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1 . INTRODUCTION

Let A be a strictly increasing sequence of positive integers . Let 2A denote

the set of all integers of the form n = a + a', where a, á E A. If n c 2A for

all sufficiently large n, then A is an asymptotic basis of order 2, or, simply,

a basis. Let r A(n) denote the number of representations of n in the form
n = a + a', where a, a' E A and a < a' . An old conjecture of Erdös and Turán

[2] states that if A is a basis, then rA(n) is unbounded . Let

S A(n)={acAln-acA,n02a}

denote the solution set of n . Clearly, SAM = SA(2) _ 0 and SAW s
[1, n - I] . Let ISI denote the cardinality of the set S . Then

(27 Á(n)

	

if n/2 0 A
IS,(n)I -

2f-A(n) - 2

	

if n/2 E A .

Let n denote the space of all strictly increasing sequences of positive in-

tegers. Let p(1),p(2), . . . . p(n), . . . be any sequence of real numbers in the

unit interval [0, 1] . Let

En = {AcnlncA}
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denote the set of all sequences A e 0 that contain n. Erdős and Rényi [1]
constructed a probability measure p on 4 such that

(i) u(EJ = p(n), and
(ü) the events E„E 2 , . . . are independent.

Choosing p(1) =' and p(n) = a((logn)/n)'/' for n > 2, they proved that for
almost all A e Q there exist constants 0 < c < c' such that

clog n < r A(n) < Clog n

for all sufficiently large n . This result solved a problem of Sidon [5], who
asked if there existed a basis A such that

lim r A (n)/n` = 0

for every c > 0. Halberstam and Roth [3] contains a careful exposition of
the Erdős-Rényi method.

In this paper we consider probability spaces 9) defined by a sequence of
real numbers p(n) a [0,1] satisfying the following condition : There exist real
numbers a, fl, ,j with a > 0 and

3<y<2

	

( 1 )

such that
P(n) < 2logr(n + 1)

	

(2)
nY

for all n >_ 1 . We shall prove that for almost all sequences A e Q the solution
sets S,,(n) are "independent" in the sense that ISA (m) n SA(n)I is bounded for
all n > m. If p(n) satisfies (1) and (2), then for almost all A e Q and for all
but finitely many pairs (m,n) with n > m,

I SA(M) n SA(n)I < 2/(3y - 1).

In particular, if p(1) = z and p(n) = x((logn)/n)'/2 for n >_ 2, then y = 2 and
ISA(m)I > clogm, but

ISA (m) n S A(n)I < 4
for almost all A c- .Q and for all but finitely many pairs (m, n) with n > m .

2. NOTATION

We use the following notation. Let m and n be positive integers with m < n .
Suppose

T S SA(m) n S A (n) (3)
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and DTI =t. Then Ts; [l,m - 1] . If b c- T, then m - b e A and n - b E A .
Also, b # m/2 and b 0 n/2. The set T determines three subsets U, V, W of
[1,(m - 1);2] in the following way :

U=(ae[1,(m-1)/2]IacT,m-a¢T}

W=(ae[1,(m-1)/2]Ia~T,m-aeT}

where I UI = u, I VI = v, and I WI = w. The sets U, V, W are pairwise disjoint
and determine T, since

Conversely, let X s [1,(m - 1)/2] and let X= U v V v W be a partition
of X into three pairwise disjoint sets . Define T, Y, Z by (7), (9), (10). Then
T S S,,(m) n S A(n) if and only if X v Y u Z S A .

3 . RESULTS

THEOREM 1 . Let 4 be the space of all strictly increasing sequences of posi-
tive integers with the probability measure y defined by a sequence p(n) satisfying
(1) and (2) . For almost all A e 92 and for all but finitely many pairs (m, n) of
positive integers with n >- 2m,

IS,q(m) n S,,(n)I < 2/(3y - 1) .

T=UuVo(m-alaeVvW) . (7)

Clearly, ITI = u + 2v + w.
The sets U, V, W determine three new sets X, Y, Z . Define

X=UvVvW

_ (a 1 ,a,, . . ,au,,+ . (8)

Then IXJ = x = u + v + w, and X s [1,(m - 1)/2] . Define

Y = (m - -dfa E X} . (9)

Then IYI = x and Y s [(m + 1)/2, m - 1] . Define

Z=(n-blbeT} . (10)
Then IZI = t and Z s [n - m + 1, n - 1] . Clearly, X n Y

XVYVZgA.

0 and

(11)

_ (a1,az, . . .,0 .),

	

(4)

V = (a E [1, (m - 1)/2]Ia e T, m - a c- T}
{a,,. . . , a„+„},

	

(5)
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Proof . Let t > 2/(3y - 1) and n >- 2m . Define

p,(m, n) = µ({A C 41 IS A (m) n S A (n)I >- t}) .

We shall prove that
b 2--l

F4' n)
= m~

	

n m u,(m, n) < ~ .
=1n=2m

	

=1k=1

	

2

Then it follows from the Borel-Cantelli lemma that

p({A E 4IISA(m) n SA(n)I >- t for infinitely many pairs
(m, n) with n >- 2m}) = 0.

This is precisely Theorem 1 .
First we estimate µ,(m, n) . Fix a partition of the integer t of the form

t = u + 2v + w. Let x = u + v + w. Let X g [l, (m - 1)/2] satisfy IXI =x.
There are x!/u!v!w! partitions of X into three pairwise disjoint sets U, V, W
such that UI = u, IVI = v, WI = w. Fix a partition of X in the form
X = U u V u W, and define T, Y, Z by (7), (9), (10). Then (3) holds if and
only if (I1) holds. Moreover, every set T satisfying (3) is of the form (7) for
some partition of t in the form t = u + 2v + w and some partition of X in
the form X = U v V u W, where X g [1,(m - 1)/2] and IXI = x. There-
fore,

fk(m,n) = C, (3)C'(2) ~aiu({A -nIX u Y u Z g A}),

	

(13)
L

LX U .V .N ,
where S;" denotes the sum over all partitions of t in the form t =

u + 2v + w, YX' denotes the sum over all subsets X g [l, (m - 1)/2]
satisfying IXI = x = u + v + w, and denotes the sum over all parti-
tions of X in the form X = U u V u W, where IUI \u, I VI = v, I WI = w.

Define T by (7). Then the sets U, V, W satisfy (4), (5); (6) . Define the sets
Y and Z by (9) and (10). Since n >- 2m, it follows that n - m + 1 > m, hence
(X u Y) n Z = 0, and so the sets X, Y, Z are pairwise disjoint. Therefore,
using (2), we obtain

pQAc-DIXu YuZgA})

= n p(ai) n p(m - ai)n p(n - ai) 11 p(n - m + ai )

(a log6 n)` Ft
1

	

1

	

1

	

r~ 7

	

1
5

x

j=1a,' n (m - ai) I ; (n-ai)li "1(n-m+a,),
.

Since m - a i > m/2, n - a i > n - m, and n-- m + ai > n - m, we obtain

p(IA Cd2IXUYUZgA})<-
C l logn x 1

mlx(n - m)Y i=1 a,
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This does not depend on the partition of X into X = U v V u W, and so

~( 1 ,uQA e Q 1X u Y u Z s A}) <
c 2 1og n n 1

U,v.w

	

m s(n - m)" ;=1 a,

Then

~1 2> ~ (I) µ({A e 01X u Y u Z s A}) <
c 2 1og n

	

(2

	

l

x U,v,w

	

myx(n - m)y x
y

= 1 a;

	 C2 log' n

	

t(m~)m 1

myx (n - m)y'

	

k=1 kr

	 C3	log` n
< m(2 y -I)x(n - m)"

c 3 1og` n
m(27-1)t( n - m)"

since y 5 and x -< t . There are only a finite number of partitions of t in
the form t = u +2v+ w, and so

µ(m, n ) = J:(3) r(2) ~(1)µ({A -L21X u Y u Z g A})
Lx

.
U, v, w

c 4 1og` n
mar-1)1(n

- m)y`
.

If 2 km < n < 2`m,m, then n - m >- (2k - 1)m and log` n -< c"(k log m).̀

Thus,

Finally,

c s k` (log m)`
µt(m,n)

	

m(3y-1)t(2k - 1) Y .

zk"m-1

	

c 5 k`' (log m)"2 kmZ ~L~.

	

~/~̀ µ,(m, n) < ~~`, ~L~ ,̀	

-1k=1 n=2km

	

m=1k=1
m (3y-1 )lí2k - 1)y~

_

	

~ (logm)` ~`

	

V'2k
- c5 m[_,1 m(3y-1)t-1 k=1 (2k - ly1

< 00 .

Both infinite series converge since y _< i and t > 2/Q,, - 1) . This completes
the proof.

THEOREM 2 . Let 0 be the space of all strictly increasing sequences of posi-
tive integers with the probability measure µ defined by a sequence p(n) satisfying
(1) and (2) . For almost all A e Q and for all but finitely many pairs (m, n) of



1 02

positive integers with in < n < 2m,

ISA(m) n SA(101 < 2/(3y - 1) .

Proof . Let t > 2/(3y - 1) and m < n < 2m. Define A,(m, n) by (12) . We
shall prove that

2m-1

Y I A,(m, n) < o-- .
m=1n=m+1

Then the theorem follows from the Bore]-Cantelh lemma .
The argument is similar to that of Theorem 1 . We use formula (13) to

estimate A,(m, n) . However, since n < 2m, it is possible that (X U Y) n Z 0 0.
Let us assume that (X U Y) n Z = 0. Then

A({Ae12IXU YUZ9A})

<_
n p(aO n p(m - ai) f p(n - a,) n p(n - m + o il

we obtain

PAUL LRDOS AND MIILVYN R. NATHANSON

i=1

	

i=1

	

i=1

	

i=u+1

< (a logQ2m)"

	

~..

	

1
= 1 ai

	

1 (m - a i)'

r+-r°

	

1

	

1
x 11 0- 1 (n - a i)y )=, i (n - m + ai ) y .

Using the inequalities

m - a i > m; 2

	

for i = 1, . . . , x,

n-a i >m/2

	

for i=u+1, . . ,u+u,

n - a i > a i

	

for i = 1, . . . , u

n-m+a i >ai

	

for i=u+1, . . ,x,

A({AEQIXUYUZgA})< cllog`m x 1
m y`

	

i=1 aZ }'

Therefore, by (13),
Y(3)á-(2) J ( np(IAe4IXU

e2109`m ~üm-1V21 1

1m'

	

kY] k 21)

< c3	 log' M
m (3y - 1)f

YUZSA})
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Finally,
xm-

	

log m

m l
n Y I µ,(rn, n) <_ c3 j , ml3y-Ilr-I < 00

since t > 2/(3y - 1). The proof in the case (X v Y) n Z # 0 is similar .

Theorem i and Theorem 2 are useful in the study of extremal sequences
in additive number theory . For example, they provide a proof of the existence
of minimal bases . An asymptotic basis A of order 2 is minimal if no proper
subset of A is a basis . This means that for every a e A there are infinitely
many positive integers n such that n 0 2(A\{a}) . It is not true that every basis
contains a subset that is a minimal basis [4] . However, the following result
gives a simple criterion for a basis to contain a minimal basis .

THEOREM 3 . Let A be a strictly increasing sequence of positive integers such
that

(i) lim„ ti . rA (n) = ao,
(ü) IS A (m) n SA (n) I is bounded for all m < n .

Then A contains a minimal asymptotic basis of order 2 .

Proof. Let SA (m) n S A (n)I <- d - 1 for all m < n . Define

PA (n) _ {a e A l n- a e A and a >- n/2} .

Then PA(n) S SA (n) v {n/2} . Fix n I so that rA(n) > d for all n >- n I . Choose
a, e A . Let a l e A satisfy a, > max(a ;, 2n,). Let m I = a; + a I . Then
a, e PA(MI) and ai 0 PA(m I ). Define

AI = A\(PA(ml)\{a, }) .

Then a,,a, e A I and so m I =a*, + a I e 2A I .
Let n >- n I and n 0 m, . Since

A\A, s PA(M I ) S SA(M I ) U {MI/2},

it follows that

and so

PA(MI) n SA(n) c (SA(mr) n SA(n)) U {m I /2 },

rA,(n) ? rA(n) - I(A\Al) n SA(n)I
> r,(n) - PA(MI) n SA(n)I
>_ r A (n) - d

>1 .
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Therefore, n c 2A, for all n >_ n„ and so A, is a basis . Moreover,
m, = a ; + a, is the unique representation of m, as a sum of two elements
of A, .

Let k >- 2 . Suppose we have constructed integers a,, a*, m,, n; for
i = 1, . . . ,k - I and sets A,, . . . ,Ak_, with the following properties:

(i) 2n, < m, < 2n 2 < m Z < • • , < 2n k_, < mk - 1 ;
(ii) A =A o 2 A,

	

. . .

	

Ak-1;
(iii) A ;_,'\A ; S [m;;2,m,];
(iv) a„ a* E A; for i = 1, . . . , k - l ;
(v) m; = a* + a i for i = 1, . . . , k - 1, and this is the unique representa-

tion of m i as a sum of two elements of A ; ;
(vi) if n >- n„ then n E 2A k _, .

We now construct a k , ak, m k , nk, and A k .
Choose nk > mk _, such that rA(n) > d + mk _, for all n >- n k . Choose

ak E Ak_, with ak < mk _ 1 . Choose ak E A k-, such that ak > 2n k > ak . Let
mk = ak + a k . Define

Ak - Ak-1\(PA,,-,(Mk)\(ak1) .

Then ak, ak, Mk, nk, and A k satisfy conditions (i)-(v).
We must show that n E 2A k for all n >- n, . Since Ak _ 1\Ak c [mk/2, rnk] c

[nk , mk ], it follows from (vi) that n e 2A k if n, < n < n k . Let n >- n k , n 0 Mk-
Since A\Ak - 1 S ["Mk-11, it follows that

A\Ak C [1,rnk-1] U PA-j(Mk)

C ["Mk-1] U SA(rrik) U (Mk/21 .
Therefore,

rAk(n) ? rA(n) - I(A\Ak) n SA(n)I
> rA(n) - Mk _ 1 - 1 - I SA(rnk) n SA(n) 1
>_rA(n) -%-, -d
>- 1,

and so A k satisfies (vi) .
Continuing inductively, we obtain infinite sequences ak , ak, Mk, nk , and A k

satisfying properties (i)-(vi) . Define

A* = n Ak .
k=1

If n >_ n,, then n c- 2A* and so A* is an asymptotic basis of order 2 . Moreover,
mk = ak + a k is the unique representation of m k as the sum of two elements
of A*, and so Mk ~ 2(A*\(a*)) .
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Here is the key idea for the construction of a minimal basis . In the kth
step of the induction, we could choose arbitrarily ak E A k , such that
ak < mk - t . We make these choices in such a way that if a* E A*, then
a* = ak for infinitely many k. Then for every a* E A there are infinitely many
integers m k such that Mk ~ 2(A*\{a*}). Thus, A* is a minimal basis con-
tained in A . This completes the proof of Theorem 3 .

Let f2 be the probability space of sequences of positive integers defined
by p(1) = z and p(n) = a((logn)/n) t / 2 for n > 2. By the theorem of Erdös
and Rényi [1], there exists c > 0 such that r A (n) > c log n for almost all A E n
and all n sufficiently large . Theorems 1 and 2 imply that ISA(m) n SA (n)I < 4
for almost all A E Q and all but finitely many pairs (m, n) with m < n . It fol-
lows from Theorem 3 that the sequence A contains a minimal basis for almost
all A E 0.

4. OPEN PROBLEMS

We do not know whether it is possible to improve the right-hand side of the
inequality

ISA(m) n S A(n)I 5 2/(3y - 1 )

in Theorems 1 and 2 . In particular, with y = i and p(n) = a((logn)/n) t« for
n >- 2, we do not know whether ISA(m) n S A (n) I < 3 for almost all A E 92 and
all but finitely many pairs m < n. We can prove that for k >_ 2 and almost all
A E Q there exist infinitely many pairwise disjoint k-tuples m l < . . . < mk
such that

ISA(mi) n SA(m2) n . . . n SA(mk)I > 2.

We do not know whether condition (ü) in Theorem 3 is necessary . It is
possible that there exists a sequence A of positive integers that does not con-
tain a minimal basis but does satisfy the condition lim„- . Qn) = co .
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