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SELECTIVITY OF HYPERGRAPHS

P . ERDŐS - J . NESETRIL - V . RODL

1 . INTRODUCTION

Many properties of hypergraphs were abstracted from partitions of
vertices into a bounded number of classes . Examples of such properties
include the B-property and the chromatic number of hypergraphs which
form a possible background for Ramsey theory .

Here we study the properties of hypergraphs which stem from parti-
tions of the vertices into unbounded number of classes . We restrict our-
selves to some questions analogons of which (dealing with the concept of
chromatic number) were intensively studied . To this end we introduce the
notion of selective hypergraph and selective property . These concepts
provide a suitable background for canonical partitions theorems which are
closely related to Ramsey type theorem (see e.g . [2], [4] and [11]) .

The following definitions are central for this paper and indicate the
direction of our approach . They generalize some of the notions introduced
in [101 :

Definition 1 .1 . A hypergraph (X, E) (i .e . E ~ exp X) is called



selective hypergraph if for every mapping c : X --> X there exists an edge
e E E such that the mapping c ~ e is either a constant or 1-1 .

Definition 1 .2. Let (X, E) be a hypergraph . A hypergraph (X', E')
is said to be selective for (X, E) if for every coloring c : X' --> X' there
exists an embedding f: (X, E) -> (X', E') such that c o f is either a con-
stant or 1-1 .

Here, a 1-1 mapping f. X -> X' is said to be an embedding if
{f(x) ; x E e} E E' holds iff e C E .

Definition 1 .3 . Let X' be a class of hypergraphs . .' is said to have
selective property if for every B E A' there exists a C C ' such that
C is selective for B .

This paper has 5 parts . This first part is introductory . In the second
part we investigate the smallest number of edges which are needed for a
selective k-graph . It appears that the results are similar to that for the B-
property. The methods of this part are non-constructive .

In part 3 we investigate the minimal chromatic number of a selective
graph (for a given hypergraph G) . It appears that this number is
(X(G)- 1) (1 V(G) I - 1) + 1 and a construction of hypergraphs for which
this bound is achieved is given .

In part 4 we further modify the construction used in part 3 ("the
partite construction") and we give a construction of selective hypergraphs
without short cycles . This was proved earlier in [10] by non-constructive
means. (The existence of sparse selective hypergraphs found some non-
combinatorial applications, see [ 13] .) The results of parts 3 and 4 allow us
to deduce the following

Theorem 1 .4 . Let u be a finite set of 2-connected graphs . Let
Forb (1u) be the class of all graphs which do not contain a subgraph
isomorphic to any A C 91 . Then the class Forb (`11) has selective property
in the following strong sense: For every G = (V, E) C Forb (2C) there
exists a graph H = (V', E') with the following properties :

(i) H is selective for G ;



(ii) X(H) _ (I VI - 1)(X(G) - 1) + 1 ;

(iii) H E Forb (%) .

A proof of this theorem is outlined in part 5 .

2. SIZE OF SELECTIVE k-GRAPHS

Let X be a set and let c : X - X be a coloring of X. Alternatively,

•

	

is defined by a partition X = Cl U C2 u . . . U Cp , p E {1, 2, . . . , I X I } .

We say that a set A C X is selective with respect to the coloring c

if either c r A is 1--1 or c tA is a constant . In this case we also say that

•

	

captures the set A .

Clearly a hypergraph is selective if every coloring c captures an edge

of the hypergraph .

Let s(k) denote the minimal number of edges of a selective k-graph .
We prove the following

Theorem 2.1 . lim
k-

-i
s(k)k = 1 .

k

Proof. It follows from the results proved in [5] (see also [3]), that the

number of edges of a k-chromatic k-graph is at least (1 + o(1))k k k . As

every selective k-graph is also at least k-chromatic we thus get that s(k)

• (1 + o(1))k kk . Hence, it suffices to prove that there exists a selective
k-graph with (1 + o(1)) k kk edges. We shall use the following

Claim . Let n, k be positive integers such that k > 18n 2 . Then for

every coloring of the set of cardinality nk 2 there exist at least (k) k-

tuples which are either monochromatic or 1 -1 .

Proof of claim . Suppose that the set of cardinality nk 2 is decom-

posed into pairwise disjoint classes . We can clearly restrict ourselves to the

case that all of those classes are of cardinality less than kn . On the other

hand there are less than 2 partition classes of cardinality at least 9n 2 .



k
(This follows as (9n 2 ) 2 = 3 k n k > ( kk ) and from the fact that every

p-tuple, p < 2, which is 1-1 can be extended to a k-tuple which is also

1-1 .) As none of these classes has cardinality bigger than kn such classes
2

cover at most n2

	

points . Thus the remaining points (the number of
2

which is at least n 2 ) are covered by sets of cardinality at most 9n 2 . The
2

number of such sets is therefore bigger than 1k8n and hence there are

k 2
more than

	

18n ) > ( ) 1-1 colored sets. This proves Claim . v
k

Now we prove the theorem : let k, n be positive integers satis-
fying k > 18n 2 . Let X be a set with nk 2 elements. We shall
construct a selective k-graph with the vertex set X and with at most

k
p = [k k en k e n log k 2 n j edges by induction .

Suppose that the edges A,, A 2 , . . . , A r , r < p, have been chosen .
Let xr be the number of partitions capturing none of sets A j , 1 < i < r .
If xr < 1 we are done, suppose therefore xr > 1 . According to Claim
these partitions capture at least xr

(kn ) k-tuples (where each k-tuple is
counted exactly so many times, as the number of partitions, capturing the
given k-tuple.). Thus, there exists a k-tuple Ar+ 1 which is counted at
least

times . Hence, the number of partitions which contain none of edges

A,, . . . `4r+ 1 is xr+ 1 < xr - xr k . As we have clearly x o < (k2 n )k 2 n

k k e n

and as

x rkn)
	r k >

	

n-1)k l	 1
rk~n)

	

xr(	n

	

kk
> xr

k e kl

	

k n



(k2n) k2n (1 - 1
k )P < exp (k 2 n log k 2 n- p k < 1

kk e n

	

kk e n

we get that after p' < p steps xP. = 0 < 1 and thus A,, . . . , AP , is
i

selective set system . Set now e .g . n = [k 3 ], then
1

	

3
p k< k exp 11 kk= k(1 + o(1)) . 1

k 3
A hypergraph is called simple if any two edges intersect in at most one
point .

We refine the above theorem to the case of simple selective hyper-
graphs .

Let si(k) and s2 (k) denote the minimal number of vertices and
edges of a simple selective k-uniform hypergraph .

1

	

1

Theorem 2.2

	

(si (k)) k

	

(s2(k)) k

= 1. lim

	

k

	

= 1, lim

	

k
2

	

.
k--

	

k- -

Proof. Denote by nr*(k) and mr*(k) the minimal number of points
and edges of a k-uniform (r + 1)-chromatic hypergraph. It was shown in
[ 1 ] that

1
lim (n*(k)) k = r,
k

1
lim (mr(k)) k = r2 .
k -

As every selective k-graph has chromatic number > k we have

si(k)' nk 1 (k), s*(k) ' mk 1 (k) .

Thus it suffices to show that

(1)

	

si (k) < (1 + o(1)) k k k ,

(2)

	

sz(k) < ( I + o(1 )) k k2k .

We get (1) and (2) as an easy combination of the following auxiliar results .
The first is an immediate consequence of Theorem 1 , in [ I] .



Lemma 2.3 . Let n = 80 kk + s m = 1600 k 2k + 6 . Then there exists
a simple k-graph H on kn points with at most m edges such that each
of n points contains an edge .

Lemma 2.4. Let n = 80 k k + s and let X 1 , . . . , Xk be pairwise
disjoint sets of cardinality kn . Then there exists a k-graph (X, .9),
I dI I < p = [4e k k 2 n log k 2 n] such that

(i) X=X1 U . . .UXkI

(ü) I E n Xi I < 1 for every E E -0 and i, 1 < i < k,

(iii) I E n E' l < 1 for every E, E' C- -0, E * E',

(iv) for every partition Y 1 U YZ U . . . U Yt = X satisfying

(3) IYj nXi l<n forevery i and j, 1<i<k, 1<j<t

there exists an E E -# such that I E n Yt I < 1 for every j, 1 < j < t .

Using 2.3 and 2 .4 it is easy to prove (1) and (2) : Let X 1 , . . . , Xk
be disjoint sets each of cardinality nk . The hypergraph with vertex set
X = X l U . . . U Xk and edge set E(Hl ) U . . . U E(Hk ) U 4 (Hi is a
copy of H with vertex set Xi , 1 < i < k) has 80 k k + 7 vertices and at
most 1600 k 2k + 7 + kp edges and is selective . Thus

and

sl(k) < 80 kk+7 < (1 + o(1))k kk

sz (k) = 1600 k2k+ 7 + kp < (1 + 0(1»k k 2k . 1

Proof of Lemma 2.4. Similarly as in the proof of Theorem 2 .1 we
shall proceed by induction . Suppose that the edges E ll . . . , Er have
been constructed in such a way that (ü) and (iii) hold for every E, E' c-
c {E 1 , . . . . Ed, E * E' . Let Yr be the number of partitions Pl, P21' . .
. . . , P r , Pi = (Yi , . . . , Ytit ), satisfying (3) and capturing no one of the

edges E l , . . . , Er . If Yr = 0 < 1 we are done . Suppose therefore Y r '> 1 .
Among all k-element sets satisfying (ü) we shall choose that one - Er+ 1 -
which has at most one element intersection with all Ell . . . , Er and,
moreover, which is contained in as many of Pi , 1 < i < Yr as possible .



Our aim is to show that Yr, < 1 for some r' < p = [ 4e k k 2 n log k 2 n] .

For every i, 1 < i < Yr and j l , j 2 , 1 < j l < j 2 < k, denote by A(i, jl , j2 )
the number of (k- 2)-tuples E, I E n X I = 1 for j E { 1, 2, . . . , k} -
- {ji , j2 } such that I E n Y I < 1 for every j, 1 < j < ti .

Using (3) and the fact that I X I = kn for every j, 1 < j < k one can

derive that A(', jl , j2) 2!
nk-2 holds for every choice of i, j l and j2 .

Set

A(i) = max {A(i, jl , j 2 ) ; 1 < j 1 < j2 < k}.

Then the number of 1-1 k-tuples satisfying (ü) (good k-tuples) is at least
X(i)n 2 .

On the other hand as every good set has 2-element intersection with

at most (2)X(i) other good k-tuples which are 1-1, the number of

candidates (i .e . good k-tuples E satisfying I E n Ei I < 1 for every j,

1 < j < r and selective with respect to Pj) for choosing Er+ 1 is at least

W) [n 2 - ( k )r] >
2

nk 2[n2 k 2 p] > 4 n k .

Here we used that X(i) >
4

n k-2 holds. As the total amount of good

k-sets equals to (kn) k there exists one which is contained in at least

Thus

k! k
4 n

	

Yr 1>--Yr (kn) k

	

4 e k

Yr+ 1 < Yr l 1 4 lke

of P1 , . . . , Py r .

and as obviously Yo < (k 2 n)k2n and

2

	

1 1 P

	

(k 2nlogk 2n-~)
(k 2n) k n (1 - 4 k~ G e

	

4e < 1 we obtain after p steps
e

a k-graph with the desired properties . v



3 . EXACT BOUND FOR THE CHROMATIC NUMBER OF
ASELECTIVE HYPERGRAPH

A k-graph G is a pair (X, E) where E C [XI k= {Y C X; I YI = k}.

We always assume k >, 2 . A proper coloring of G is a mapping
c : X -> {1, . . . , r} which is non-constant on every edge e E E. Minimal
r for which there exists a proper r-coloring is denoted by X(G) and
called the chromatic number of G .

A graph (V', E') is an induced subgraph of (V, E) if V' c V and
e E E' iff e c V' and e E E.

Let G = (V, E) be a k-graph. Recall that a k-graph H = (W, F) is
selective for G if for every coloring c: W -> W there exists an induced
subgraph G' _ (V', E') of H, G' isomorphic to G such that c ~ V' is
either a constant or 1 -1 .

The purpose of this part is to prove

Theorem 3.1 . Let G = (V, E) be a k-graph . Then the following
holds .

1 . X(H) > (X(G) - 1)(1 V I - 1) + 1 for every k-graph H which is
selective for G ;

2 . For every k-graph G there exists a k -graph H which is selective
for G and which satisfies X(H) _ (X(G) - 1) ( 1 V(G) I - 1) + 1 .

Proof . First, we prove 1 . which is simpler . Let H be a selective
k-graph for G and assume X(H) < (X(G) - 1) (1 V(G) I - 1). Put X(G) = r
and I V(G) I = n . Consequently, there exists a proper coloring V(H) _
= V1 u . . . U Vn _ 1 such that the k-graph H. induced by H on the set
Vl satisfies X(Hi) < X(G) - 1 for every i = 1, . . . , n - 1 . Consequently
Hi does not contain any induced subgraph isomorphic to G . On the
other side for every subgraph G' of H with at least n vertices there
exists an i such that I V i n V(G') I > 2 . Consequently H fails to be
selective for G, a contradiction .

The proof of 2 . is more involved and uses a modification of the
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partite construction (see [9], [121, [11]) .

First, we introduce some necessary notions and terminology :

An a-partite k-graph G = (V, E) is a k-graph together with a fixed
proper coloring by means of a-colours . Explicitely, an a-partite k-graph
is a pair ((Vi),, E) where

a
(i)

	

V1 , . . . , á are mutually disjoint subsets of the set V = U Vi ;
i= 1

(ü) ( V, e) is a k-graph ;

(iii) e 9 Vi for every edge e E E, i = 1, . . . , a .

Let us remark that some of the sets V i may be empty .

Two a-partite graphs ((Vi )i , E) and ((V;)i , E') are said to be
a

	

b
isomorphic if there exists a bijection ~o : U V.

	

U V' such that
i=1

	

`

	

i= 1

	

`

0 . a = b,

1 . ~p(Vi ) = V~-' for i = 1, . . . , a,

2 . {~p(v) ; v E e} E E' iff e E E.

An a-partite k-graph G = ((Vi )i, E) is said to be a subgraph of
G' _ ((Vr)i , E') iff

1 . there exists a monotone injection

	

t : { 1, . . . , a } -> { 1, . . . , b }
such that Vi 9 V, U) I i = 1, . . . , a ;

2 . e E E', e c U Vi iff e c E.

Le. G is an induced subgraph of G' which preserves the partition
into color classes (see Fig . 1) .

Let G be a k-graph, X(G) = r, V(G) _ {v 1 , . . . , v n } . Put
a = (n - 1) (r -- 1) + 1 . The existence of a k-graph H which is
selective for G and which has chromatic number = a will be proved
by a chain of amalgamations of a suitable family of a-partite k-graphs
Po , P 1 , . . . , Pa - H .
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G

G'

Figure 1

First, let us construct the graph PO :

Let G1,. . . , GR , Gi = ((Vij)~_ 1 , E t ) be all a-partite k-graphs
arising as proper colorings of G by means of a colors (some colors
need not be used) .

For each i = 1, . . . , R let GÍ = (( V') ~_ 1 , Ej) be an a-partite
k-graph with the following property :



(*)

for every set w c { 1, . . . , a} and for every coloring c of the
a

set U Vj which is 1-1 on every set Vj E w, there exists
j= 1

a subgraph G' of G1, G' isomorphic to G t , such that c(v) 0
c(v') whenever at least one of the vertices v, v' belongs to

the set V(G') n U V' and the other one belongs to V(G') .
j E=_ w

	

`i

The construction of graphs Gt is simple . Any graph of form

((Vii X { 1, . . . , N})~ 1 , {{(v s , is ) ; v s c e}; e c E, 1 < js < N})

will due for N sufficiently large .

Let Po = EO) be the disjoint union of graphs Gl , i =

= 1, . . . , R . The a-partite k-graphs Pl , . . . , Pa will be defined by in-
duction as follows :

Let Ps = ((V~)i , ES), 0 < s < a be given. Put I Vs+ 1 I = K and let

(Vs+ i ) be a selective K-graph (we may put I Vs+ i I = (K - 1) 2 + 1
and for íj! we may choose the set of all K-element subsets of Vs+ i )
In this situation let Ps+ 1 = (( V~ + 1)

i
E s+ 1 ) be an a-partite k-graph

with the following property : for every M E .ill there exists a subgraph
p, = (( Vi ) i , E) of Ps+ 1 which is isomorphic to P S and which satisfies

Vs+ 1 = M .

Ps+ 1 may be constrcucted as an amalgamation of I _W I copies of the
graph PS with respect to the hypergraph (Vs+ i , ) ; in fact we may
assume that Vs+ 1 = VS X K for all j s + l . Put

a
H = U Va, Ea ) _ ( W, F) .

i= l

Obviously X(H) < a = (r - 1)(n - 1) + 1 .

Claim . H is selective for G .

Proof of Claim . Let c: W -> W be a coloring. By downward induc-
tion on s = a, a - 1, . . . , 0 we find an a-partite subgraph P' E')
of Pa with the following properties :



1 . P' is isomorphic to Po ;

2 . for every i = 1, . . . , a c
r V' is either a constant or 1-1 .

t

We consider two cases : First, let there exist numbers it	r ,
i i < . . . < it such that c ~ V' is 1-1, i = 1, . . . , r. Consider a proper
coloring of G which uses the colors i t , . . . , it only and let Gl

0
be the

corresponding a-partite graph . As P' contains a subgraph isomorphic
to G''o and as Gzo

' possesses the above property (*) there exists a sub-
graph G' of P', G' isomorphic to G such that c restricted to the set
V(G') is 1-1 . Thus assume that c r V' is 1-1 for all i E w where w is

t
a set with at most r - 1 elements. Put explicitely c i V , _- c T . As

t
(n - 1)(r - 1) + 1 - I w I > (n - 2)(r - 1) + 1

	

either there exists

	

K,

I K I = r such that c t = co for all i E K or there exists K, I K I = n - 1,
K n w = 0 such that ct 3 1- ci for all i j E K . In the former case we get
a subgraph G' of P' isomorphic to G such that c r V(G') _- co . In the
later case (again using the property (*)) we get a subgraph G' of P'
isomorphic to G such that c r V(G) is 1-1 mapping . 1

4. A CONSTRUCTIVE PROOF OF THE EXISTENCE
OF SPARSE SELECTIVE HYPERGRAPHS

We prove here :

Theorem 4 .1 . For every 2 < k, p there exists a k-graph Gk P with
the following properties ;

1 . Gk P is selective ;

2 . X(Gk P ) = k ;

3 . Gk P does not contain cycles of length < p .

This theorem was proved in [10) by probabilistic means . Here we give
a constructive proof of this result. This solves a problem stated in [7] .

The proof of Theorem 4 .1 is similar to that one given above in part 3 :
the desired k-graph will be constructed by a chain of graphs P 0 , . . . , PQ



where a = (k - 1) 2 + 1 . The main difference is that the construction of
the graph PO is more difficult .

We take time out for a lemma :

Lemma 4 .2 . For every k, p, k > 2 there exists a k-partite k-graph
Gk

n
= ((I )k , E) without cycles of length < p with the following

properties

(1) d e n Vi I= 1 for every e E E, 1< i< k ;

k

	

k
(2) for every coloring c : U V.

	

U VV which is 1-1 on each of
i= 1

	

1

	

i= 1

	

t
the sets V i , i E w for an w C {1, 2, . . . , k} there exists an edge e C E,
e = {v 1 , v 2 , . . . , v k }, vi E Vi, such that c(v i )

	

c(vl ) whenever one of
indices belongs to w .

Proof. Let G' _ (V', E') be a k-graph without cycles < p and

with chromatic number bigger than 2kk (for the construction of such
k-graphs see [6], [9] . Put V' _ {v 1 , v 2 , . . . , v n } . Define a k-graph
G = (V, E) as follows : V = V' X {1,2,...,k}; Vi = V' X {i } ; E _
={{(pill 1) ' . . . , ( V i k , k)} ; {v il , v i2 , . . . , vik }< E E} . (If e= {vil , v i2 , . . .

. . . . vi
k

} is an edge of G' and i, < i2 < . . . < ik then we write

IVil , v i2 , . . . , Vik 1<,)

	

Symbolically we put

	

E = E' X Il l 2, . . . , k} ;

see Fig . 2 .

We prove that G = (V, E) has the desired properties . (1) is obvious .
Consider (2) : choose w C {1, 2, . . . , k} and consider a coloring such that

c ~ V is 1-1 for all i = 1, 2, . . . , k . This coloring induces for every edge e
a partition Pe of the set 11, 2, . . . , k} defined by

j pe j' iff c((vi ,, j) = CO i ,,, P).

As there are < kk possibilities for Pe there exists a set E" C E such that

(1) X(V',V)> k ;

(2) the partitions Pe coincide for all e C E° X {1, 2, . . . , k} . Put
pe = p for every e C E' X 11, 2, . . . , k} . If {i} is the equivalence class



of the equivalence p for every i E w then there is nothing to prove
(equivalently this means that c(vj , j) = c(vl ,, j') whenever {j, j'} n w

•

	

0) . Thus assume that there exists j E w such that j p j' for a j ' E

•

	

{1, 2, . . . , k}, j j' . Consider the graph G ° _ ( V', F') where
F' _ {{vi , v i ,} ; {vi

1
, vi2, . . . , v

lk
} < E E' } . As X( V', E') > k it fol-

lows that X(G') > 2 and consequently Gv contains a cycle. Then it is
easy to see that there exists edges

e l ={ vl, . . .,vk}~ EE'

	

and

	

e2={v1, . . .,vk2}< (=- E'

such that vjl = v12

	

and vil = vi2 .

	

But then c(v~l , j) = c(vil
= c(Vi" j') = c(v,2 , j), a contradiction to c r V being 1-1 .

i

Figure 2

Proof of Theorem 4 .1 . We proceed by induction on p (k arbitrary
• 2) . For p = 1 it suffices to take any selective k-graph . Let k, p > 1 be
fixed . The desired k-graph will be constructed by a chain po , . . . , pQ of
a-partite k-graphs where a = (k - 1)2 + 1 .



Construction of Po

Let Po = ((VIP), , Eo) be an a-partite k-graph which satisfies the
following conditions :

1 . For every w c {1, 2, . . . , a1, w = { i 1 , . . . , ik 1, the subgraph of

Po induced on the set

	

U 11 contains a k-partite subgraph
iEw Gk,p

constructed in Lemma 4 .2 ;

2 . Po does not contain cycles of length < p ;

3 . I e n Vo I < 1 for every e E Eo (1 < i < a) .

The existence of PO follows immediately from Lemma 4 .2 as we may
take the disjoint union of all a-partite graphs arising from graphs Gk ,p .

Construction of Ps+ 1

Let PS = (( V~)i, Es) (0 < s < a be given . Put I Vs+ 1 = K and let

(Vs+ i ) be a selective K-graph without cycles of length < p - 1 . It
is here where the induction hypothesis on p is used .

Construct Ps+ 1 as an amalgamation of I W I copies of the graph PS

with respect to K-graph (Vs+ i , ) Explicitely, this can be done as fol-
lows: Put Vt + 1 = Vi X W for every i * s + 1 and for every M E Al
choose a bijection rpm : Vs+ 1 > M. Define Es+ 1 as the set of all sets of
form

{(x,, M); x, E e - Vs+ , 1 U {~M (e n Vs+ 1 )1

for an M E t~ and e E Es . An edge of this form will be denoted as
(e, M) ; thus, symbolically, Es + 1 = Es X W

a
Put H = U Vi', Ea _ (W, F) . Obviously x(H) < k .

I= 1

Claim l . H is selective .

Claim 2. H does not contain cycles of length < p .

Proof of Claim 1 . Let c: W W be a coloring. As above in Part 3,
by the downward induction ón s = a, a - 1, . . . , 0 we find an a-partite

- 279 -



subgraph P' _ ((VÍ )1, E') of PQ with the following properties :

(i) P' is isomorphic to PO (as a-partite k-graphs) ;

(ü) for every i c ~ V' is either a constant or 1-1 . Let w be the set
(

of all i for which c r V' is 1-1 . If I w I > k then the subgraph of P' in-
(

duced on the set U Vi contains a graph Gk p constructed in Lem-
iEw

ma 4.2 and consequently there exists an edge e E E' such that c ~ e is

If w = 0 then clearly there exists K C- { I, . . . , a }, I K I = k, such
that all constants c ~ V', i E K, either coincide or are distinct . Using the

(
construction of PO there exists an edge e E E', e c U VZ . If

(EK

0 < I w I < k then a - w I > (k - 2)(k - 1) + 1 and consequently either
there exists a set K

	

{ 1, . . . , a} - w, I K 1 = k, such that all constants

c [ V', i E K, coincide or there exists a set K c { 1, . . . , a} - w, I K I =
(

= k - 1, such that all constants c ~ V -, i E K, are distinct . In the first
(

case there exists a monochromatic edge e c U Vt in the second case
(EK

there exists an 1-1 edge e c U V. U V. for every i (see the state-
iEK

	

(

	

( 0
ment of Lemma 4.2) .

Thus H is selective . 1

Proof of Claim 2. We proceed by induction on s . By the construc-
tion (see Lemma 4.2) PO does not contain cycles of length < p . Let
s > 0 be fixed and assume that the edges e,, . . . , e p forma cycle in P S .
Recall that PS was constructed as an amalgamation of copies of PS-

1

and that for every edge e (=- ES there exists exactly one M c # such that

e C M U U Vl- 1 X {M} . Denote this edge M by J. It is clear that
i* S

either e l = . . . = ep or the edges e l	ep form a cycle in (Vs, _W) .

In the second case we have I {el , . . . , ep } I > p - 1 by the induction
assumption (used for the K-graph ( Vs , ll )) and as there are necessarily
i j such that e i = ei we have a contradiction . If el = . . . = ep = M
then e . C M U U Vs- 1 X {M} for i = 1, . . . , p and as a consequence

(

	

i#S



the edges e l , . . . , ep form a cycle in a subgraph of PS which is
isomorphic to PS_ 1 . But this is a contradiction to the induction
assumption . 1

This completes the proof of Theorem 4 .1 . 1

5 . CONCLUDING REMARKS

I. Let us outline the proof of the theorem stated in the introduction .
The theorem follows from the following slightly stronger result .

Theorem 5 .1 . Let G be a k-graph and p > 2 an integer . Then there
exists a k-graph H with the following properties :

(1) H is selective for G ;

(2) x(H) = (x(G) - 1)(1 V(G)1- 1)+ l ;

(3) If the edges el , e 2 , . . . , e q form a cycle of length at most p
in H then there exists a subgraph G' of H, G' isomorphic to G such
that G' contains all edges e l , e 2 , . . . , e q .

In order to get Theorem 1 .4 let p be the maximal size of a graph
belonging to 21 .

To prove Theorem 5 .1 observe that because of condition (2) we can-
not use standard amalgamation technique (see e .g. [11 ]) . However we can
modify the above proofs of Theorems 3 .1 and 4 .1 . We stress the main
differences only .

Sketch of the proof of 5 .1 . Let G = (V, E) be a k-graph with n
vertices; put x(G) = k. Let V = Vi U V2 u . . . U Vk be a fixed coloring
of G . Assume without loss of generality that 1 VI I = I V21 = . . . = I Vk I =
= 1 (we can add some singletons if necessary) for some l . Put
a = (k - 1)(n - 1) + 1 . The resulting k-graph H will be built successively
by a-partite k-graphs P0 , Pl , . . . , PQ = H using sparse selective hyper-
graphs (without cycles of length S p) . This step is similar as in proofs of
Theorems 3 .1 and 4.1 . The construction of a-partite k-graph P o is based
on the following lemma (analogous to Lemma 4 .2) .



Lemma 5 .2 . For every p, r, l, r > 2 there exists an r-partite
rl-graph Gr i p = ((V,),', E) without cycles of length < p with the fol-
lowing properties :

(1) 1en Vi 1=1 for every eEE (1<i< r) ;

(2) for every coloring

r

	

r
c : U V.

	

U V.
i= 1

	

1

	

i= I

	

l

which is 1-1 on each of the sets Vi , i(=- w for an w c {l, 2, . . . , k}
there exists an edge e E E, e = {v 1 , v 2 , . . . , V rd; V 1 , v 2 , . . . , v i E Vl ,
V1+ 1' * * ' ' V21 E V2' " * ' V(r_ I)1+ 1 , ' • , Vrt E Vr such that c(v i )

	

c(vl)

whenever one of the vertices belongs to U v . .
iEw i

Construction of rl-graph Gr i p can be derived (similarly as in the
proof of Lemma 4 .2) from an rl-graph G' without cycles of length < p

and with chromatic number bigger than 2r1 rl

II . Given a graph G denote by 0(G) the minimal number of
vertices of a graph H selective for G . Set

s(n) = max 0(G)

where the maximum is taken over set of all graphs with n vertices . We
can show

s(n) < (2 + 0'

for any e > 0 and n > no (e) .

However we do not know any nontrivial lower bounds .

III . We have some further results concerning this topic . These concern
critical selective k-graphs defined similarly as chromatic critical k-graphs .
Particularly we can show that do decide whether a given 3-graph is selec-
tive is NP-complete . Surprisingly presently we do not see a simple proof
of this .
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