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In this paper we study several interrelated extremal graph problems:

(it Given integers s e, mr, what is the largest indeger fin. ¢ m) such that
every graph with » vertices and ¢ edges must have an induced m-vertex subgraph
with at least flm, ¢, m) edges!

(i) Given integers m, ¢, ¢', what is the largest integer gin, & ') such that any
twa n-vertex graphs ¢ and H, with ¢ ind ¢ edges, respectively, must have u com-
mon subgraph with at least gin, e, ¢) edges?

Results obtained here can be used for solving several guestions related to the
following graph decomposition problem, previously studied by two of the authors
dand others.

{iii)  CGiven imtegers p, r, what s the least integer £ = U(n, v such that for any
twe p-vertes r-uniform hypergraphs G and A with the same number of edges the
edge set BG) of & can be partitioned into £, £, and the edge set £ H) of # can
be partitioned inta £,.... & in such o way that for each [ the graphs formed by |
and E! are isomorphic, 01985 Aodemic Press. Ine,

. INTRODUCTION

For a graph G with vertex set V() and edge set E(G) let f(G, m) denote
the maximum number of edges in an induced subgraph of G on m vertices
and define

_|||"[”+ e,ml= min -I_IIrI[ f!, mh| i-'.{G}l =M, |E{G:|'t =E}_
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EXTREMAL SUBGRAPHS 249

[n other words, f{in, e, m) denotes the largest value k such that every graph
on # vertices and e edges must contain an induced subgraph on m vertices
having k edges.

Now suppose we have two graphs G and H (not necessarily having the
same number of vertices or edges). Let g(G, H) denote the maximum num-
ber of edges in a graph which is a subgraph of both & and H. We define

glnse, e’ )=min | g(G, H); (VG =n, [VIHY =n, |EG) =e | E(H)| =¢}.

Therefore any two graphs on n vertices and e, ¢ edges must have a com-
mon parl of gin, e, &) edges.

In this paper we will determing fin, e, m) and g(n, e, ¢') (up to within a
constant factor) for various ranges of ¢. These values turn out to be useful
in considering the following problem of graph decomposition [1, 2]

For two graphs (or r-uniform hypergraphs) G and H, let U{G, H) denote
the least integer r such that E{G) can be partitioned into E,... E, and
F{H) can be partitioned into Ej ..., E; in such a way that the graphs for-
med by E, and E] are isomorphic for each i (Note than an r-uniform
hypergraph H is just a collection £= E(H) of r-clement subsets (called
edges) of a set V=V{(H),) We define U(n, #)=max {U(G., H): G and H are
r-uniform hypergraphs, |V{(G)| = |V(H)| =n and |E(G)| = |E(H)| }.

It was proved in [1] that

Uin, 2)=3n+oln).
For r=3, in [3] it was shown that

eyn log log nflog < Uln, 3) < can™?
r_'3n"': s Un. rise, ni?
for r even and

i'.'5?!“ - 1 ¥ 2e - :IIIEU‘E ]ﬂg ?I'.-"lﬂg " g L‘rt . ’.}ﬂh ':_*”,—.-2

for r odd.
We will prove

¢y log log nlog n< Uin, 3) < c.n*?(log log n/log n) "

In [2. 3] the simultaneous decomposition of more than two graphs is also
investipated.

Another related problem is the determination of the largest unavoidable
graphs. A graph @ is called (n, ¢)-unavoidable if & is contained in every
graph on n vertices and e edges. Exact values and sharp bounds for the
largest (n. e)-unavoidable graphs for graphs and 3-uniform hypergraphs
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can be found in [4]. These values serve as lower bounds for giG, H).
However it is not surprising that the value of g{G. H) is in general much
larger than the number of edges in an unavoidable graph.

[L ON fin, e, )

Bounds for fin, e, m) lor certain values of ¢ and m can be found in the
literature [6, 7]. The most often seen lower bound for fim, e, m) can be
obtained by a standard averaging method (see [27).

Fact 1. f(n, &, m) = em’ein®,

However, in certain situations fin, ¢, m) can be much larger than m’e/n’
(ie.. the ratio of fin e, m) and m’e/n is unbounded). For example, every
graph of n™* edges has an induced subgraph on n'? vertices with n'?
log n/log log n edges! For general n, e, m we have the following:

THEOREM 1. chkm < f(n, e, m)if

o, Ea ] 50 kn*\ % p
('hi ) {—” and f(n, e, my<¢kem if ( ) = —
2ent m - et m

Froof.  First we derive the lower bound. Let G denote a graph on n ver-
tices and e edges. For a vertex v and a subset S< F(G) with | S| =m'=m/2
we define’

glo, S)=1 il v is adjacent te & vertices in S,
=1 otherwise.

Obviously for deg (r,)=d, we have
- d fn—d =1
1.5 ;__ ¥ i
zs05)>() ("2 )

Y g, )z § (d) (” = ').
L5 iI=1 k

m'—k

and

Let ¥, denote all the vertices v, with d,<kn/m and V.=V —VF,. We
have }, o, =2¢. Now we consider the following two possibilities:

* We remark that slthough m' may not be integral such slatements are always made with
the implicit understanding that the graphs (and quantities) involved may have to be adjusted
slightly by adding or deleting {asymptotically) trivial subgraphs {and amotnts) so as to make
the stated inequalities troe,
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Case 1. ¥, v, d,=e¢. We note that the function f(x) = ({)("*3") is con-

vex if t-—':.kn,zm since  flx+ 1)+ fix=1)=2f(x) i (m'+m)
21— 2kmnx + (k — 1) n® =0. Therefore we have

. n—d—1"
M e ; i
EREHJ ) "(9( o B )
where d=e/n. Therefore there exists an S, such that
() ( i)
m'— .
( ) =my2

".

Z g{ur':l "qﬂj =

Therefore G contains an induced subgraph &' on 8, together with m/2
additional vertices each of which has k edges to 5,. Thus " has km/2
edges.

Case2. ¥,.y, di=e Let d, .. d, bethe m' largest degrees in . If
m' < ||, then

i d, = knf2.

=1

If m' = | V.|, then again we have 3™ d, 2 e = kn/2. Let w(r;) denote the
number of neighbors of v, in {t,... ¢, . Then we have

L]

¥ )= Z d; = kn/2.

i=| I=1

Let V', denote the m'v/s with the largest values of w{v,). Then

Y lv)zkm'/2

cE ¥z

Therefore the induced graph 7 on {v... v, | Vs has at least km'/4
edges.

To establish the upper bound we will establish the existence of a graph
(i, on p vertices and ¢ edges with the property that every induced subgraph
on m vertices has at most 100 km edges. We consider the family F of all
graphs on n vertices and e edges. We say a graph G e Fis bad if there is an
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induced subgraph on m vertices having at least 100 km edges. The total
number of bad graphs is at most

(&) ) (&) )

which is fewer than the total number of graphs in F, since (n/m)™
{me/50 n'k )™ ¥ < 1. Therefore there is a good graph in F and

Sin, e my= 100 ko,

The prool of Theorem 1 15 completed.
Theorem 2 follows immediately [rom Theorem 1.

Tuarorem 2. Suppose n=ol#)

{a) For m= n® logn/e, we have

] 2

me . e
=< [0 8, m) =gt —,
[ n

(b)  For n¥le<m=n’lognje we have

| ‘m
cmlogn - By c'm ugnl :
log (n° log n/me) log (1” log n/nie)

{e) For n*/(elognlog log n)<m<nile we have

cmlogn

_mlogn
log logn

L m{j‘ﬂ, & m]{:.r'

id)  For m<n*/lelog n log log n) we have

e log c'mlog n

——— = f(n e, M) —————
log (n"/me) f i log (n”/me)’

where o, ¢ denote appropriate constants independent of n and .

Proof. Choose an appropriate value of & in each case and apply
Theorem 1. |}
Here are a few easy observations:
Fact 2. ¢(n” log n/e log log n) < fin. e, n*fe) < ¢'(n® log nflog log n).
Fact 3. For m=en we have fin, ¢, m)=c'e
Fact 4. For any m, we have f{n, e, m)Z=min {n/2, e}



EXTREMAL SUBGRAPHS 253

Proof. Consider the maximum star forest &' (ie., the vertex disjoint
union of stars) on m vertices, Either ' does not contain isolated vertices
(thus has at least my2 edges) or all e edges are in G,

Mow we consider r-uniform hypergraphs, We can ask the question of
determining the largest value of f(n, e.m) such that every r-uniform
hypergraph on n vertices and ¢ edges must contain an induced subgraph on
m vertices having f.(n, e, m) edges.

THEOREM 3. For e < (%) we have

r k iy Sk
chkm < fin, e, m)=<c'km if é(ﬂ,) gi-{(m kA )

em’ ! mo e !

4

where ¢ and ¢ are constanis depending on r,

Proof, The method for obtaining the bounds is quite similar to that in
Theorem 1 and will be omitted.

I Ow gin, e ')

Suppose (7 and H are two graphs on # vertices and ¢ and ¢ edges. In
[17 it is proved that there is a common subgraph of ee'/(1) edges.
Fact 5 [1] gln e e')=ee'/(4).
In this section we will prove that in some cases g(n, ¢, ¢') is much larger
than e¢'/{4) {hy a factor of powers of log n).

THEOREM 4. For n “ee’ log n log log n<(e')"*(log nflog log n)'* <
e < efn we have

ee’! logn . ee’  logn
(e e iy, g, O —

()" (2)

Proof, Let w denote (log n/log log n)"* Let G and H denote two
graphs on n vertices and e ¢ edges, respectively. We consider two
possibilities:

loglogn

Case 1. H has at least (¢') e nonisclated vertices. We can then find a
star forest Fin A with (¢'1"%eo/2 edges. In  there are at least e/n vertices
with degree =e/n. Since e/n = (¢')*w, F can be embedded in G. Therefore

¥
d

Y B
glG, HY =2 (e') o2 —w

(2)
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Case 2. H has at most (¢")'"*w nonisolated vertices. Using Theorem 2
there is an induced subgraph G' in G on (e')*w vertices with (¢')"w
(log n/log log n) edges. By Fact 3, H and ' have a common subgraph with

i iyl
f'(e"!“zw—mu—]ogn "(Ew]I m)?if'il"zw

loglogn/\ 2
cee’ 5
=— " edges,
"
(I
Thus we have proved that
ee'  logn

g, e o) —— ——
n) log log n
5

For the upper bound, we can choose & to be a graph with all induced sub-
graphs on v’ﬁ vertices having at most f(n, ¢, \ﬁ?] edges and H to be a
graph on \.#'F?F vertices together with n - \;’F isolated vertices. Therefore
a common subgraph of G and H can have at most f(n, e, ,/2¢') edges. For
¢’ in the indicated range, we have {by Theorem 2) that

gime, &')< fin, e, v-’?}

= c‘\;’? log n/log (wr;—,l{_ log n)

—~ logn

A

§ i —
¥ log log n

=4

Therefore Theorem 3 is proved. We have also proved the following:
Fact 6. gin e e')<fin, e, \,f"'lr'].

IV. Tue CoMMON SUBGRAPH OF TwO 3-UniForM HYPERGRAPHS

First we will state a few auxiliary facts.

Fact 7 [5]. Any 3-uniform hypergraph of » vertices and e triples
contains a subgraph of ./e/n—1 triples which form a strong A-system
denoted by S( V”a— 1) {i.e., there is a single vertex that is the intersection
of any two of these wx’:ﬁ — 1 triples.)

Fact 8 [3]. Any two 3-uniform hypergraphs & and H on »n vertices
and e, ¢' triples has a common subgraph of ee'/(5) triples,
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Fact 9 [3]. A 3-uniform hypergraph with e triples either has x
pairwise disjoint triples or has maximum degree v if Iy < e
For certain values of e, we can get a better lower bound for the
maximum number of edges in a common subgraph of two 3-uniform
hypergraphs than that in Fact 8

Tueorem 5. For n7%/(log aflog log a)'? <e<n™ (lognfloglogn)'®
any iwe I-uniform hypergraphs on n vertices and ¢ triples have a common
=l e g
subgraph with ¢,/e/n (log n/log logn)"" triples.

Proaf. Suppcr&a & and H are two 3-uniform hypergraphs with ¢ edges,
where ¢ is in the indicated range. Set ¢ = log n/log log n. Suppose G and H
do not have a common subgraph of \..fe.-’n 1'% triples. We may assume G
does not contain ,/e/n ' disjoint triples. Suppose there is a vertex u in H
with degree nr'”%, By Fact 9, G has a vertex v with degree |, /ne/t'. Bul two
2-praphs with V-’:r_e.-".r”* and nt'”? edges must have a common subgraph of
size /e/m 1'% (by Fact 5), this is a contradiction. Thus we may assume H

N/ )
has maximum degree at most at'” and contains at least e/3nr'"? disjoint
triples. Suppose (¢ has degree sequence o, =d, = -+ 24, Let s denote the
smallest integer satisfying 3, . o ze2. We consider the following
possibilities, The first two cases are quite easy. The third case is somewhat
complicated,

Case 1, s<i"/2 In G there is a vertex w with degree ¢/t"", In H there
is a vertex v, with degree ¢/n, Now we follow the proof of Theorem 4. Let G
and A denote the 2-graphs formed I:n:.r triples containing v and v in G and
H, respectively, If H has at least \,f.-?,-'n ks nnmsolated vertices, then we
have g(G, H)=./e/n ¢, I H has at most \;c;n i nﬂlmkatcd vertices,
then by using Thccn:rn 2 @ contains a subgraph on ,/e/n r”" vertices and
ﬁ t** edges. Therefore by Fact 2, we have g(G, H]}\;e.fr.r e

Case2. s> ./e/n 1", Consider a maximum set T of x vertex-disjoint
triples in (. Suppose v = .Je"n t'"* <5 The number of triples containing
any vertex in T is fewer than ¥7-/ d, < e/2. Thus there is a triple disjoint
from 7. This contradicts the maximality of T. Therefore & contains
wﬁ t' disjoint triples, which is again a contradiction.

Cased. M2l<s< \_;ﬁ Y4 1If there is a vertex in G with degree at
least e/1'™, then we can proceed as in the same way as that in Case 1. Thus
we may assume that

Property 1. All vertices in G have degree at most e/r'",
From Fact 7 we know that any 3-uniform graph on e edges contains a

strong A-systems S(,/e/n— 1). Since H has maximum degree at most nr'?,
we can prove by greedy algorithm to obtain the following:
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Property 2. H contains any set of disjoint unions of S(m;) satisfying
¥,m <e/10n:"* and ml-.{,\fﬁ— 1.

Now we consider the subgraph G° of G formed by /2 edges each of
which is incident to a vertex in vy,..., v,, the 5 vertices with largest degrees,
Let T denote a set of vertex disjoint S(k,), i=l...w, in G with the

=
property that 32" | k, is maximum and k,<./e/2n. (If there are two such
sets we choose the one with larger w.) IT ¥k, = /e/n 1"%/10, G and H have
a common subgraph of the desired size. We may assume E,k,-:;.\/eTn
t"#/10. Let W denote the union of all vertices in T

Property 3. In G’ there are at least ¢/4 triples each of which contains
two vertices of W,

Froof. Suppose the contrary, There are /4 triples in G° each of which
contains exactly one vertex in W, which must be one of the {v,,..u,}.
Because of the maximality of T, any v,, 1 £{<y, in a triple with two ver-
tices not in W must be a center of S(,/e/2n— 1). Since Yk, < \/t’,r_ﬂ 114710,
there are fewer than +'%)5 such ¢, Since the maximum degree is at most
e¢/t"*, there are fewer than ¢/5 such triples, a contradiction.

Therefore there are at least ¢/4 triples in ' which form a subgraph G" of
G' with the property that any triple in G" contains one vertex in {v,..., 0},
and one vertex in W= {v,,.., v, }, where &' < frt'—f"; r""“

Property 4. In H there is a subgraph H' with xem 1*4/5 triples and

a subset W" of V(H), |W'|< fe,-‘nr‘ “ such that any triple in H' has two
vertices in W',

Proof. For any set S< V(H) with |S| =£\fﬁ 1" = m we define
giv, §)=1 if|[{Es E(H):ve E,EnS+ @)} =r=15.

=1 otherwise.

Then for deg (e,) =4, we have

d\fn—2d,— 1"
th.,‘i}}( )( LB )
N\fn—2d,~1
Y dlo,. 9= Ff I i )
S Sj}ﬁ(»f')( m—r

Let ¥, denote all the vertices with &, < fnfm and V,=VF—V,. We have
N .d, = 3e. Now we consider two possibilities,

Case l. I, .y d;ze The function fi{x}=(:)(",>,") can easily be
checked to be convex for x = m/(dm).
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Therefore we have
dhin—2d—1
g san() ),

where d=¢/n.
Therefore there exists a set S, such that

~(:?)(}:25)

Y qloy, Sg) > ————=

(n)

Therefore we can choose W' to be the union of §; and m vertices v, having
gle,. 84)= 1. The number of triples containing two vertices in W is at least

mr=/efn t¥%5.

Casel. ¥, .y, d =e Let d,,.. d, be the m largest degrees in G. If
m< |V, then 37 diz2mid i m>|V,|, then 37, d.Z2e=mid
Let wiv), 1 <i<n, denote the number of neighbors of v, in {v..., v, }.
Then we have
Y oo} = mi4.

=1

Let V', denote the m v/s with the largest values of w(p;). Then we have

Z wiv) = tmjd.

ey
Therefore the number of triples containing two vertices in {uv .., Uy |
V, is at least mt/24 = /efn 1724,
Now let H' denote the graph formed by these triples.

Property 5. G" and H' have a common subgraph with at least
Jein 144000 triples.
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Proof. Order the vertices in G* and H' so that V{G")= {v;,.., v,} with
We {0l and V(H)={0],..0,} with W'c{v},... v}, where

w=./ent"" Let p denote a permutation on |1,.., @} and g denote a per-
mutation on {1,.., n}. For | < f<w=<k, we define

F, i k=1 if {v;,v,.0,.) € F(G")and {Ppins Vs yiny ) € VIH'),

=] otherwise

Then for fixed (i, j, k) with {v,. v, v} VIG"),
Y P, (0 k)2 e2(w—2)! (n—1),
Py

and

Y F i jk)ze(w=2) (n—1)/4,

(kD
A

where e' = |V(H')| = /efn-*™/6.
Therefore there exist p, and g, such that

ee'(w—2) (n—1)!
4:mln!

L ein 145

" 150(y[e/n 142 n

=./efn /750,

E Fyp iy 1y k) =
ik

Since every triple can be counted at most 6 times, there is a common sub-
graph with | /e/n /4000 triples. This completes the proof of Theorem 6.

V, (JH UI{_H_ 3}

In this section we will improve the upper bound for [';(n, 3), the number
of subgraphs in the simultaneous decompositions of two 3-graphs on n ver-
tices as defined in Section L

THEOREM 6. cn*” log log mflog n< Us(n, 3) < c'n™(log log nflog n)'".

Proof. The lower bound is proved in [3]. We will only work on the
upper bound. Now we consider two 3-uniform hypergraphs G, each with n
vertices and e triples. We will successively remove isomorphic subgraphs &
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from & and A, thereby decreasing the number ¢ of triples currently remain-
ing in each of the original graphs. The subgraph F= Fle) removed will
depend on the current value of e.

Again ¢ denotes log nflog log n. We distinguish three ranges of e;

(i) ezn""t"® In this case we repeatedly remove a common sub-
graph Fle) having at least ¢*/(4) triples. The existence of such an Fle) is
guaranteed by Fact 8. Let ¢, denote the number of triples remaining in each
hypergraph after i such subraphs have been removed. Then we have

1&m
&+ | ﬂ_t’,—ﬁ?l"( )
I3

Setting w,=e/4) we have

4

Ry S0 — 0.

Since z, < | and 1/i— 1/ < 1/{i+ 1), it follows by induction that &, < 1/i for
53,176

all |, Thus, after #*7¢~ """ steps, the remaining graphs have at most 0™t
Lriples,

(i) #7'®>ez=n"""'7 For this range, we repeatedly remove a
common subgraph Fle) with ¢ e/nt" triples (guaranteed by
Theorem 5). Let e, denote the number of triples in each graph at the begin-
ning of this process. In general, if ¢, denotes the number of triples remain-
ing afier removing i such subgraphs then we have

-
E-" 14
g lpsd =y =1t
"

Setting x, = e .n/le 1'7), we have

£
By | S0 — o 0

and a,= 8% '7/2. Suppose

&, < (¥ Voo, — 2% for some (=0,
Then
AT LTSy ¥, 55 S e PR TL VI

<(n'? Ve, — (14 1)2)%

%y Sin

Therefore, alter at most #*°1 Y/¢, steps, the remaining graphs can have at
most 11— triples.

BRI TS
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{iii) e<n*t"'2 Here we repeatedly apply Fact 7 and remove Fle)

with Vﬁ —1 triples. Deline ¢, and ¢, as before. We have

[ e
EJ’+!£E|" E'

Agiin we can prove by induction that
en< (2n¥0r 10— 2

Therefore after at most 20" "® steps, all edges in each graph will have
been removed. We have proved

Usin, 3)< e'n¥3(log log nflog n)'™,

We remark that the power | of (log log n/log n) for the upper bound can
probably be improved slightly by careful examination of more cases.
However the main intent here is to show that Us(#s, 3} is much smaller than
c'n*?. We remark that the averaging argument used here does not seem to
be able to bring down the upper bound to en®” log log n/log n. Some new
idea is needed to close the gap.
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