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BOUNDS ON THRESHOLD DIMENSION AND
DISJOINT THRESHOLD COVERINGS*

PAUL ERDOSH, EDWARD T. ORDMANtE anp YECHEZKEL ZALCSTEING

Abstract. The threshold dimension (threshold covering number) of 4 graph  is the least number of
threshold graphs needed to edgecover the graph &, If ¢ (n) is the greatest threshold dimension of any graph of
mvertices, we show that for some constant A,

n—Al"r_angu{lc{n}{n—‘!"r_i+l.

We establish the same bounds for edge-disjoint coverings of graphs by threshold graphs {threshold partitions).
We give an example to show there exist planar graphs on n vertices with a smallest covering of An threshold
graphs and a smallest partition of Bn threshold graphs, with 8 = 1.54. Thus the difference between these two
covering numbers can grow linearly in the number of vertices.
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1. Preliminaries. By a graph & = (I, £) we mean a finite set V of vertices and a
collection E of edges: distinct unordered pairs of distinct vertices. A subgraph of a graph
G 15 a subset ¥* of " together with a subset I of £ that consists only of edges between
vertices of V. An induced subgraph of a graph is a subset of the vertices together with
all edges of the original graph that connect those vertices. For further notation see [6].

If x is a vertex of a graph G, the star of x is the subgraph consisting of x, the edges
containing x, and the other vertices contained in those edges. A srable ser of vertices
(also called an independent set) is a set of vertices which induces no edges. A dominating
set of vertices is one such that every vertex in the graph is connected to at least one of
them by an edge. If a single vertex is a dominating set, it is called a dominating veriex,
To build a cone on G means to add a new vertex to I and connect it to all other vertices
by edges.

Threshold graphs were introduced in [2], [3], [8]. A graph is a threshold graph if it
meets one of the following equivalent conditions:

a) It does not have as an induced subgraph a square (C,), two disconnected edges
{2K5) or a path of three consecutive edges (Py).

b} The vertices can be labelled with integers /v), and there is an integer constant
t (the threshold) such that a set {vy, vy, ---, v} of vertices is stable if and only if
o)+ - + i) <t

¢) The vertices can be labelled with integers /(v). and there is an integer constant ¢
(these numbers may be different than those in (b)) such that any two vertices x and v
are connected by an edge if and only if /(x) + () = 1.

d) Every induced subgraph of &, including ¢ itself, has at most one nontrivial
component (there may be isolated vertices) and this component has a dominating vertex.

Since every edge of (7 is, taken by itself, a threshold graph, every graph ¢ may be
covered by threshold graphs. The smallest number of threshold subgraphs (not necessanly
induced subgraphs) of 7 that cover & is called the threshold dimension of G, we will also
call it the threshold covering number of & and denote it by tc (). From an applied
perspective, tc ((7) is the smallest number of semaphores needed to synchronize a system
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of parallel processes definable by the graph & using PV-chunk synchronizing primitives
[B]; alternatively, it is the smallest number of 0-1 simultaneous linear inequalities which
can replace such a system of linear inequalities represented by & see [3], [7], or [6, Chap.
10]. For other prior results on tc (), see [3].

Two subgraphs of G are called edee-disjoint (or simply disjoint) if they have no
edges in common. Since the covering of a graph @ by its edges is a covering by disjoint
threshold graphs, it follows that for every graph there is defined a unique integer tp (G},
the disjoint threshold dimension or threshold partition number of G, the smallest number
of edge-disjoint threshold graphs that wall cover .

Since every threshold partition is a threshold covering. tp () 2 tc (@). One goal of
this paper is to begin exploring the questions, when is tp (&) = tc ()! How different can
they be? For example, for some corresponding results for clique coverings and clique
partitions, see [1].

It should be noted that while it is easy to determine if (7 is a threshold graph (that
is, if te (&) = 1), determining tc () is in general NP-complete [3]; in fact, it is NP-
complete to test if tc (G) = 3 [10] or even if tc (G) = 2 [4].

LemMMa 1. If G is a triangle-free graph, te (G) = tp (G).

Proof. As observed in [2], if & contains no triangle, every threshold graph con-
tained in & is a star. Suppose G is covered by k stars S, Sz, ++ -, 8. Define 87 = §,
S5 =5 — 5, and in general 8} =85, — (5;U --- US;_ ) for j = 2 to k. Clearly the
various S are disjoint stars and cover , 50 tp () = tc (&) as required.

2. The size of a required threshold covering. In [3], Chvatal and Hammer raise the
issue: how big need tc () be? They prove [3, Thm. 3] that if o{(r) is the size of the largest
stable set in a graph G with n vertices, then tc (G) = n — a(() with equality holding if
(7 is triangle-free (and in some other cases). They also observe [3, Cor. 3A] that for every
positive £, there 15 a graph G on n vertices with te (G) > (1 — &)n. In fact, the proof of
their Corollary 3A shows more than this. We restate it as follows:

THEOREM 1. There is a constant A such that for large enough n there is a graph G
with n vertices and

tp () =te (G)>n— A Vn log (n).

Progf. In [5]. Erdts shows that for a sufficiently large fixed constant 4, there is an
integer N such that for 7 > N there is a graph G on n vertices with no triangle and with
no stable set of 4 Vn log (n) vertices. Thus tp (&) = te (&), and

(Gy<AVnlog(n) and tc(G)>n—AVnlog(n)
as desired.
This shows that there are graphs with relatively large values of te (). We now turn
to improving the upper bound on tp ((7).
THEOREM 2. Lef G be an arbitrary graph on n vertices. Then

tp(y<n—Vn+1.

Proof, Suppose there is a stable set 4 in & of size Vn or larger, Then Theorem 3 of
[3] points out that the stars on ¥ — A provide a covering of & by no more than n — Vn
threshold graphs; Lemma | above shows how to make this a threshold partition.

Now by contrast suppose that no stable set in & has as many as Vn elements. Pick
a vertex z in G; let x;, -+ -, x; be a maximal stable set in the star of z; hence k < Vn.
For each x;, in turn, we construct a graph T} consisting of all edges starting at x, together
with any triangles including the edge (z, x;); omit from this any edges included in a
previous T; to keep the 7's digjoint. (To see that T; is threshold, use definition (¢). Label
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x; with 4; z with 3: any vertex which neighbors z and x; but no previous x;, j < i, with
2; other points adjoining x; with 1. Let f = 5.)

We have now constructed k edge-disjoint threshold graphs which cover the union
of the stars of the k + | vertices z, xy, - - - , % Delete the covered edges from G. This
eliminates at least k + 1 vertices. Since it deletes an edge only when deleting at least one
vertex on it, the reduced graph G’ cannot have a bigger independent set than & had.

Reduce ' by choosing a new z. At each stage, we eliminate & + | vertices by
covering them with k threshold graphs;

and the total number of graphs needed to cover all n vertices is not greater than
nVn
Vn+1

which completes the proof of Theorem 2.

We now let tc (#) denote the largest tc (G) for any ¢ with n vertices; tp () is defined
similarly. The above results show that

n—AVnlog (m) <te (n) <n—Vn+1

<n— ﬁ+l

and
n—AVnlog(m)<tp (M<n—Vn+ 1.

It remains of interest to tighten these bounds, and to know whether the limits for tc (n)
and tp (n) are actually the same. A private communication from Jianos Pach [9] improves
the upper bound in each case to n — Vn log n for triangle-free graphs only,

3. The difference between tc () and tp (G). Since the bounds we have established
for tc (&) and tp () are identical, it is reasonable to ask whether te (&) and tp (@) are
ever very different. Our object in this section is to show that tp (G)-tc (G) can grow
proportionally to the number of vertices n in 7, even if & is a planar connected graph
or a very highly-connected graph of low diameter.

We will make heavy use of a threshold graph H constrocted as follows: consider six
vertices x;, *** , Xz and connect x; and x; if i + j = 7. Note that the deletion of the single
edge a0 would make it cease to be threshold since then xsoxxx; would be an in-
duced path.

Exampie 1. Let G,y be the graph made by taking two copies of H and identifying
the two copies of xp, X3, and the edge between them. This graph is shown in Fig. 1; it is
planar. Clearly te (Gyg) = 2, since it is covered by two copies of H. The reader may verify
that tp (i0) = 3: two graphs in the partition are a copy of i and a path x;x3x,. The
proof that there is no partition into two threshold graphs hinges on the fact that Xy
would have to be in the same graph as one “wing"” x,x; the side of Gy lacking x3x;
cannot then be covered by one threshold graph.

The reader may also wish to verify that &y is a critical example; deleting an xx
from Gy results in tc = tp = 2, deleting any other edge yields tc = tp = 3.

The graph ;5 may be used to build vanious examples in which the difference between
tc () and tp () grows linearly in the number of vertices or edges of &, For example, if
" is the disjoint union of r copies of Gy, tp (G7) = 3rand tc (G") = 2r. This example
may be made planar and connected by joining successive copies iy together at the
“wingtips™ (identify an x; of one (7;; with an x; from another). To build more highly
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Fic. 1, The graph G,

connected (but nonplanar) examples, we use the following lemma motivated by a dis-
cussion with V. Chvatal:
LEmMA 2. Ler & denote the cone on the (arbitrary) graph G. Then

w(G)=w(&) and p(G)=1p(G).

Proaf. Any threshold covering of G induces a (no larger) threshold covering of G
since an induced subgraph of a threshold graph is a threshold graph. Given a (disjoint)
threshold cover of 7, we obtain a (disjoint) threshold cover of G' by picking any threshold
graph D in the cover of (¢ and enlarging it to include the new vertex of ' and its star in
(v, That the enlarged D remains a threshold graph is easily seen by definition (d) of
threshold graphs; the new vertex of ' is a dominating vertex in the enlarged version
of 0.

Using this lemma, we can create an arbitrarily highly connected graph with
tc = 2r, tp = 3r, by taking " and erecting a cone on it as many times as desired (that
is, add 5 new points all connected to all original points and each other, to make it
S-connected).

It is now clear that there is a constant ¢, such that a graph & on n vertices can have
ip (&) — te {G) = ¢n. How big can ¢; be? Example (ryp shows it can be at least jjﬁ.. What
upper bound can be put on tp (G) — te (G)? We know it cannot exceed n — Vn — 1, but
we helieve this can be improved. Finally, can tp (G)/tc (G) ever exceed 37 If so, how big
can it be?
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