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1. Introduction

Let /0/ be the set of natural numbers (>O) . If A is an infinite subset of /%/ (or a
strictly increasing sequence of natural numbers) and x e /0/, then we denote by A (x) the
number of elements of A which are <_ x . Two subsets B, C of A are called congruent, if
there exists a translation of /%/ which maps B onto C. We shall prove :

If k and n are given natural numbers > 1 and if A (x) >= r • xi n for some positive e
and all x of a final segment of /0/, then there exist k n-element subsets of A which are
pairwise congruent.

This improves an earlier result of the first author for k = n = 2, namely Theorem II
below, which dealt with B2 -sequences. This notion arose from a paper of Sidon [6]. A
strictly increasing sequence A of natural numbers a,, a2 . . . . is called a B2-sequence, if for
any two pairs (i, j) + (k, m) of natural numbers i <j, k < m there holds aj - a i + ak - a„„ in

short, if A has no double-differences . (Of course it would be the same condition to
presuppose that A has no double-sums : For any two pairs (i, j) + (k, m) with i < j, k < m
there holds ai + a, + a k + a,,, .)

In this connection Erdös and Turán [2] introduced a function (P as follows : For
x c- /%/ let O(x) be the maximal number m, such that there exists a B2 -sequence with m
elements 5 x. It satisfies :

I .

	

lim
0(n)

	

(See [2], [3], [1] .)
n - oc

Further the following two theorems hold :

IL For every B 2-sequence A one has lim
A(n)

=0. (See [7], p . 133 .)
n - 00
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111 . There exist B2-sequences A satisfying lim
A(n) > 1

n -i a

	

22

(See [5] and [4], p. 91)

More information on B2-sequences can be found in the book "Sequences" of
Halberstam/Roth [4] .

2. Main part

At first we investigate a generalization of the function -P :

Definition . Let k and n be natural numbers >- 2. A strictly increasing sequence A
of natural numbers shall be called a Bkn-sequence, if the following holds : There are no k
different n-element subsets of A, which are pairwise congruent.

Then a B22-sequence is the same as a B 2-sequence in the previous sense.

Further we define a function -Pk,, : /%/ ---> /O/ as follows : For x c /O/ we put
Okn (x) = m, where m is the maximal number such that there exists a Bkn-sequence with m
elements <- x .

We derive an elementary inequality concerning (Pkn :

Theorem l . For each pair of natural numbers k, n which are >_ 2, there exists a
constant ckn , such that for all x c /0/ the following holds :

(1)
1 -n

'pkn(x) Cknx

(2)

	

(n)«n-1)

Proof. Let x be a natural number > n . We subdivide the set of n-element
subsets of 11, 2, . . ., x} into classes of pairwise congruent subsets . The number of these
classes is calculated as follows : Each class contains exactly one n-element subset of

{ 1, . . . , x} which contains l . Hence the number of classes is x-1
n-1

Now let a,, a 2 , . . . be a B,,,-sequence and a,, . . ., a, all of its elements which are
<_ x. Then we have

This is a consequence of the fact that in each of the classes there are at most k -1
congruent n-subsets of {a l , a2 , . . .}, otherwise we would not have a Bkn-sequence.

A product of n -1 natural numbers which form a segment of /0/, is <_ the (n -1)`h
power of their arithmetic mean. So we can derive from (2) :

(3) t(t-1)

	

(t-n+1)<_n(k-1) (x-1) (x-2)

	

(x-n+1)<n(k-1)(x-2)n 1

Now we obtain :

(4)

	

t-n+ l<_
n-1

n n
-1) x- 2



hence

This leads to
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This is trivial for t<_ n -1, and for t > n -1 it follows from

(t-n+l)n_t(t-1) - . . . - (t-n+l)

and (3) .

Since (Pkn (x) is the upper limit of all possible values t, we can conclude from (4)
that for all x > n the following inequality is valid

n 1

(5)

	

'pkn(x) <_vn(k-1) (x-2)
n
+n-1 .

Here we can replace n by 3, since n tends to 1 for n

	

co and from n = 3
onwards monotonically decreasing . So each constant ckn > V J

• Vk -1 fulfils (1) for all
sufficiently large x . Then of course there also exists a constant c kn satisfying (1) for all
x c /%/ .

Corollary . 4'A is a strictly increasing sequence of natural numbers which satisfies

A (x) > c kn z '

	

for at least one x c /Ol, then there exist k different n-element subsets of
A n { I__ , x}, which are pairwise congruent .

We now state a useful theorem on Bkn-sets :

Theorem 2. Let k, n be _>- 2 and a,, a 2 . . . . a Bkn-sequence. Then

I 1 _<- , n n ' . ~ n

	

< oo . (~ the Riemannian Zeta-function)
m=, am

	

n

	

n - 1

Proof. By the definition of Okn we have Okn (am) >_ m for all m e /%/ . By Theorem 1
there follows

1- n
m <- <Pkn(am) < ekn . am

	 n
»i n - 1

am >

	

and
ekn

\ n

a
< ~~ ~n-1

/m

1	 " 	ao	 n	n 	~ ~ n<e n-1

	

~

	

n-1

	

n-1

	

<~
- kn

	 -c

kn
m=1 am

	

m=1

	

n-1

Let P be the set of all prime numbers . Then Y 1 is a divergent series, and so
Y P

Theorem 2 gives the corollary, that the sequence corresponding to P is no Bkn-sequence
for all k >_ 2 _< n, in other words :

Remark . For every two natural numbers k, n there exist k n-element sets of prime
numbers which are pairwise congruent .

As an easy consequence of Theorem 1 we mention :

Theorem 3 . Let k and n be natural numbers >_ 2, x a natural number > (2 c kn )n . If
It_ ., x} = A v B, then A or B contains k pairwise congruent n-element subsets .
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Proof. Without loss of generality let A and B be disjoint. If the above statement
were false, A and B would be initial segments of Bkn-sequences (when taken in their

1
natural order). Hence A (x) and B(x) are both <_ Okn (x) < Ck n • xl n. This would result in
x = A (x) + B (x) 5 2 • Ck n x' n and x <_ (2 C k „)n contradicting the assumption .

Now we sharpen the statement of the corollary to Theorem 1 by replacing Ckn by
an arbitrarily small positive number e, yet under the additional condition that the
inequality concerning A(x) is required for all x e /0/ . The proof applies the method
which was already used in the proof of Theorem II of the introduction.

Theorem 4. Let t; be a positive number and n a natural number >_ 2 . Let A be a
i

strictly increasing sequence of natural numbers satisfying A(x) > E • xl
_
n for all x E /%/.

Then for every k c N there exist k n-element subsets of A, which are pairwise congruent .

Proof. Let k be a fixed natural number . If there exists a number x E /0/ with
i

A(x) > Ck n • x l n, then according to the corollary the statement holds . Therefore we
make the assumption, that for all x c /W and i3 := Ckn the relation

A(x)xl

is valid. Now let N be a fixed natural number . To this we define the following N-
element intervals h of l%/: For i c /0/ we put

Ii :={yc/0/J(i-1) •N <y<=i •N } .

Then the number A; of elements of A lying in I ; is

Ai=A(iN)-A((i-1) • N) .

If it is possible to choose N in such a way, that

V=1
(Anv) >(k- 1)

(N
n-
-

1
1 )

is valid, then the statement of the theorem follows analogously to (2) . Indeed such a
choice of N is possible, as we shall prove indirectly :

Suppose that for every choice of N we always have

(6)

Now there exists a constant y > 0 only depending on n, such that for every whole

number a which is >= n oder = 0, a >
a" holds .

Next we obtain : There exists a constant d only depending on n and k, but not on
N, so that

(7)

00
1)

V=1 (nV)<(k
1)

(n-I

n

	

y

N

Y, A° < d • Nn -1 for every N E IOI .
V=1
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Indeed for every N E /%/ we have

N

	

N

	

N

	

N

A° _

	

An + + I A° + I A,
v=1

	

v=1 V=1

	

v=1
Av =1

	

A„=n-1

	

Av >>=n

==<N+2n!-N+ --- +(n-1)n • N+y • Y A"
v-1 n

and this is, since (6) is supposed to be valid, < d • Nn -1 with a constant d not depending
on N.

Now we take k o = 0 and k l, k2 . . . . as a sequence of natural numbers such that for
all i c /%/ there holds

and hence

	 ~\ n> (2 ~n-1
ki-

	

/

	

ki-1 •
E

Because of Q > E this sequence is strictly increasing .

For every choice of N and every i c /%/ there holds

(8 )

The left side indeed is

A(kiN) - A(ki-,N)>E(kiN) 1 -l'(ki-1N)1 n== 2 (k i N)1 n .

Now from (8) we obtain for every choice of N and every i c- IOW :

ki

	

1

Av ! £ «ki - ki-,)N) 1 n
v=ki -, + 1

	

2

1

AV>( E
«ki-ki-,)N)1 n~n

.(ki-ki-1),
v=k, -, +1

	

2

ki

	

E n

(9)

	

A n>n
• Nn-1

v=ki-i+1

	

2

N

	

r

	

ki

	

E n
An >

	

An > r	 . Nn-1 >dNn-1
v = 2n

v=1

	

i=1 v=ki-1+1

211

Finally we choose a natural number r with r • Zn > d and choose N as a number

> kr . From (9) then we derive
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But this is a contradiction to (7) .

Remark. It can easily be seen that the statement of Theorem 4 also holds if in
addition we require that the k congruent n-element sets are pairwise disjoint .

For there exist also (k -1) • n • (n -1) + 1 congruent n-element subsets of A, and
each of them has a non-empty intersection with at most n • (n -1) of the others.

From Theorem 4 we can immediately derive a dual version :

Theorem 4' . Under the assumptions of Theorem 4 there also holds : For every
k c l%/ there exist n k-element subsets of A which are pairwise congruent and disjoint.

Proof. There exist k congruent disjoint n-element subsets A,, . . ., Ak of A. For
v =1, . . . , n let By be the set of the vih elements of the sets A,, . . . , A k . Then B,_., B„ are
congruent k-element subsets of A and disjoint .

An immediate consequence of Theorem 4 is the following generalization of II :

Theorem 5. For any two natural numbers k, n which are >_ 2 and for every Bk"-
sequence A we have

lim A(x1 = 0.
x_ 00 x l - n

Remark . Of course Theorem 4 can be generalized a little by weakening the
assumption in such a way, that A (x) > E • x " is only required for all x of a final
segment of /0l, say for all x > x o . For let e be a positive number < 1 (without loss of
generality) and let A* be the sequence containing all elements of A and all natural
numbers <_ x o following in their natural order . According to Theorem 4, A* has k + x o
congruent n-element subsets . From these at most xo have a non-empty intersection with
{ 1, . . . , x0}, for their smallest element is in { 1, . . . , x o }, and two of them having the same
smallest element must be identical. Hence k of the k + xo congruent subsets must be
subsets of A .

Remark. The notion of B2-sequence is in a certain way opposite to the notion of
an arithmetic progression. In a B2-sequence all differences have to be different, but in an
arithmetic progression as much differences as possible are equal . Namely the following
statement (which was observed by N . Straus) is valid (and easily provable by complete
induction on n) :

If A is a finite sequence a, < az < <a,, of natural numbers and D is the set of all
differences aj - a i with I < i <j -<- n, then JD J _ JAJ -1 if and only if A is an arithmetic
progression .

We will now examine the sharpness of Theorem 4 . In the rest of the paper let
m, n, k be integers >_ 2, a a positive real number so that m" is an integer and > k - n .

First we establish the following

Lemma. Let S be the set of all those ma-element subsets of {1_ ., m} which
contain k disjoint congruent n-element subsets . Then the number s of elements of S is

C (n+k-1) (m"-kn)



Proof. A system of k disjoint congruent n-element subsets of /0/ is completely
determined by the n elements of the last of the k subsets and the first elements of the

first k -1 subsets . There are

	

m

	

possibilities to choose n + k -1 elements from
n+k-1

{ 1, . . . , m}. Each of these possibilities occurs in at most
m-kn
ml - k n

sets of S, which

proves the assertion .

There are
Cm /

subsets of { l, . . . , m{ with m" elements. So, if we have
CMa/ >

s,

there exists an m"-element subset of { 1, . . . , m}, which has no k disjoint congruent n-
element subsets . Therefore we have to investigate for which a > 0 and n E /O/ there holds

(m~M») > (n + k -1) (tn - k n)

(10) is equivalent to

The expression on the right side of (11) is

	

m(m-1) Mak(m-kn+1)
Thus (11)

would follow from

(12)

which is equivalent to

m"kn
(13)

	

(n +k-1)!
<(m-kn+1)

	

(m-(n+k-1)) .

The expression on the right side of (13) is >(m-kn+1)kn-n-k+' So (13) would follow
from

10,
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2 1 3

M
m

	

(MO) _ m(m-1)

	

(m-kn+1)
(n+k-l) < m-kn

	

(m"-kn+l) • - • • • m"
m" -kn

lourn ;d füi Mathein ink . Band 367

M

	

m(m-1) - . . . - (m-kn+l)
<	

n+k-1

	

m«kn

	

,

makn
< (n1- kn + 1)kn-n-k+1

(n+k-1)!

a

	

,

	

1

	

1M

	

-<(m-kn+1)'-k -"
1

	

+

.

(n + k - 1)! kn
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We summarize our considerations . If

1

	

1

	

1
(16)

	

0<a<1-k
n --

holds, then (15), and then also (10), is valid for all sufficiently great natural numbers m .
Thus we have

Theorem 6 . If a satisfies (16) then for all sufficiently large natural numbers m there
exists a subset of { I_- m} which has at least m" elements but no k disjoint congruent
n-element subsets .

Concerning the sharpness of Theorem 4 this yields :

Theorem 6' . If 0 < a < I - I holds there exists a natural number k (such that (16)
n

holds and) such that for every sufficiently large natural number m there exists a subset of
{ 1, . . . , m} which has at least m" elements but no k disjoint congruent n-element subsets .
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