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1. INTRODUCTION

Let A be a strictly increasing sequence of positive integers. Let 24 denote
the set of all integers of the form n = a + &', where a,a’ € 4. If ne 24 for
all sufficiently large n, then A is an asymptotic basis of order 2, or, simply,
a basis. Let r,(n) denote the number of representations of n in the form
n=a+ a,where a,a' € 4 and a < a'. An old conjecture of Erdds and Turan
[2] states that if A is a basis, then r (n) is unbounded. Let

S,n)={aeAln—ae A ns2a}

denote the solution set of n. Clearly, S,(1)=S8,2)=& and S,n <
[1,n — 1]. Let |S| denote the cardinality of the set S. Then

2r 4(n) if nf2¢A
IS 4(m)] = N - y
ran)—2 if nf2e A
Let Q denote the space of all strictly increasing sequences of positive in-

tegers. Let p(1),p(2)....,p(n).... be any sequence of real numbers in the
unit interval [0,1]. Let

E,={AeQ|ne 4}
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denote the set of all sequences A € Q that contain n. Erdds and Rényi [1]
constructed a probability measure g on € such that

(i) W(E,) = p(n), and
(i) the events E,, E,,... are independent.

Choosing p(1) = £ and p(n) = «((logn)/n)*'* for n = 2, they proved that for
almost all 4 € Q there exist constants 0 < ¢ < ¢’ such that

clogn < ryn)<c'logn

for all sufficiently large n. This result solved a problem of Sidon [5], who
asked if there existed a basis A such that
lim r (n)/n* =0

for every ¢ > 0. Halberstam and Roth [3] contains a careful exposition of
the Erdos—Rényi method.

In this paper we consider probability spaces Q defined by a sequence of
real numbers p(n) & [0, 1] satisfying the following condition: There exist real
numbers z, f,7 with « > 0 and

i<y<i m
such that

B
P()_ﬂ‘.)_gM (2)

for all n > 1. We shall prove that for almost all sequences A € £ the solution
sets S 4(n) are “independent” in the sense that |S ,(m) N S ,(n)| is bounded for
all n > m, If p(n) satisfies (1) and (2), then for almost all 4 € Q and for all
but finitely many pairs (m,n) with n > m,

S4m) N S (m)| < 2/(3y — 1)

In particular, if p(1) = 4 and p(n) = 2((logn)/n)*”? for n = 2, then y = { and
|S 4(m)| > clogm, but

[Salm) v S4(n)] < 4

for almost all 4 € Q and for all but finitely many pairs (m,n) with n > m.

2. NOTATION

We use the following notation. Let m and n be positive integers withm < n.
Suppose

T = 84(m) 0 §4n) &)
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and |T|=1. Then TE[l,m—1]. I beT, then m—be 4 and n —be A
Also, b # m/2 and b # n/2. The set T determines three subsets U, V, W of
[1,(m — 1)/2] in the following way:

U={ae[l,im—1)/2]|ae T,m —a¢T)

S8 [ cou— i 4)
V={ae[l,m—1)/2]laeT,m—ae T}

= {l s ik (5)
W=lae[l,(m—1)2]|la¢ T,m—ae T}

= {a‘al-v-ll+ll""al+l>+w}! (6)

where |U| = u, [V| = v, and |W| = w. The sets U, ¥, W are pairwise disjoint
and determine T, since

T=UuVu{m—alaeVu W} (7)

Clearly, |[T| =u+ 2v 4 w,
The sets U, ¥V, W determiné three new sets X, Y, Z, Define

X=UuVuW

={a1,82,. - 8yryrn) (8)
Then |X| = x = u+ v+ w, and X < [1,(m — 1)/2]. Define
Y={m—dlaeX) ©)
Then |Y| =xand Y € [(m+ 1)/2, m — 1]. Define
Z={n—blbeT) (10)
Then |Z|=tand Z=[n—m+ 1,n — 1]. Clearly, X n ¥ # & and
XuYuZcA (11)

Conversely, let X = [1,(m — 1)/2] and let X = U u ¥V u W be a partition
of X into three pairwise disjoint sets. Define T, Y, Z by (7), (9), (10). Then
TcSmnS,mifandonlyif X v YU Zc A

3. RESULTS

TueorReM 1. Let Q be the space of all strictly increasing sequences of posi-
tive integers with the probability measure u defined by a sequence p(n) satisfying
(1) and (2). For almost all A€ and for all but finitely many pairs (m.n) of
positive integers with n = 2m,

IS m) A S 4m)] < 2/(3y = 1).
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Proof. Lett > 2/(3y — 1) and n = 2m, Define
pdmn) = p({A e Q“SA(m} m Sn)| = 1}). (12)
We shall prove that

o 2k*im=1

4, im”’"’""}ﬂil.; 3 wimn) < co.

n= 1
Then it follows [rom the Borel-Cantelli lemma that

H({A EQ“SA{m] A 8 4(n)| = t for infinitely many pairs
(m,n) with n = 2m}) = 0.

This is precisely Theorem 1.

First we estimate g(m,n). Fix a partition of the integer t of the form
t=u+2v+w Let x=u-+v+w Let X ©[1,(m— 1)/2] satisfy |X| = x.
There are x!/ulvlw! partitions of X into three pairwise disjoint sets U, V, W
such that |U|=u, |[V|=1, =w. Fix a partition of X in the form
X=UuVuW,and define T.Y,Z by (7), (9), (10). Then (3) holds if and
only if (11) holds. Moreover, every set T satisfying (3) is of the form (7) for
some partition of 7 in the form ¢ = u + 2v + w and some partition of X in
the form X = U u ¥V u W, where X < [1,(m—1)/2] and |X|= x. There-
fore,

plmim) = Y31 FOM{AeR(X w Y0 Za4)), (13)

where }¥ denotes the sum over all partitions of 1 in the form =
u+2v+w Y denotes the sum over all subsets X < [1,(m — 1)/2]
satisfying |X| = x = u + v + w, and } I}, ; denotes the sum over all parti-
tions of X in the form X = DuVuthere}Ul—u =y, |W|=w

Define T by (7). Then the sets U, ¥, W satisfy (4), (5); (6). Define the sets
Y and Z by (9) and (10). Since n = 2m, it follows that n — m + 1 > m, hence
(X v Y)n Z= @, and so the sets X, Y, Z are pairwise disjoint. Therefore,
using (2), we obtain

U{AeQX YU Zc A}

= Ij pa) ljl plm — QJB#P(H —a) __’li[_‘1 pln—m+ a)

x x Il+tJ 1 x 1
A ay2x+1
Sdeaen .Ular;l._[i( —a)*.ﬂ(n-a.)*.qﬂ(n—m+a,}w

Since m — a; > m/2, n — a; > n — m, and n-— m + a; > n — m, we obtain

_cylogin f]

p{AeQ|XvYuZeA)s——— n — )" e @
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This does not depend on the partition of X into X = U u V u W, and so

cylogtn If.l Ik

m'¥n —m)" /=5 af

;m‘u({A eQXuUYUuZcA)<
v.yV.w

Then
c;log'n 2 1

@{2] l‘“[

i=1 a}

o [im=1)/2] x
= c,logtn 5 1
m*(n — m)" = kY
cilogtn

A ——
T mlzv— m(n = m}w

cylog'n
mtz}'— l"(ﬂ - m)-,n

2 YO f4eQXuYUuZec )<
; vFw Mae X wiFy })"m"‘(n—m)ﬂ

since y <4 and x < 1. There are only a finite number of partitions of ¢ in
the form t = u + 2v + w, and so

fm,n) = EI:"?;‘ZJMZ:’M{A €QXuUYUuZc4)

cylogtn
= mf!?‘—l]l{n i M)‘” .

If 2m<n<2'm, then n—m= (2= 1)m and log'n < c"(klogm).
Thus,
ek (log m)’
pdm.n) < ;{:ﬁ:‘ﬁ;m
Finally,

) R e L& & ek (logm) 2m
MZI kzl a"zz;'m ﬂr{m, ﬂ]’ = MZJ. kzl mf3}‘—lll(2k = l}ﬂ
= (logm)f = k2
=Cs Z m(B}l-ljr- 1 kzl (zl == l)yl

m=1

< 0.

Both infinite series converge since y < 4 and ¢ > 2/(3y — 1). This completes
the proof.

THEOREM 2. Let £ be the space of all strictly increasing sequences of posi-
tive integers with the probability measure y defined by a sequence p(n) satisfving
(1) and (2). For almost all A and for all but finitely many pairs (m.n) of
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ositive integers with m < n < 2m,
o

[S.tm) v S g(m)| < 2/(3y — 1).

Proof. Let t>2/(3y — 1) and m < n < 2m. Define plm,n) by (12). We
shall prove that

w  Im—1

Y Y udmon) <.

m=ln=m+1

Then the theorem follows from the Borel-Cantelli lemma.

The argument is similar to that of Theorem 1. We use formula (13) to
estimate p,(m, n). However, since n < 2m, it is possible that(X v Y)n Z # @.
Let us assume that (X u Y) n Z = . Then

H{AEQ|X UYUZCcA4))
= ﬁ play) ﬁ plm — a,—)ul_[up{n —a) ﬁ pin—m+ a;)
=1 i=1 i=1 isutl

< (zlogf 2m)***' []

et
U n—al .I:L;(n-—m-r-d,}
Using the inequalities
m—a; >mj2 for i=mLl....x
n—a;>m2 for i=u+1l,...,u+un
n—a >a for =1 . .1
n—m+a; > a; for i=u+l...,x

we obtain

> ¢, log'm =
,!I('{AEQIXU}UZEA}):’:IMF Da,"

Therefore, by (13),
plmn) =YOY@ YO f4eQX uYuZz4)
] X Uvr.w

écz Iog‘m ([(m—n,r:] L)'

m" =i kl}'

cylogm
= v
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Finally,
o 2m=1 = log‘m
F]";”Fr(m,n) < cam; T <

since t > 2/(3y — 1). The proof in the case (X v Y) n Z # & is similar.

Theorem 1 and Theorem 2 are useful in the study of extremal sequences
in additive number theory. For example, they provide a proof of the existence
of minimal bases. An asymptotic basis 4 of order 2 is minimal if no proper
subset of A is a basis. This means that for every a € A there are infinitely
many positive integers n such that n ¢ 2(4\{a}). It is not true that every basis
contains a subset that is a minimal basis [4]. However, the following result
gives a simple criterion for a basis to contain a minimal basis.

THeoREM 3. Let A be a strictly increasing sequence of positive integers such
that

(i) lim,_,r,(n) = o,
(ii) |S4(m) v S4(n)| is bounded for all m < n.

Then A contains a minimal asymptotic basis of order 2.

Proof. Let |S (m)n S,(n)| <d—1for all m < n. Define
Pnmy={aecA|n—aecAandazn/2}

Then P,(n) = S 4(n) u {n/2}. Fix n, so that r(n) > d for all n > n,. Choose
af€ A. Let a, e A satisfy a, > max(a},2n,). Let m, = af + a,. Then
a, € P,(m,) and af ¢ P,(m,). Define

Ay = AN(P ((my)\{a,}).

Then a,,a} € 4, and so m, = a} + a, € 24,.
Let n = n, and n # m,. Since

ANAy € Py(my) = 8 4(my) u {my/2},
it follows that
Pymy) n Syn) = (S40my) n Syn) u {mrf{z};
and so
r4,(n) 2 ry(n) — [(A\A,) 1 S (n)|

= ryn) — IPd(ml) n SA(“H

=ran)—d

=1
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Therefore, ne24, for all n=n,, and so A4, is a basis. Moreover,
m, = a} + a, is the unique representation of m, as a sum of two elements
of A,.

Let k> 2. Suppose we have constructed integers a;, a¥, m,, n, for
i=1,...,k—1andsets A,,...,A,_, with the following properties:

(i) 2ny<my<2my<my<- - <2m_, <m_,;

(i) A=Ag2A, 2 2DA,_,;

(iii)  A,_\A; < [m/2,m];

(iv) a,afed fori=1,....k—1;

(v) mi=af +afori=1,...,k— 1, and this is the unique representa-
tion of m, as a sum of two elements of A;;

(vi) ifn=n,, thenne2A, _,.

We now construct a, af, m,, n,, and A,.

Choose m;, > m,_, such that r,n)>d +m,_, for all n > n, Choose
ay € A, with a¥f <m,_,. Choose a, € A,_, such that a, > 2n, > af. Let
my, = ay + a,. Define

Ay = A NPy )\ ay}).
Then a,,af, my,n,, and A, satisfy conditions (i)—(v).

We must show that n e 24, for all n = n,. Since A, _,\4; = [m/2,m] =
[ne,m,]. it follows from (vi) that n€ 24, if n, < n < ny. Let n = ny, n # m,.
Since A\A, -, < [1,m,_,], it follows that

N € [Lm_ ] w Py, (my)

< [Lme_y]u S,im) u {m/2}.
Therefore,
radn) 2 ryn) — |(ANA) A S ()]

Zrym—m_, —1— |S,4(”‘|:J S8 4(n)]

2r n)—m_, —d

=1,
and so A, satisfies (vi).

Continuing inductively, we obtain infinite sequences a,.af, m,, n,, and A4,
satisfying properties (i)=(vi). Define

A* = ) A
Ifn = n,, then n € 24* and so A* is an asymptotic basis of order 2. Moreover,

m, = af + a, is the unique representation of m, as the sum of two elements
of A%, and so my ¢ 2({A*\ {a}}).
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Here is the key idea for the construction of a minimal basis. In the kth
step of the induction. we could choose arbitrarily af € 4, _, such that
af <m,_,. We make these choices in such a way that if a* € A%, then
a* = g* for infinitely many k. Then for every a* € A there are infinitely many
integers m, such that m, ¢ 2(A*\{a*}). Thus, A* is a minimal basis con-
tained in A. This completes the proof of Theorem 3.

Let Q be the probability space of sequences of positive integers defined
by p(1) =4 and p(n) = x((logn)/n)}* for n = 2. By the theorem of Erdos
and Rényi [1], there exists ¢ > O such that r ,(n) > clogn for almost all 4 € Q
and all n sufficiently large. Theorems 1 and 2 imply that |S ,(m) n S,(n)| < 4
for almost all 4 € Q and all but finitely many pairs (m.n) with m < n. It fol-
lows from Theorem 3 that the sequence A contains a minimal basis for almost
all A e Q.

4. OPEN PROBLEMS

We do not know whether it ié possible to improve the right-hand side of the
inequality
[Salm)  Sun)| < 2/3y — 1)

in Theorems 1 and 2. In particular, with y = 4 and p(n) = a((logn)/n)'/ for
n = 2, we do not know whether |S (m} n S (n)| < 3 for almost all 4 e Q and
all but finitely many pairs m < n. We can prove that for k > 2 and almost all
A €€ there exist infinitely many pairwise disjoint k-tuples m, <+ < m,
such that

S my) n S4my) A e S lmy)| = 2

We do not know whether condition (ii) in Theorem 3 is necessary. It is
possible that there exists a sequence A of positive integers that does not con-
tain a minimal basis but does satisfy the condition lim,_ ., r.(n) = co.
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