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In this paper we study several interrelated extremal graph problems :

(i) Given integers n, e, m, what is the largest integer f(n, e, m) such that
every graph with n vertices and e edges must have an induced m-vertex subgraph
with at least f(n, e, m) edges?

(ü) Given integers n, e, e', what is the largest integer g(n, e, e') such that any
two n-vertex graphs G and H, with e and e' edges, respectively, must have a com-
mon subgraph with at least g(n, e, e') edges?

Results obtained here can be used for solving several questions related to the
following graph decomposition problem, previously studied by two of the authors
and others .

(iii) Given integers n, r, what is the least integer t = U(n, r) such that for any
two n-vertex r-uniform hypergraphs G and H with the same number of edges the
edge set E(G) of G can be partitioned into E,, .., E, and the edge set E(H) of H can
be partitioned into E,, . ., E, in such a way that for each i, the graphs formed by Ej
and E; are isomorphic .
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1. INTRODUCTION

For a graph G with vertex set V(G) and edge set E(G) let f(G, m) denote
the maximum number of edges in an induced subgraph of G on m vertices
and define
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f(n, e, m)=min {f(G, m) :~V(G)1 =n, 1E(G)1 =e} .
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In other words, f(n, e, m) denotes the largest value k such that every graph
on n vertices and e edges must contain an induced subgraph on m vertices
having k edges .

Now suppose we have two graphs G and H (not necessarily having the
same number of vertices or edges) . Let g(G, H) denote the maximum num-
ber of edges in a graph which is a subgraph of both G and H. We define

g(n, e, e')=min {g(G, H) : I V(G) I Win, I V(H) I <n, IE(G)I =e, IE(H)I =e} .

Therefore any two graphs on n vertices and e, e' edges must have a com-
mon part of g(n, e, e') edges.

In this paper we will determine f(n, e, m) and g(n, e, e') (up to within a
constant factor) for various ranges of e . These values turn out to be useful
in considering the following problem of graph decomposition [1, 2] .

For two graphs (or r-uniform hypergraphs) G and H, let U(G, H) denote
the least integer t such that E(G) can be partitioned into E,	E, and
E(H) can be partitioned into E,, . . ., E' in such a way that the graphs for-
med by E; and EÍ are isomorphic for each i. (Note than an r-uniform
hypergraph H is just a collection E= E(H) of r-element subsets (called
edges) of a set V = V(H) .) We define U(n, r) = max { U(G, H) : G and H are
r-uniform hypergraphs, I V(G)~ _ ~V(H) =n and IE(G)~ _ ~E(H) } .

It was proved in [ 1 ] that

U(n, 2) = 3n + o(n) .

For r > 3, in [3] it was shown that

c, n'l 3 log log n/log n < U(n, 3) < c 2 n'~ 3

c3nr~ 2 _< U(n, r) < c,nr12

for r even and

for r odd .
We will prove

c, n'/ 3 1og log n/log n < U(n, 3) < c,n'/ 3 (log log n/log n)"'

In [2, 3] the simultaneous decomposition of more than two graphs is also
investigated .

Another related problem is the determination of the largest unavoidable
graphs. A graph G is called (n, e)-unavoidable if G is contained in every
graph on n vertices and e edges . Exact values and sharp bounds for the
largest (n, e)-unavoidable graphs for graphs and 3-uniform hypergraphs

csn(r-1)21(2r-3)1og log n/log n < U(n, r) < c,n / 2
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can be found in [4] . These values serve as lower bounds for g(G, H) .
However it is not surprising that the value of g(G, H) is in general much
larger than the number of edges in an unavoidable graph .

11 . ON f(n, e, m)

Bounds for f(n, e, m) for certain values of e and m can be found in the
literature [6, 7] . The most often seen lower bound for f(n, e, m) can be
obtained by a standard averaging method (see [2]) .

Fact 1 . f(n, e, m) > cm 2eln 2 .
However, in certain situations f(n, e, m) can be much larger than m2eln 2

(i .e ., the ratio of f(n, e, m) and m2eln is unbounded). For example, every
graph of n1/3 edges has an induced subgraph on n 1/3 vertices with n"
log nhog log n edges! For general n, e, m we have the following :

THEOREM 1 . ckm < f (n, e, m) Zf

2 k

	

2 50k

C~m)
< mn and f (n, e, m) < c'km if 50 kn

	

> m .

Proof. First we derive the lower bound . Let G denote a graph on n ver-
tices and e edges. For a vertex v and a subset S-- V(G) with IS1 =m'=m/2
we define'

g(v, S) = 1

	

if v is adjacent to k vertices in S,

= 0

	

otherwise .

Obviously for deg (v,) = d; we have

~d- n-d - 1
g(vi, S) > `k ( m' j k )

and

g(vv S) > ~ ( ki)
(n-di-
m-k

1 1
is

	

= t

	

/

Let V, denote all the vertices v i with d, < kn/m and V2 = V- V, . We
have Y; di = 2e. Now we consider the following two possibilities :

* We remark that although m' may not be integral such statements are always made with
the implicit understanding that the graphs (and quantities) involved may have to be adjusted
slightly by adding or deleting (asymptotically) trivial subgraphs (and amounts) so as to make
the stated inequalities true .
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Case 1 .

	

d > e. We note that the function f (x) = (x)(" - X - ' ) is con-k

vex if x<kn/2m' since f(x+1)+f(x-1)>2f(x) if (m2 +m)
X 2 - 2kmnx + (k - 1) 2 n2 > 0 . Therefore we have

d\ -d-I g(v,, S) > n (k~ (nm' - k 1r .s

where d = e/n . Therefore there exists an S o such that

d (n-d-t\
n

k

	

m'-k /
S(v-> )o) >

(m')

gem
k >>n( kn2 ) m/2.

Therefore G contains an induced subgraph G' on S o together with m/2
additional vertices each of which has k edges to So . Thus G' has km/2
edges .

Case 2.
IV,

E vz d, > e . Let d1 , . . ., dm , be the m' largest degrees in G. If

M' < I V2 1, then

Y, d, > kn/2 .
7=1

If m'>. IV, 1, then again we have Y_ i m', d; > e > kn/2 . Let w(vi) denote the
number of neighbors of v ; in {v ;, . . ., v m -} . Then we have

n

	

m'

cv(v,) _

	

d,> kn/2 .
i=1

	

i=1

Let V 3 denote the m'v,'s with the largest values of w(v,). Then

Y, w(v) > km'/2 .
e V3

Therefore the induced graph G' on {v,, . . ., vm-} v V3 has at least km'/4
edges .

To establish the upper bound we will establish the existence of a graph
Go on n vertices and e edges with the property that every induced subgraph
on m vertices has at most 100 km edges. We consider the family F of all
graphs on n vertices and e edges. We say a graph G EF is bad if there is an
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induced subgraph on m vertices having at least 100 km edges . The total
number of bad graphs is at most

m

	

n
n

	

2

	

2
«)_

100 km

m 100 km

	

e - 100 km

which is fewer than the total number of graphs in F, since
(me150 n2k)so km < 1 . Therefore there is a good graph in F and

fin, e, m) < 100 km .

The proof of Theorem 1 is completed .
Theorem 2 follows immediately from Theorem 1 .

THEOREM 2. Suppose m = o(n)

(a) For m >- n2 log nle, we have

m2e

	

m2e
c nz < f(n, e, m) < c'

n 2 .

(b) For n2le < m S n' log nle we have

cm log n

	

c'm log n
<	

log (n 2 log n/me) <f (n, e, m) log (n 2 log n/me)

(c) For n'l(e log n log log n) < m < n 2le we have

m log n

	

m log n
c log log n < f (n, e

'
m) < c log log n

(d) For m < n 2l(e log n log log n) we have

cm log n

	

c'm log n
log (n'lme) < f (n, e, m)

<	2	
log (n /me)'

where c, c' denote appropriate constants independent of n and e .

Proof. Choose an appropriate value of k in each case and apply
Theorem 1. /

Here are a few easy observations :

Fact 2. c(n' log n/e log log n) < f(n, e, n 2/e) < c'(n 2 log n/log log n) .

Fact 3. For m = cn we have J '(n, e, m) >. c'e.

Fact 4. For any m, we have f(n, e, m) >. min {m/2, e} .
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Proof. Consider the maximum star forest G' (i .e ., the vertex disjoint
union of stars) on m vertices . Either G' does not contain isolated vertices
(thus has at least m/2 edges) or all e edges are in G' .

Now we consider r-uniform hypergraphs . We can ask the question of
determining the largest value of fr(n, e, m) such that every r-uniform
hypergraph on n vertices and e edges must contain an induced subgraph on
m vertices having fr(n, e, m) edges .

THEOREM 3 . For e < (z) we have

k1

	

kn

	

n

	

50 knr 50k

ckm < fr(n, e, m) < c'km

	

i
f 2 em

1 y
m
<

em l

where c and c' are constants depending on r .

Proof. The method for obtaining the bounds is quite similar to that in
Theorem 1 and will be omitted .

111 . ON g(n, e, e')

Suppose G and H are two graphs on n vertices and e and e' edges . In
[1] it is proved that there is a common subgraph of ee'/(2) edges .

Fact 5 [1 ] . g(n, e, e')>.ee'/(z) .

In this section we will prove that in some cases g(n, e, e') is much larger
than ee'/(z) (by a factor of powers of log n) .

THEOREM 4 . For n Zee' log n log log n < (e')'/2(log n/log log n) 1 / 2
n 2/e < e/n we have

cc' log
n	<

	

ee' log n
c		g(n, e, e') < c'	

(n)

log log n

	

(n)

log log n
2

	

2

Proof. Let w denote (log n/log log n)'' 2 . Let G and H denote two
graphs on n vertices and e, e' edges, respectively . We consider two
possibilities :

Case 1 . H has at least (e') 1/2 o) nonisolated vertices . We can then find a
star forest F in H with (e')'/2(o/2 edges . In G there are at least e/n vertices
with degree >, e/n . Since e/n >. (e' ) 1 /2w, F can be embedded in G . Therefore

cee'
g(G, H) % (e' )1 /2(o >	 (o

(n)
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Case 2. H has at most (e')'~'co nonisolated vertices . Using Theorem 2
there is an induced subgraph G' in G on (e')'~ 2co vertices with (e')'I'co
(log n/log log n) edges . By Fact 5, H and G' have a common subgraph with

e '( e ')' /zwlogn 	(e') 1/2
(o > (e , ) i / z(0

log log n'( 2 )

Thus we have proved that
ee' log n

g(n, e, e')
(n) log log n'
2

For the uppe r bound, we can choose G to be a graph with all induced sub-
graphs on J2e' vertices having at most f(n, e, 12e') edges and H to be a
graph on ,12e' vertices together with n - 12e' isolated vertices. Therefore
a common subgraph of G and H can have at most f(n, e, 2e') edges . For
e' in the indicated range, we have (by Theorem 2) that

g(n, e, e') < f (n, e, \12e')

cee'
wZ edges .

(n)
2

z

	

~
c'~2e' log n/log ((

e)'/2 e log n/

log n
log log n

Therefore Theorem 3 is proved . We have also proved the following :
Fact 6 . g(n, e, e'),< fin, e, \/2e') .

IV. THE COMMON SUBGRAPH OF TWO 3-UNIFORM HYPERGRAPHS

First we will state a few auxiliary facts .
Fact 7 [5] . Any 3-uniform hypergraph of n vertices and e triples

contains a subg raph of ,,Ieln - 1 triples which form a strong d-system
denoted by S(.,Ieln - 1) (i.e ., there is a single vertex that is the intersection
of any two of these teln -1 triples .)

Fact 8 [3] . Any two 3-uniform hypergraphs G and H on n vertices
and e, e' triples has a common subgraph of ee'l(3) triples .
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Fact 9 [3] . A 3-uniform hypergraph with e triples either has x
pairwise disjoint triples or has maximum degree y if 3xy < e .

For certain values of e, we can get a better lower bound for the
maximum number of edges in a common subgraph of two 3-uniform
hypergraphs than that in Fact 8 .

THEOREM 5 . For n 5/3/(log n/log log n)'I 3 < e < ns / 3 (log n/log log n)'I6
any two 3-uniform hypergraphs on n vertices and e triples have a common
subgraph with c .Jeln (log n/log log n)'/4 triples.

Proof. Suppose G and H are two 3-uniform hypergraphs with e edges,
where e is in the indicated range . Set t =log n/log log n . Suppose G and H
do not have a common subgraph of teln t'/4 triples. We may assume G
does not contain teln t '14 disjoint triples . Suppose there is a vertex u in H
with degree nt 1 /2 . By Fact 9, G has a vertex v with degree "Inelt 1 / 4 . But two
2-graphs with nelt'/ 4 and nt'/ 2 edges must have a common subgraph of
size ,Ie/n t '/4 (by Fact 5), this is a contradiction. Thus we may assume H
has maximum degree at most nt'/2 and contains at least e/3nt'/ 2 disjoint
triples . Suppose G has degree sequence d, > d2 > . . . > d,, . Let s denote the
smallest integer satisfying Y_ r,, d; > e/2 . We consider the following
possibilities . The first two cases are quite easy . The third case is somewhat
complicated .

Case 1 . s < t'l 4/2 . In G there is a vertex a with degree e/t' 4 . In H there
is a vertex v, with degree e/n . Now we follow the proof of Theorem 4 . Let G
and H denote the 2-graphs formed by triples containing u and v in G and
H, respectively . If H has at least teln t'/4 nonisolated vertices, then we
have g(G, FI)> e/n t'/ 4 . If H has at most Jeln t'/ 4 nonisolated vertices,
then by using Theorem 2 G contains a subgraph on eln t '/4 vertices and
.,Ie/n t514 edges. Therefore by Fact 2, we have g(G, H) >

	

/ t '
/
4 .

Case 2 . s > e/n t'/4 . Consider a maximum set T of x vertex-disjoint
triples in G. Suppose x < .,Ieln t 1/4 < s . The number of triples containing
any vertex in T is fewer than Y_, i d; < e/2 . Thus there is a triple disjoint
from T. This contradicts the maximality of T. Therefore G contains
.Jeln t 1/4 disjoint triples, which is again a contradiction .

Case 3 . t'/4/2 < s < Je/n t 1 / 4 . If there is a vertex in G with degree at
least elt ' /4 , then we can proceed as in the same way as that in Case 1 . Thus
we may assume that

Property 1 . All vertices in G have degree at most elt 1 / 4

From Fact 7 we know that any 3-uniform graph on e edges contains a
strong d-systems S(.Je/n - 1). Since H has maximum degree at most nt 1/2,
we can prove by greedy algorithm to obtain the following :
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Property 2 . H contains any set of disjoint unions of S(m,) satisfying
Y,rm, < ellOnt 1 / 2 and m ; <,Iel2n-1 .

Now we consider the subgraph G' of G formed by e/2 edges each of
which is incident to a vertex in v,, . . ., v s , the s vertices with largest degrees .
Let T denote a set of vertex disjoint S(k i ), i= 1, . . ., (o, in G' with the
property that Yw , k i is maximum and k; < ,Jel2n. (If there are two such
sets we choose the one with larger o) .) If L,k t ,> ,teln t' 14/10, G and H have
a common subgraph of the desired size . We may assume E;k, < -Ileln
t'/ 4/10 . Let W denote the union of all vertices in T.

Property 3 . In G' there are at least e/4 triples each of which contains
two vertices of W.

Proof. Suppose the contrary . There are e/4 triples in G' each of which
contains exactly one vertex in W, which must be one of the {v,, . . ., VA .
Because of the maximality of T any v„ 1 < i < s, in a triple with two ver-
tices not in W must be a center of S(Ie/2n - 1) . Since Y-k, < Je/n t 1 / 4/10,
there are fewer than t '/4 /5 such v ; . Since the maximum degree is at most
e/t'/4 , there are fewer than e/5 such triples, a contradiction .

Therefore there are at least e/4 triples in G' which form a subgraph G" of
G' with the property that any triple in G" contains one vertex in {v, Vs},
and one vertex in W= {v,, . . ., v,,- , where s'< Ieln t'i 4 .

Property 4 . In H there is a subgraph H' with teln • t5/4/5 triples and
a subset W' of V(H), I WI < Ieln t í14 , such that any triple in H' has two
vertices in W.

Proof. For any set S-- V(H) with IS1 _-'

q(v, S) = 1

	

if s{E C E(H) : v c E, E n S 0 0111 > t'= t/5,

= 0

	

otherwise .

Then for deg (v,) = d; we have

~: q(v" S)% t
d'i
X

n -
m-2dt

11; -
s

E q(vv S) > C d;1 Cn- 2dt - 1~
s

	

t /I

	

m-t

t'/4 = m we define

Let V, denote all the vertices with d i < to/m and V z = V- V, . We have
Y,d, >, 3e . Now we consider two possibilities .

Case 1 . Zi,E, .
VI

d ~> e . The function fI(x)

	

-zx t ') can easily be
1

	

m-t
checked to be convex for x < to/(4m) .



Therefore we have
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q(vi, S) > n
(d)(n - 2d - 1

,t

	

m-t

where d = e/n .
Therefore there exists a set S o such that

> n( )(m,
q(v So)

(m)

em
)n (t,n2

e3/2
n (2n5/2 t 3/4

J

n
C

Zt)1/4

> m .
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Therefore we can choose W to be the union of S o and m vertices v ; having
q(v„ So ) = L The number of triples containing two vertices in W is at least
mt =

	

/n t á14/á .

Case 2 . Y_,,, v, d; > e. Let d, , . . ., d„, be the m largest degrees in G . If
m ~< I V2 I, then Y_ ; , d, > to/4. If M > I V2 1, then Y_m , d; > e > to/4 .

Let o)(v,), 1 ~< i < n, denote the number of neighbors of v, in {v,, . . ., v,,,} .
Then we have

n

I w(v,) > to/4 .
i=1

Let V3 denote the m v s with the largest values of o(v i ). Then we have

Y, a)(v) > tm/4 .
vE V

Therefore the number of triples containing two vertices in { v, , . . ., vm } v
V3 is at least mt/24 = eln t 5/ 4/24 .

Now let H' denote the graph formed by these triples .

Property 5 . G" and H' have a common subgraph with at least
,,Ieln 1 3/ 4/4000 triples .
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Proof. Order the vertices in G" and H' so that V(G") = {v,	v„} with
W sl~ {v i , .. ., v",} ; and V(H')= {vi, . . ., v'„} with W' {v,, . . ., vw}, where
w = e/n t l~ 4 . Let p denote a permutation on { 1, . . ., o) } and q denote a per-
mutation on { 1, . . ., n } . For 1 < j < co < k, we define

Fpq(', j, k) = 1

	

if 1 v', vj, vkI E V(G " ) and IVp(i)I v p(j)I vq(k)1 E V(H'),

= 0

	

otherwise.

Then for fixed (i, f k) with {v„ v;, vk } E V(G"),

Y-Fp, q(i, j, k)>e'2(w-2)! (n-1)!,

and

p,q

Y- Fp,q(i, j, k) > ee'(co - 2)! (n-1)!/4,
(±,j,k)
p,q

where e'= I V(H')l = eln • t5/4/6 .
Therefore there exist po and qo such that

k)

7'

	

ee'(co-2)! (n-1)!
FPO,gO( i~ j>

	

>
(i,j,k)

	

4' o)! n!
/ i s/4/5

>
150(.Je/n t114)2 n

_ Ie/n t 314/750

Since every triple can be counted at most 6 times, there is a common sub-
graph with teln t 3 /4/4000 triples. This completes the proof of Theorem 6 .

V. ON U,(n, 3)

In this section we will improve the upper bound for U2 (n, 3), the number
of subgraphs in the simultaneous decompositions of two 3-graphs on n ver-
tices as defined in Section l .

THEOREM 6 . cn 4" log log n/log n < UZ(n, 3) < c'n 4/ 3 (log log n/log n) i / b

Proof. The lower bound is proved in [3] . We will only work on the
upper bound. Now we consider two 3-uniform hypergraphs G, each with n
vertices and e triples . We will successively remove isomorphic subgraphs F



Setting a; = e ;n/(cI t1/2 ), we have

and ao < n' /3 t-11131C2 . Suppose

ar < (n 4/3 t 1/6 /C1 - i12 )2

Then

582b/38/á-5
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from G and H, thereby decreasing the number e of triples currently remain-
ing in each of the original graphs. The subgraph F= F(e) removed will
depend on the current value of e .

Again t denotes log n/log log n . We distinguish three ranges of e :

(i) e > n't' 6 . In this case we repeatedly remove a common sub-
graph F(e) having at least e2/(3) triples . The existence of such an F(e) is
guaranteed by Fact 8 . Let e ; denote the number of triples remaining in each
hypergraph after i such subraphs have been removed. Then we have

e;+1<e;-e2
C3) .

Setting a,=e,/(3), we have

ai +1 <ai -a2 .

Since a < < 1 and 1/i- 1/i 2 < 1/(i + 1), it follows by induction that a, < 1/i for
all i. Thus, after n 4 /3 t -1/6 steps, the remaining graphs have at most n 1 /3 í 1 /6
triples .

(ü) n 5/3 t 1 /6 > e > n5 / 3 t -1/3 For this range, we repeatedly remove a
common subgraph F(e) with c eln t'/4 triples (guaranteed by
Theorem 5) . Let eo denote the number of triples in each graph at the begin-
ning of this process . In general, if e ; denotes the number of triples remain-
ing after removing i such subgraphs then we have

e,+, <e;-c1

	

1/4-t
n

ar+i<a,- a1

for some i,> 0 .

a ;+ 1 < (n 4/3 t - 1/6 /c, - i/2)2 - n4/3 t - 1/6/c, + i/2

< (n4/3t -1/6 /C1 - (l + 1)/2 ) 2 .

Therefore, after at most n4/3t-1/6ík1 steps, the remaining graphs can have at
most n 5/ 3 í -1/3 triples .
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(iii ) e < n si3 t-t 3 Here we repeatedly apply Fact 7 and remove F(e)

with Ie/n - 1 triples . Define e o and e i as before. We have

ei+, <e, -

Again we can prove by induction that

ein < (2n 4/ 3 t 1/6

Therefore after at most 2n 4 /3 1 -1 /6 steps, all edges in each
been removed . We have proved

U2 (n, 3) _< c'n 4 /3 (log log n/log n)'I6

We remark that the power ' of (log log n/log n) for the upper bound can
probably be improved slightly by careful examination of more cases .
However the main intent here is to show that U2(n, 3) is much smaller than
c'n 4/ 3 . We remark that the averaging argument used here does not seem to
be able to bring down the upper bound to cn 1/3 log log n/log n. Some new
idea is needed to close the gap.
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