C-Ln L/2 log n ,

consequently the average size of a summand is

We also recall a result of P . J. Cameron, P. M. Neumann, and D . N.
Teague

2.03 . THEOREM [5] . The number of integers n that can be the degree of a
primitive group contained properly in Alt (n) is vanishingly small . 1Ylore precisely

(1

in almost all partitions of n.

CnI1 2 n112

log n
0(1))

log n



if T(no ) represents the number of such values of n < no , then lim T(no)/n o = 0
as n o - oo .

We emphasize that Theorem 2.03 heavily relies on the classification of
finite simple groups .

For the symmetric groups Sym (n) we assert :

2.04 . THEOREM . Let C be a class in Sym (n) of type
T = le(1)2e(2)3e(3) . . . .

If T is not the type of an involution, and if the relation

which cannot be true .

Now we need information concerning the classes in Alt (n) .
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e(9) ~
n
2jZt

holds, then C contains a pair o f elements that generate a primitive group .

PROOF. Let

a = (1, 2, . . ., k,)(k, + 1, . . ., k 2) . . . (kr_, + 1, . . ., k,)(kr + 1) . . . (n)

be a member of C, where the cycles are of decreasing length . By assumption,
a is not an involution, hence k, is at least 3 . Take an involution

i = (1, 2)(k,, k, + 1) . . . (k,-,, k,-, + 1 )(il, k, + 1) . . .

	

n),

where i l , . . ., Zn_k, S kr are such that the transpositions in t are pairwise
disjoint. Such a t exists, since the is can be chosen from k, - 2r elements and
by assumption we have 2(r + n - k,) < n, so n -- k r < k, - 2r . Now take
b = tat E C. The group generated by a and b is easily seen to be transitive .
It contains ab = (at) 2 . We have

a(1, 2)(k1 , k1 + 1) . . . (kr-t, k,-, + 1) _

_ (1) (2, . . ., k, - 1, k, + 1, . . ., k2 - 1, k2 + 1, . . ., kr_l - 1, kr_1 + 1, . . .

. . . . kr,k,-,,kr-2,---,k2,k,),
and by induction on n - kr one can easily check that, at fixes 1 and permutes
all other letters cyclically . To see that (a, b> is primitive, suppose if possible
that 0 is a nontrivial set of imprimitivity that contains 1 . Since ub = (at)2
fixes 1, and since (b contains elements in another cycle of ab, it follows that

-- 1

	

n
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2.05 . LEMMA [7] . The number of classes in Alt (n) (n > 1) is equal to
a,, + fl,,, where a„ is the number of partitions of n in which the number of even
parts is even, and fl,, is the number of partitions of n into unequal odd parts .

REMARK . If the orbits in a permutation P have odd and unequal length,
the permutation (12)P(12) has the same type as P, but is not conjugate to P
inside Alt (n) . [P(12) is conjugate to P in Sym (n).] This explains the term & .

Except in the above case, two permutations in Alt (n) are conjugate if
they have the same type. (See [7] .)

2 .06. LEMMA . Let ri„ be the proportion of classes

T = V(1)2'(2)3e(3) . . .

in Alt (n) [Sym (n)] (n = 2;j • e(j)) such that

e(l) > I (j - 2)e(j)j>l

(Thus 1 - ri„ is the proportion of classes in Alt (n) [Sym (n)] such that f e(j)
< n/2 .) Then 71„ -- 0 as n -i -~ .

	

j- l

REMARK . 'n„ is not the same for Alt (n) and for Sym (n) .

PROOF. The classes with e(1) < E . . . are precisely the classes in which
the average size of the orbits is >2 . Apply Corollary 2 .02, Lemma 2 .05, and
an + Pr, - ( 1/2)p(n) . (See [7] .)

As a consequence of all the above results, none of which required the
expenditure of great effort on our part, we come to the following conclusion
(the number of involutory classes in Alt (n) is also negligibly small : [n/4]) :

2 .07 . THEOREM . Let 1 -- e„ be the proportion of classes in Alt (n) that
contain a pair of (conjugate) elements that generate Alt (n) . Then as n - -
through a certain set 2 ;o of integers that has density 1 in the set of all positive
integers, the relation lim F n = 0 holds .

It will take considerably more effort to strengthen this last theorem to
one in which 2,;o is replaced by Z, the set of all integers .

We conclude this section with an argument that shows how the stronger
conclusion (with Z in place of 2 ;0) follows .

In Section 3 we shall show that almost all partitions of n have a sum-
mandthat is > 1 and relatively prime to the other summands (see Theorem 3.04) .

To see flow this fact could he used we recall a theorem of Williamson .
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2.08. THEOREM [16] . If a primitive permutation group G of degree n con-
tains a t-cycle (a permutation of type 1"-ít', t > 1) then G contains Alt (n)
unless t i (n - t) 1 .

If t is a summand in a partition T of n, and if t > 1 is prime to the other
summands, then any permutation of type T generates a t-cycle. If, in addition,
such a value t satisfies t > (n - t) !, then t is exponentially close to n . (If
n = 1000, then t > 994.) Thus the number of summands in the partition T is
extremely small : o(log n) . Such partitions are (asymptotically) in the minority,
by the theorem of Erdős and Lehner, see 2.02. Thus 3.04 will yield 3 .05 .

3. The main theorem, and some lemmas from Number Theory

3.01 . LEMMA [7] . The number a(n) of conjugacy classes in Alt (n) satisfies

lim a(n) = 1/2
P(n)

asn -roc.

We remind the reader of the asymptotic formula of Hardy and
Ramanujan (see [1]), according to which

p(n) -v 4 -13-1 /2n -I exp (7r(2/3)Ij2n1/ 2~ .

This gives at once the following

3 .02. LEMMA . For j = o(n 1 / 2 ), we have

lim p(n - 9) = 1
p(n)

as n - ->c .

3 .03. DEFINITION . A partition of n has a prime part if (at least) one of
its summands is 1 and is relatively prime to the other summands . The
symbol p( o) ( n) denotes the number of partitions of n that have a prime part .

3 .04 . THEOREM . Almost all partitions of n have a prime part, that is

263
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PROOF . The proof relies on a result of Erdős and Turán . See the italicized
theorem on page 6 of [11] .

Set

	

m = [n l/5] ,

l,i = Mk= 1
m(m+1) .

k=l

	

2

Then (from 3.02) p(n - l„) - p(n), so that almost all partitions of n contain
every one of the summands 1, 2, . . ., m. Using the conjugate partition (in
the dot diagram) this means that almost all partitions n = Ed,, al a2

. . .

	

of have the property that

al > a2 ] . . . > am > am+l > . . . - o f .

Now we refer to some other known results . The asymptotic estimate

11Wal -~- - 	V ?a log n2
T

for almost all partitions appears in [9] . Also, by [14] for almost all partitions,

am V 6 U n log Ifn< (1 - S)2 V n log n

for any 6 near 0 (and sufficiently large n) .
Now let e(P) denote the largest prime factor of the period (order) o(P)

of the permutation P, i .e . o(P) = lcm [al , a2 , . . .] . (By [11],

o(P) ~/ 6n
log n
2a

for almost all partitions .) Then Q(P) divides some one of al, a2 , . . ., say

2(P) I at,, .

The asymptotic result on a,,, shows that i o < m = [nl 1s] ; therefore the prime
q(P) = a,,, occurs just once and it is relatively prime to the other summands
(in the case of almost all partitions) .

3.05 . THEOREM . Let 1 - s„ be the proportion of classes in Alt (n) that
contain a pair of generators . Then s„ -> 0 as n -• oo . (In other ?cords, - 100
percent of all classes contain a pair of generators .)
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PROOF. The truth of this assertion follows from 2 .04, 3.04 with a small
amount of additional argument . By Lemma 2 .06, Theorem 2 .04 says that
almost all classes contain a pair that generate a primitive group ; and from
3.04 it is clear that a single cycle is almost always contained in this group .

Let t be the size of this cycle . We recall Theorem 2 .08 (of Williamson)
If a primitive permutation group G of degree n contains a t-cycle, then G contains
Alt (n) unless t > (n - t) ! . The exceptional case t > (n - t) 1 is the only
sticking point to completion of the proof .

Now if t > (n - t) 1, then the permutation P has type al a2 Z . . .,
with a l = t . (Here t is the prime a, a mentioned in the proof of 3 .04.) In the
extreme case a2 = . . . = 1, P has only n - t + 1 orbits; in any other case
(with t > (n - t) !), P has even fewer orbits . Note that n - t must be a very
small number here ; certainly if S > 0, is given, there is an na so large that if
t > (n - t) !, n > no , then n - t < S log n . This last assertion follows from
any (weak) form of Stirling's formula. One of the results of [9] is that a par-
tition with so few summands is rare . Theorem 3 .05 is proved .

We note that when t is a prime S n - 3, the conclusion also follows
from a theorem of Jordan (see [15], Theorem 13 .9). For some partitions,
Williamson's theorem goes further than Jordan's so we give some comple-
ments to our main theorem 3 .05 .

3 .06 . TF[EOREmI . Let P be a permutation of arbitrary type in Alt (n) . Then
it is true with probability 1 - e;, that an involution T exists such that <P, T>
D Alt (n) ; moreover e,,

	

0 as n --. c .

In other words, almost all type can generate Alt (n) or Sym (n) with
the help of a mate of period 2 . (This explains work of G. A. Miller [13], H. R .
Brahana [4] . See also H . D. E . Conder [6] .)

PROOF . The construction of 2 .04 used only involutions ; and <P, TPT>
is contained in <P, T> .

3 .07 . THEOREM. The proportion of permutations P in Alt (n) such that
for some involution T (depending on P) the relation <P, T> Alt (n) holds is
1 - s*, and E* --, 0 as n - > ,o .

PROOF. For an analogue of 2.06 we can use V . L. Goncarov's theorem [12]
(cf. [10]) that, for almost all permutations of degree n (i .e . with the exception
of o(n !) permutations), the total number of cycles in the canonical decompo-
sition is

	

log n. Next, instead of 3.04, we can apply J . D . Dixon's result



266

	

BEASLEY et al .: GENERATION OF ALTERNATING GROUPS

([8], Lemma 3) (cf . [2], [3]) that almost all permutations of degree n have,
for a suitable prime q E [log- n, it - 3], exactly one cycle of length q and all
other cycles of length relatively prime to q .

We remark that we do have a proof of the main theorem using only
combinatorial arguments . In this proof we bypass theorem 3 .04. The alter-
native proof is straightforward, but lengthy .

We can prove that if C is a class in Sym (n), n > 6, C is not an involutory
class, and if C has no fixed points, then C contains a pair of elements that
generate Alt (n) or Sym (n) . We do not go into details since the number of
classes in Sym (n) with e(1) = 0 is only

p(n) - p(n - 1) 1/ 6n p(n) .

Let 1 - e" be the proportion of classes in Sym (n) that contain a pair
that generates Alt (n) or Sym (n) . The proof of Theorem 3.05 yields that
e°,- 0asn---•- .

The rate at which en 0 (as an infinitesimal in n) remains to be investigated .
It is probable that there exists a positive constant c such that, for sufficiently
large n,

en <exp -	
cnl/ 2
log n J

owing to the prime "prime parts" close to n1/2 . We prove only the following
lower estimate .

3.08 . LEMMA. The infinitesimal e,', does not approach 0 any faster than

(1 + 0(n-i/21og 2n) n 1 /2 121 / 2~ -i exp -(2 21!2)
n1/2,,r
61/2

í
^: 31/2.Z-1nl ./2 p(n/2) .

p(n)

PROOF . First we establish the claim that if a class has more than (n +
+ 1)/2 orbits, the class cannot contain a pair of generators of a transitive group .
Suppose that the type is l e(1) 2 e(2) . . . . Then any element of the class can be
written as a product of X1>2 (j---1)e(j) transpositions. If we assume that the
number of orbits

k = ~] Z1 e(9) >
n

2
	 1
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then the number of transpositions in the factorization of a member of the
class is n - k < (n - 1)/2, hence the subgroup generated by two members
of the class is contained in a subgroup generated by 2(n - k) < n - 1 trans-
positions . As it is well-known, at least n - 1 transpositions are needed to
generate a transitive group, thus no two members of our class can generate
a transitive group .

Now set p k (n) = number of partitions of n with at most k parts. Then
p k (n) = number of unrestricted partitions of n into summands not exceeding
k, according to the dot diagram for each such partition . We need the theorem
of Hardy and Ramanujan (see [1]), according to which

(3.09)

	

p(n) _ (1 + 0(n-1/2)) (4 -1n -13 -1/ 2 exp (n(2/3)1/2n1/ 2)) .

Set C = n(2/3)112 . Then, for k > n/2,

(3.10)

	

p(n) - pk(n) _ Z pj(n -
k<jGn

	

k<j5n

From (3.09), it can be seen that if t = 0(nl12log n), then

(3.11)

	

p(n - t = ( 1 + 0

	

log 2n)) exp	Ctn- 1/2

p(n)

	

2

	

1

Now use the value k = (n + 1)/2, and set

and take

(n - j) 1/ 2 log (n - 9)]

j=[k]+1=2+0(1),

(greatest integer) . Using p(n) < p(n + 1), (3 .10), (3 .11), it is seen that the
conclusion of the lemma follows from the analysis below :

p(n-7) ~1 + (1 +0(n-1121og 2n))

	

exp(- t - 6-112(n _ j ) - 112) + 0(n-1)1 =
PM

	

t=]

PM - pk(n) _ p(n - 9) A - s) 0(n) P( ] ?, - j - i)

p(n) p(n)
+

s= p( - j)

	

p(n - 9)

- An - i) ~1 +

	

An 9 t) + 0 (n-, ) 1 =
P(n) i=1 p(n - j)
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1 +0(n -112 log 2n)) p(n-j) { - exp (- n6-11 2(n - j)-112)}-1 =

(1 + 0(n-1/ 2 log2 n))6 1J 2(n - j)1/2n-1 p(n- j)

p(n)

because of (3.09), this is equal to

(1 + 0(n-1/2 log 2n))61/2(n - j)1/ 2n-in(n - j) -1 exp (- Qn1/2 - (n - j)1/2))

- (1 + 0(n-1/ 2 log 2n))61/2n-1(n/2)112 . 2 - exp (- Qn112 - (n'2)1/2)) -

(1 + 0(n-1/2 log 2n,))nl/212 1/2n-1 exp (-(2 - 21/ 2)nl/ 2n/6 1 / 2) .

We thank G. E. ANDREWS for helpful correspondence and p" for simpli-
fying the presentation at some points . 1
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