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For each matural number n, denote by Gin) the set of all numbers ¢ such that there Cxists 8
graph with exactly ¢ cligues (i.e.. complete subgraphs) and n vertices. We prove the asymptotic
estimate

|G(n)| = 0(2" - n ™)
and show that all natural numbers between n + 1 and 277" belong to G}, Thus we obtain

fim [GEH_ g,
W 2
while
lim |c::—f}|=-= forall 0<g<72.
ke

Many graph-theoretical problems involve the study of cligues, L.e,, complete
subgraphs (not necessarily maximal). In this context the following combinatorial
problem arises naturally: For which numbers n and ¢ is there a graph with n
vertices and exactly ¢ cliques? For fixed n, let G(n) denote the set of all such
‘cliqgue numbers’ ¢, Since each singleton and the empty set are always cligues, we
have

n<c=2" forall c e G(n).

It is easy to check that every integer between n + 1 and 2" occurs in G(n) (see
the remark at the end of this paper), and a more thorough investigation shows
that even all integers between n+ 1 and 2*” are clique numbers of suitable
graphs with n vertices. For small n, the first jumps in G(n) occur between 2*7
and 2*- 2. Denoting by c(n) the smallest ¢ >n + 1 with ¢ ¢ G(n), we obtain
Table 1. (As usual, |@| denotes the greatest integer not greater than a, while [a
denotes the least inteper not less than a.)

In the higher regions near 2", Gi(n) has large gaps. For example, the only
clique numbers above 2"~ are the numbers 2" ' 4+ 2° with 0 < k < n. The number
¢; of ones in the binary expansion of a given number ¢ plays a crucial role for the
question whether ¢ is the clique number of a graph with n vertices (see the proof
of Theorem 1). As a consequence of the fact that ¢; cannot be too large for
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¢ € (G(n), we show that the ratio |G (n)|/2" tends to zero when n— 2. But, on the
other hand, it will turn out that for all positive reals a <2, the ratio |G(n)|/a"
goes to infinity, and moreover, that all numbers ¢ between n+ 1 and 20"
belong to G(n). In particular, for each & <1 there is an n, such that ¢(n) = 2"
whenever n > n,,. Of course, this result disproves the conjecture (suggested by the
above table) that ¢(n) would not exceed 2% - 2. In order to determine the sets
G (n), it suffices to compute, for each natural number ¢, the smallest n such that
there exists a graph with »n vertices and ¢ cliques. This is an immediate
consequence of the following observation:

ceGn)and n+1<c¢ implies c¢eGn+1). (=)

In fact, if G is a graph with n vertices and ¢ > n + 1 cliques then GG must have at
least one edge joining two vertices, say, x and y. Delete this edge, adjoin a new
vertex z to G, and join it with all vertices which are already joined with both, x
and y, This gives a new graph G' with n + 1 vertices, but the number of cliques
remains the same as for G because each clique of G containing x and y is replaced
by a clique of G' containing z. (Cf. Fig. 1.)

Next, we derive an asymptotic upper bound for the cardinality of G(n):

Theorem 1. |G(n)| =0(2" - n~*%),

Proof. Let G be a graph with n vertices and ¢ cliques. Choose a clique K of
maximal size, say, k. Denoting by € the set of all cliques of the induced subgraph
G — K, we have

= E 2:\':.'

Ce¥

where d, is the number of vertices in K joined with each vertex of C. By

¥ ¥
X x
G G
Fig. 1
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maximality of K, d. is not greater than k — |C|, whence
n—k el
o= E ("‘ ) k)zk-f= {;‘]nmkzn_
j=0 % J

Furthermore, the number ¢, of ones in the binary expansion of ¢ is bounded by
the cardinality of ¢, whence

ey =|%€l=2""*

Combining both inegualities, we obtain
c-c7=2", where a=2—log.3>%.

Now choose an arbitrary real number f§ with § < < a, and let
m:=|n—Plogn+1].

If ¢ =2", then ¢, = 20"—"Veg Jifiellogn = ¥ Hanpa
[nF=]
l{eeGn):e=2"} = |{ceGn):e;=nP}= 3 (:)
kr=k
=p*"" = 02" - n ) since fla<1.
On the other hand, we have
|[{c e Gin): e =2"}| =27 Mn*l = 6(2" . n7*%)  since f=>2/5. O

Table 2 suggests that 2" - n ™" is also a good estimate for small values of |G(n)).
Although |G(n)| is of smaller order than 2", we shall show in the second part of
this paper that log, |G(n)| is asymptotically equal to n.

Table 2
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Henceforth let m be a natural number and

e 216 etk S_Ij
Aee e

For any nonempty finite set V' of integers, put
d(V):=max V —min V.

We shall use the following version of the ‘pigeon-hole principle’:

(PP) If W is a set of w integers. then for all natural numbers v with I<v<w
there exists a subset V of W with v elements and [(w —1)/(v—1)] d(V) =
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d(W); in particular,

v=1
w—u’

d(V)=d(W)

For the construction of suitable graphs with prescribed clique numbers, we need a
somewhat technical definition. Call a set V' of nonnegative integers m-adegquate if
the following conditions are satisfied (recall that r and s are functions of m) (cf.
Fig. 2):

V=WuV, withmaxVi<min¥,, [WV]|=r+1 and |Vi|=2r,

m—max V =5,

d(V)=3s",

d{V))=s",

min V; —min V =154

Our main result is prepared by an auxiliary lemma ensuring that there are

enought m-adequate sets:

1 2
min ¥ max "-’1 min Vs max v m
P e ;
: Tl :
-1 y 5 L5
Fg. 2
Lemma. Every set W {0, ..., m—1} with not less than 25° elements contains

an m-gdeguare set.

Proof. Choosing the |s°| smallest elements from W, we obtain a subset W, with
d(W,)=max W,=m—s". Now (PP) gives a subset Wi of W, with [3s*] +1
elements such that d(W.)= 15", In fact, 25" = m =5 implies s = 2, whence

) 15" (s° —s5")[357%]
=Rt —1 =33
The [is*| smallest elements of Wa form a subset Wi, Again by (PP), we can select

a subset V, of W, with >+ 1 elements and d(V;)=s’, because s=2 and
r=|4(s —1)| implies

d (W, =457

r T 35’
—= d(W, = —=
[4s'] —F —1 ( “}:."* B T

d(Wy)
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Finally, let V consist of the 2r greatest elements of W; (ef. Fig. 3).

Then W5\ V; has [35*] + 1 —2r = [1s*] elements (because s =2 and r=1(s — 1)
yields [is'] —2r=3s'—s+1=4"+1). Thus V,c Woc W:\V2 and therefore
max V, = max W; < min ;. Moreover,

min Vi — min V; =min V; — max V; + 7* = min V; — max W; + r°
= WA(MUB)|+1+r=3* bt -2r+14 4
=it + (r= 1) =h"

Hence V = V; WV, has the required properties. [0

Now we can prove

Theorem 2. For all natural numbers n and ¢ with n<c=2""" there is a graph
with exactly n vertices and c cliques.

Proof. Let e=2"+ ¥, w29 with W {0, ..., m—1}. Furthermore, let ¥ be a

maximal collection of pairwise disjoint m-adequate subsets of W, By the lemma,

the remainder W = W\|_J ¥ contains less than 25° elements where s =m""®. Now

a graph G with exactly ¢ cliques is constructed as follows. First, form an |
m-element clique M. Second, choose a family {G\: V € ¥} of pairwise disjoint

(2r+ 1)-sets outside of M. Consider one such Gy ={x;, ..., %, ¥, .-, ¥ 2}

and make it a bipartite graph by joining each x; with each y.. The m-adequate set

V=V, U V4 is labelled in form of an (r + 1) % (r + 1) array such that

Vi={dw} Uldz1=ij=r) (vil=r*+1),

Vo= {do: L=i=r}U{do: 1sj=<r} ([Vil=2r),
dup<d;y<d,_,,<d19<dqg R=i=r lsj=r),
dp<dj<d;j_ 1 <dy;+<dy (1=i=r2=j=r)

Now we define an integer-valued (r + 1) % (r + 1) matrix (5;) by setting
So0 = dons

sgr=d,; —dy {1=i =),

Swi=dyp—dw— 2 (dy; = dw),

=1
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Spi=dy —dow— E (dyy — dya),

Sini=dy— d;‘—h'ﬂ i 21 {da'—l.;' == dr;r'} (2 =i=r),
j—

F
.i'm:=d“_r P d“:.l'_l + E_:l [’dl.j—l - dﬂl} (2 ﬁj Qr}.

Then we have
sy=0 (0=i,j=r). (1)

This is clear for i =j=0 and for { +j > 1. By definition of m-adeguate sets, we
obtain
spw=min Vo—min V —r - d(V))=4s"—rs' =0, sincer<is

The same inequality holds for s,,. Next, one proves by induction

dip=dm+ E 5&0‘*‘23:: (1=i=r),
k=1 =1
(2)
dfu=dw+zs{}k+25ﬁ {1%}5?’].
k=1 =]
Third, we have the inequality
Y, 3 Sp=m. (3)
i=0 f=i)

In fact,

Sm"‘E Es,,+ 25111"‘250;—{2:'

=1 j=1 i=1
.
= u:""_Z-’E:t-ﬁ'u‘*d.-n_d[u‘2;3d+dtrr'dm"2|5u
i=1j= i= i=
r=1 1
'_z; Zﬁ (dy —dpo) + (dy—d,) + dy,
=1 f

=(r—17d(V)) +d(V)+max V
2
5145 +3+m—s"=m.

On account of (1) and (3), we can choose a family of pairwise disjeint subsets
8 (ef. Fig. 4) of M with s, elements (0 =i, j=r). Join x; with all points of the set

i r
X E*Uu_'skuu}._.al SE} “ 51—5"};
= =1
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and join y, with all points of the set
f r ;
Vi=USulUs, (I1=j=r)
k=0 =i

By (2), we have
IxXl=dy (A=i=r),
|¥l=dy (1=j=r).

Furthermore, the number of points joined with both, x, and ¥, is
IS U Syl =du+ sy =dy (1=i,j=r).

Finally, join the remaining point z of Gy with the points of 5 and recall that
|Sw| = du. Then the number of cliques containing at least one point from Gy
amounts to

3 5 24= 3 2

=0 j=0 del¥
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Adfter having carried through this procedure for each V € ¥, choose for each of
the remaining exponents d € W= W ¥ a new point and join it with exactly d
pomts of M, The graph obtained in this way has precisely c=2"+ X, w2
cliques, and the number of vertices is

2r+1

+1)- ¥ V< 5
m+(2r+1)- |7+ |W] m+{r+1}:1W|+2v

dsm
=m+—5+L =m+6m™",
5

(For the last inequality, observe that [W|=m and r = |}(s — 1)].) Now ¢ = 2" %"
implies

m= |log.c| =n—6n"" whence m+6m* " =n.
But by our introduciory remark (¥), n<ce Gin’) for some n"=n implies
¢ £ G(n), and the proof is complete, 0O
Of course, for small values of n the statement of Theorem 2 is much weaker
than the implication
n<p=2" X ceGin),
which follows by induction from the obvious implication
celGin) > c+1eGin+1) and 2eceGin+1).

As an immediate consequence of Theorems | and 2, we finally notice:

Corollary.

limw=ﬂ. but limm—{:—”=$¢ for 0=<a<2,

e 2" H—= i
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