Congruent subsets of infinite sets
of natural numbers

By Paul Erdds at Budapest and Egbert Harzheim at Diisseldorf

1. Introduction

Let &V be the set of natural numbers (>0). If A is an infinite subset of AV (or a
strictly increasing sequence of natural numbers) and x € AV, then we denote by A(x) the
number of elements of 4 which are <x. Two subsets B, C of A are called congruent, if
there exists a translation of AV which maps B onto C. We shall prove:
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If k and n are given natural numbers >1 and if A(x)=e-x " for some positive &
and all x of a final segment of N, then there exist k n-element subsets of A which are
pairwise congruent.

This improves an earlier result of the first author for k =n =2, namely Theorem II
below, which dealt with B,-sequences. This notion arose from a paper of Sidon [6]. A
strictly increasing sequence A of natural numbers a,, a,,... is called a B,-sequence, if for
any two pairs (i, j) & (k, m) of natural numbers i <j, k <m there holds a;,— a; + ¢, — a,,, in
short, if A has no double-differences. (Of course it would be the same condition to
presuppose that A has no double-sums: For any two pairs (i, j) # (k, m) with i <j, k<m
there holds a;+ a;+ a; +a,,.)

In this connection Erdos and Turan [2] introduced a function @ as follows: For
x e NV let @(x) be the maximal number m, such that there exists a B,-sequence with m
elements < x. It satisfies:

L lim f??: 1. (See [2], [31, [11)

Further the following two theorems hold:
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Il.  For every B,-sequence A one has li
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-=0. (See [7], p. 133)
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(See [5] and [4], p.91)

More information on B,-sequences can be found in the book “Sequences” of
Halberstam/Roth [4].

II1. There exist B,-sequences A satisfying hm

2. Main part

At first we investigate a generalization of the function ®:

Definition. Let k and n be natural numbers = 2. A strictly increasing sequence A
of natural numbers shall be called a B,,-sequence, if the following holds: There are no k
different n-element subsets of 4, which are pairwise congruent.

Then a B,,-sequence is the same as a B,-sequence in the previous sense.

Further we define a function @,,: N — N as follows: For xe ¥ we put
®,,(x)=m, where m is the maximal number such that there exists a B,,-sequence with m
elements < x.

We derive an elementary inequality concerning @,:
Theorem 1. For each pair of natural numbers k., n which are =2, there exists a
constant ¢,, such that for all x € N the following holds:

1
(1) B(X) S cnx’ ™.

Proof. Let x be a natural number >n. We subdivide the set of n-element
subsets of {1,2...., x} into classes of pairwise congruent subsets. The number of these
classes is calculated as follows: Each class contains exactly one n-element subset of

; : . [x—1
'1,..., x} which contains 1. Hence the number of classes is ( I)'
n—

Now let a,, a,,... be a By,-sequence and a,,..., a, all of its elements which are
< x. Then we have:

2 (r)é(x_])-{k—ll-
n n—1

This is a consequence of the fact that in each of the classes there are at most k —1
congruent n-subsets of {a,, a,,...}, otherwise we would not have a B,,-sequence.

A product of n—1 natural numbers which form a segment of &, is < the (n—1)"
power of their arithmetic mean. So we can derive from (2):

[ fout S
3) te=1) - (t—n+D=Z=nk—=1(x—=1)(x—=2)- - -[,\'—H+I]§n(k—!]('—g) ;

“

Now we obtain:
1

() t—n+1<)/nk—1)- ( ’;) "
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This is trivial for t<n—1, and for t >n—1 it follows from
(t—n+1)"Zt(t—1) - (t—n+1)
and (3).

Since @,,(x) is the upper limit of all possible values f, we can conclude from (4)
that for all x> n the following inequality is valid:

n—1

(5) Do) < ]/n(k—1) - (x - ;)T+ n—1.

Here we can replace ]//_ by [/3 since [ﬂ tends to 1 for n—© and from n=3

onwards monotonically decreasing. So each constant ¢f, = ]/ ]/ —1 fulfils (1) for all

sufficiently large x. Then of course there also exists a constant ¢, satisfying (1) for all
xe .

Corollary. If A is a strictly increasing sequence of natural numbers which satisfies

1
e . ;
A(x)=¢p, - x " Jor at least one x € N, then there exist k different n-element subsets of
An{l,..., x}, which are pairwise congruent.

We now state a useful theorem on By,-sets:

Theorem 2. Let k,n be =2 and ay, a,,... a By,-sequence. Then

o q e
N I3
3, - (

m=1 Uy

1) < o0, (¢ the Riemannian Zeta-function)
n —

Proof. By the definition of ¢, we have ¢,(a,,)=m for all me N. By Theorem 1
there follows

I_
m gqpkn(am)éfkn ] am "s

hence

This leads to

SR s = i = n
Z S é{‘kn ! Z m = Cgn 5 < 0.

m=1 py m=1 n—1

; I : ;
Let P be the set of all prime numbers. Then ) — is a divergent series, and so
P
Theorem 2 gives the corollary, that the sequence corresponding to P is no B,,-sequence
for all k=2<n, in other words:

Remark. For every two natural numbers k, n there exist k n-element sets of prime
numbers which are pairwise congruent.

As an easy consequence of Theorem | we mention:

Theorem 3. Let k and n be natural numbers =2, x a natural number > (2¢,,)". If
{L,...,x} =AU B, then A or B contains k pairwise congruent n-element subsets.
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Proof. Without loss of generality let A and B be disjoint. If the above statement
were false, A and B would be initial segments of B,,-sequences (when taken in their

S .
natural order). Hence A(x) and B(x) are both <@, (x)<Z¢,, - x' 7. This would result in
=4 Sl -

x=A(x)+B(x)=2- c,mxl " and x =(2¢,)" contradicting the assumption.

Now we sharpen the statement of the corollary to Theorem 1 by replacing ¢, by
an arbitrarily small positive number & yet under the additional condition that the

inequality concerning A(x) is required for all x e NN. The proof applies the method
which was already used in the proof of Theorem II of the introduction.

Theorem 4. Let ¢ be a positive number and n a natural number =2. Let A be a

1
. . i . 3 s 1——
strictly increasing sequence of natural numbers satisfying A(x)>e-x " for all xe N.
Then for every k € N there exist k n-element subsets of A, which are pairwise congruent.

Proof. Let k be a fixed natural number. If there exists a number x e &V with

e :
A(x)>c,m-xl "  then according to the corollary the statement holds. Therefore we
make the assumption, that for all xe & and f:= ¢, the relation

1

AX)SB-x'"

is valid. Now let N be a fixed natural number. To this we define the following N-
element intervals I; of : For ie NN we put

Li={yeN|({-1)-N<y<i-N}.
Then the number A; of elements of 4 lying in I, is

A;=A(iIN)—A((i—1)- N).

If it is possible to choose N in such a way, that

(A, N-—1
,.;1 (n)>(k_1)'(n—l)

is valid, then the statement of the theorem follows analogously to (2). Indeed such a
choice of N is possible, as we shall prove indirectly:

Suppose that for every choice of N we always have

= (A N—1
© 2 (3)=e-0-(37))

Now there exists a constant y >0 only depending on n, such that for every whole

number a which is =n oder =0, (i);i holds.

Next we obtain: There exists a constant d only depending on n and k, but not on
N, so that
N

(7) A"<d-N""' forevery Nel.
1

V=
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Indeed for every N e N we have

N N N N
Y Ay= 3 A4t ¥ A Y M
= = v=1 v=1

1 Ay=n—1 AvZn

' N 74
___<_N+2"'N+"-+(H—|)"-N+?'Z(nu)a
1

V=

and this is, since (6) is supposed to be valid, <d - N""! with a constant d not depending
on N.

Now we take ko, =0 and k,, k,,... as a sequence of natural numbers such that for
all i e NV there holds

k;(@)_f Ky

&

Because of f#> ¢ this sequence is strictly increasing.
For every choice of N and every i € N there holds

ki : 1
(8) Y AE -k )N

v=ki-1+1

2| e

The left side indeed is

L
n

Ak N)— Atk N)> e(kN)' 7 — Bk NY 72 & Ny,

hd
2

Now from (8) we obtain for every choice of N and every i e N:

. -1,
(B

vekiog+1 2 ki—k;—y
and hence
ky et
9) Z AT N™L,

v=TAan
=k %1 2

n

: ’ g
Finally we choose a natural number r with r- o >d and choose N as a number

> k,. From (9) then we derive

r kg n

Ar>p L NTt> Nt
2"
i=1

v=ki-;+1

v

N
2 A
v=1
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But this is a contradiction to (7).

Remark. It can easily be seen that the statement of ‘Theorem 4 also holds if in
addition we require that the k congruent n-element sets are pairwise disjoint.

For there exist also (k—1)-n-(n—1)+1 congruent n-element subsets of A, and
each of them has a non-empty intersection with at most n-(n—1) of the others.

From Theorem 4 we can immediately derive a dual version:

Theorem 4'. Under the assumptions of Theorem 4 there also holds: For every
ke N there exist n k-element subsets of A which are pairwise congruent and disjoint.

Proof. There exist k congruent disjoint n-element subsets 4,,..., A, of A. For
v=1,...,n let B, be the set of the v'" elements of the sets 4,,..., 4,. Then B,,..., B, are
congruent k-element subsets of 4 and disjoint.

An immediate consequence of Theorem 4 is the following generalization of II:

Theorem 5. For any two natural numbers k, n which are =2 and for every By,
sequence A we have
Alx)

e 1
x=+m 11—

0.

Remark. Of course Theorem 4 can be 1genertﬁ,llized a little by weakening the

assumption in such a way, that A(Jc)>3-.vcl_F is only required for all x of a final
segment of AV, say for all x= x,. For let ¢ be a positive number <1 (without loss of
generality) and let 4* be the sequence containing all elements of 4 and all natural
numbers < x, following in their natural order. According to Theorem 4, A* has k + x,,
congruent n-element subsets. From these at most x, have a non-empty intersection with
{1,..., xo}, for their smallest element is in {1,..., x4}, and two of them having the same
smallest element must be identical. Hence k of the k+ x, congruent subsets must be
subsets of A.

Remark. The notion of B,-sequence is in a certain way opposite to the notion of
an arithmetic progression. In a B,-sequence all differences have to be different, but in an
arithmetic progression as much differences as possible are equal. Namely the following
statement (which was observed by N. Straus) is valid (and easily provable by complete
induction on n):

If A is a finite sequence a, <a, < --- <a, of natural numbers and D is the set of all
differences a;—a; with 1<i<j<n, then |D|=|A|—1 if and only if A is an arithmetic
progression.

We will now examine the sharpness of Theorem 4. In the rest of the paper let
m, n, k be integers =2, o a positive real number so that m* is an integer and >k - n.

First we establish the following

Lemma. Let S be the set of all those m*-element subsets of {1,..., mj which
contain k disjoint congruent n-element subsets. Then the number s of elements of S is

m m—kn
< . ;
—(n+k—]) (m’—kn)
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Proof. A system of k disjoint congruent n-element subsets of AV is completely
determined by the n elements of the last of the k subsets and the first elements of the

first k—1 subsets. There are ( ) possibilities to choose n+k—1 elements from

m
n+k—1

S ; n :
{1,...,m}. Each of these possibilities occurs in at most ( ) sets of S, which

m*—kn
proves the assertion.

There are (:x) subsets of {1,..., m} with m* elements. So, if we have (;1)>s.

there exists an m*-element subset of {1,..., m}, which has no k disjoint congruent n-
element subsets. Therefore we have to investigate for which 2 >0 and n e &V there holds

m m m—kn
() (m“)>(n+k—1) . (m’—kn)'

(10) is equivalent to

m
m* _m(m—i]-n-_-(m—kn—lrl)

m
(1) (n+k—l)<(m—kn) kAt D)

m*—kn
The expression on the right side of (11) is gm(m_”' -’;;a;‘fm—kn+l)_ Thus (11)
would follow from
m mm—1)---(m—kn+1)
12 e 2
{ ] (F!+k—l)< mzku *
which is equivalent to
(13) B RN o (ot 1}
ot k—1) m—kn (m—(n ).

The expression on the right side of (13) is =(m—kn+1)""""¥*1 So (13) would follow
from

[14} m“" _<{m_k”+”kn—n—k+]
(n+k—1)! '
This is equivalent to
m* fegodicsk
(15) ———<(m—kn+1) nokn

1
(n+k—1)tkn

1 Journal fir Muthematik, Band 367
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We summarize our considerations. If

11 1
16 0 foic = i =
(16) SES k n 3 kn
holds, then (15), and then also (10), is valid for all sufficiently great natural numbers m.
Thus we have

Theorem 6. If « satisfies (16) then for all sufficiently large natural numbers m there
exists a subset of {1,...,m} which has at least m* elements but no k disjoint congruent
n-element subsets.

Concerning the sharpness of Theorem 4 this yields:

Theorem 6'. If 0<ua<1 —:1 holds there exists a natural number k (such that (16)

holds and) such that for every sufficiently large natural number m there exists a subset of
{1,.... m} which has at least m* elements but no k disjoint congruent n-element subsets.
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