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I start with an old problem of mine : Denote by fk(n)

	

the

largest integer for which one can find integers

1 < al < a~ < . . .<at < n,t = fk(n) so that no k of the a's

should be pairwise relatively prime . My guess was (and is) that

one obtains this set by taking the first k - 1 primes and the

a's are the set of their multiples . Szemerédi remembers that he

and Sárközy proved this if n > no(k) . I hope they will be able

and willing to reconstruct their proof and if possible get rid of

the condition n > no (k) (perhaps the result no longer holds

without this condition) . There are two remarks : First of all it

is not obvious that the extremal set is obtained by taking the set

of all multiples of some set of k - 1 primes. If this has

been done then one could try to prove that this set is largest if

we take the first k = 1 primes. This later statement cer-

tainly holds for n > no(k) .

Perhaps in fact the following stronger statement holds :

Let x < al < . . . < at < x + n and assume that there is no set

of k

	

a's which are pairwise relatively prime . Perhaps for

ery n and x, max t = fk(n) . The first case which I have

not done is: Is it true that among any 23 integers among 30

consecutive integers one can always find 4 which are pairwise

relatively prime[2] . This is certainly false for 22 such numbers

(take the set of multiples of 2, 3 and 5) .

I would like to state one more problem in number theory : one of

my oldest theorems (found in 1932) states as follows : [1] Let
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al < az < . . . be an infinite sequence of integers no one divides

the other. Then

1		converges and in fact there is an absolute
1

	

ailog ai

constant C for which

i=1

is maximal if the a's are the primes. Perhaps a fast computer

and a little ingenuity will give a proof . My old problem is quite

different and computers will not be of any help. Let

al < a2 < . . .

	

be any sequence of positive real numbers for

which every i, j and k,

(1)

	

Ikeri - aj 1 > 1

Observe that if the a's are integers then (1) implies that no a

divides any other. Is it true that (1) implies that

7,	1 	<- ?

i=1

	

ai log ai

I could not even prove that (1) implies that

(2) lim inf

(3)

	

lim inf
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1	 < C. Probably		1
ailog ai

	

i=1 ailog ai

As far as I know the only result in this direction is in the

unpublished dissertation of John Haight, he proves that if the

a's are rationally independent then (1) in fact implies

/ 1

	

1~ = 0

X al<X /



Besicovitch proved (see Halberstam-Roth Sequences Chapter 5) that

(3) does not hold for the integers . I hope Haight will publish

his result and will not wait until he has to dedicate it to my

memory .

Just one word of caution to the-interested reader . Until about

1970 I was quite sure that my conjecture holds, but after a result

of Alexander I am no longer so sure . I proved about 50 years ago

[2] that if

1 < al < a IE < . . . < at < n is a sequence of integers for

which the products aiaj are all distinct then we have (, r (n)

denotes the number of primes < n),

3/4

	

3/4
(4)

	

rr (n) + C1

	

n 3/2

	

< max t < IT(n) + C2

	

n 2(log n) (log n) 3/2

where C1 and C2 are positive absolute constants . I am

sure that in fact there is an absolute constant C for which

n3/4
(5) -

	

max t = (n) + (C + o ki))

but I was never able to prove (5) .

I conjectured that (4) also holds if

	

1 < al < . . . < at < n

and if we assume that

(6)

	

laia3
- aras 1 > 1

(7)

	

t/n ---* 0 .
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(log n) 3/2

holds for every choice of i, j, r, s (the a's are of course

not assumed to be integers) . I Could not even prove that (6)

implies



To my great surprise Alexander [3] proved that (6) in fact does

not imply (7) and now I am no longer sure that my original

conjectures holds . In any case I offer 250 dollars for a proof or

disproof and dedicate the problem to my own memory . One final

remark. Let 1 < al < a2 < . . . be an infinite sequence of

real numbers satisfying (6) . Then trivially liu inf tn/n = 0,

(where to =

	

1),

	

perhaps

	

liu tn/n = 0 also holds .
ai<n

	

n -} -

Now I discuss some problems in geometry . Two of my oldest

problems in geometry state : Iet X1, . . ., Xn be any n

distinct points in the plane; is it true that they determine at

least cn/ Jlog n distinct distances? The lattice points show

that if true then apart from the value of c this conjecture

is best possible . I offer 500 dollars for a proof or disproof of

this conjecture which seems to me to be very deep [4] .

Is it true that the same distance can occur at most

1+c1/log log n
n

	

times? The lattice points again show that this

conjecture if true is best possible . Again I offer 500 dollars

for a proof or disproof of this conjecture [4] . These problems

can be posed for higher dimensions too but I think the plane seems

to be the most difficult and interesting case . A great deal of

progress has been made with these problems by Beck, F . Chung,

Spencer, Szemerédi and Trotter but the final victory still seems

to be very far [5], [6] .

Let X1, . . ., Xn be n points in the plane which determine

as few distinct distances as possible . Denote this minimum by

f2 (n) . Is it then true that the points

	

X1 , . . ., Xn

	

have
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lattice structure? The first step would be to prove that there

are cVFl of the Xis on a line. Is it true that if

X1 , . . ., Xn

	

determine

	

f2 (n)

	

distinct distances then there

are four of them which determine only two distances? I cannot

even prove that there are four such points which determine only

three distances . Is it true that if X1, . . ., Xn determine

only o(n) distinct distances then there are four of them which

determine only three distinct distances . I would guess that the

answer is no and I offer 100 dollars for a proof or disproof .

Trivially there must be four points which determine at most four

distinct distances, since for every

	

Xi

	

there must be

	

k

other points (for n > n (k) ) which are on a circle of center

Xi . Suppose we assume that no such circle exists and that no

k' of the points are on a line . How many distinct distances

must our points determine ? Füredi and I considered this question

some time ago. It would even be of interest to find n points no

three on a line no four on a circle which determine

	

0(n2 )

distances .

Many more problems of this type are posed in our joint papers

With G. Purdy .

Croft, Purdy and I conjectured that if there are n points in

the plane, then the number of lines which contain
2

> k of the points is < cn , this was

k3

proved by Szemeredt and Trotter and in a weaker form by J . Beck .

The paper of Szemeredt and Trotter contains many other deep and

interesting geometry problems, but I have to refer to their paper

for these [6] . Here I mention only one problem : Let there be

given n points in the plane, their result implies that the
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number of lines which contain > V of the points is < c ril .

It is easy to give n points which determine 2v + 2 lines

which contain of the points, the rectangular lattice shows

this . Sah (unpublished) showed that one can find 3,án such

lines and it is perhaps not hopeless to determine exactly (or at

least asymptotically) the maximum number of distinct lines which

pass through > V of our n points .

To end this paper I discuss some Euclidean Ramsey problems . We

called a finite subset S of some Euclidean space Ramsey [7] if for

every k there is an nk = n(S,k) so that if we partition

E n k (i.e . the nk dimensional Euclidean space) into k

subsets (Ai), 1 < i < k in an arbitrary way, at least one of

these subsets say Ai contains a subset which is congruent to

S . We proved that all parallelepipeds are Ramsey and that all

sets which are Ramsey are spherical. The simplest unsolved

problems were: are all obtuse angled triangles Ramsey? and is

the regular pentagon Ramsey?

P. Frankl and V . Rödl recently proved that all simplices are

Ramsey, they prove many other deep and interesting results, but

many unsolved problems remain, e .g. perhaps every finite set which

is spherical is Ramsey . Another interesting open problem is : Let

(a, b, c) be any non equilateral triangle . Is it true that if one

partitions the plane into two parts S1 S2 then for some

i = 1 or 2, Si contains three points (x, y, z) so that

the triangle (x, y, z) is congruent to (a, b, c) ?

Another interesting problem states as follows : Let S be a

subset of the plane so that no two points of S have distance
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1 . We conjectured that S (the complement of S ) then

contains the vertices of a unit square . R. Juhász [8] proved this

and in fact she proved that S contains to every four points a

set congruent to it. She showed that this no longer holds for

12 points but is it true for 5 points? And in fact do-, S

contain the vertices of a regular pentagon?

Five final problems : Let there be given n points in the

plane no three on a line and no four on a circle . Can it happen

that one of the distances occurs n - 1 times, one n - 2

times, etc. I. Palasta showed [9] that this is possible for

n = 7 . I do not think it is possible for large n in fact if

the n points are in general position (i .e . no three on a line

and no four on a circle) and

	

n

	

is large. They probably

determine more than n distinct distances, but

about this .

I know nothing

Let there be given n points in the plane no five on a line .

Is it true that they determine at most o(n2 ) lines which go

through 4 of the points .

B. Grünbaum [10] showed that one can have cn3/2 such lines and

this very well could be best possible .

Let X1, . . ., Xn be n points on a line . Denote by f(n)

the maxim= number of distinct unit circles which pass through at

least three of our points . I conjectured

f(n)/n--r - , f(n)/n2 -1 0. Elekes [11] found a very ingenious

construction for f(n) > c 1n3/2 , perhaps in fact

f (n) < c2n3/3 .

An old problem of L . Moser and myself states that if
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X1, . . ., Xn is a convex n-gon then no distance can occur

more than cn times, in fact perhaps 5n is best possible .
3

It is very annoying that we got nowhere with this very elementary

problem .

Finally let h(n) be the largest integer so that among any

n distinct points in the plane one can always find h(n) of

them so that no two of these h(n) points are at distance 1 .

Determine if possible h(n) and if this is impossible try to

determine lim h(n)/n . Perhaps h(n) > 4 . More generally

let h(n; R1, . . ., Rr) be the largest integer so that among any

n distinct points in the plane one can always find

h(n; R1,

	

Rr) of them so that no two of these

h(n; Rl, . . ., Rr) points are at distance R1,	

h (n)

	

min

	

h(n; R1, . . ., Rr,) . Determine orr Rl, . . ., Rr

estimate hr (n) as well as possible .
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