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SELECTIVITY OF HYPERGRAPHS
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1. INTRODUCTION

Many properties of hypergraphs were abstracted from partitions of
vertices into a bounded number of classes. Examples of such properties
include the B-property and the chromatic number of hypergraphs which
form a possible background for Ramsey theory.

Here we study the properties of hypergraphs which stem from parti-
tions of the vertices into unbounded number of classes. We restrict our-
selves to some questions analogons of which (dealing with the concept of
chromatic number) were intensively studied. To this end we introduce the
notion of selective hypergraph and selective property. These concepts
provide a suitable background for canonical partitions theorems which are
closely related to Ramsey type theorem (see e.g. [2], [4] and [11]).

The following definitions are central for this paper and indicate the
direction of our approach. They generalize some of the notions introduced
in [10]:

Definition 1.1. A hypergraph (X, FE) (ie. ESexp X) is called
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selective hypergraph if for every mapping ¢: X - X there exists an edge

e € E such that the mapping ¢ [‘e is either a constant or 1—1.

Definition 1.2. Let (X, E) be a hypergraph. A hypergraph (X', E')
is said to be selective for (X, E) if for every coloring ¢: X' = X' there
exists an embedding f: (X,E)- (X',E') such that ¢o f is eithera con-
stant or 1-1.

Here, a 1—1 mapping f: X-> X' is said to be an embedding if
{fix); x€e}e E" holdsiff e€E.

Definition 1.3. Let X be a class of hypergraphs. 2 is said to have
selective property if for every B € X there existsa C€ % such that
C isselective for B.

This paper has 5 parts. This first part is introductory. In the second
part we investigate the smallest number of edges which are needed for a
selective k-graph. It appears that the results are similar to that for the B-
property. The methods of this part are non-constructive.

In part 3 we investigate the minimal chromatic number of a selective
graph (for a given hypergraph (). It appears that this number is
(xX(G) = D( MG)I = 1)+ 1 and a construction of hypergraphs for which
this bound is achieved is given.

In part 4 we further modify the construction used in part 3 (’the
partite construction™) and we give a construction of selective hypergraphs
without short cycles. This was proved earlier in [10] by non-constructive
means. (The existence of sparse selective hypergraphs found some non-
combinatorial applications, see [13].) The results of parts 3 and 4 allow us
to deduce the following

Theorem 1.4. Let U be a finite set of 2-connected graphs. Let
Forb () be the class of all graphs which do not contain a subgraph
isomorphic to any A € U. Then the class Forb () has selective property
in the following strong sense: For every G = (V,E)€ Forb () there
existsagraph H = (V',E') with the following properties:

(i) H isselective for G
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(i) xH)=(VI-DxG -+ 1;
(iii) H € Forb ().

A proof of this theorem is outlined in part 5.

2. SIZE OF SELECTIVE k-GRAPHS

Let X be aset and let ¢: X = X be a coloring of X. Alternatively,
¢ 1is defined by a partition X = Cl uC2 U . ..UCp, pe{l,2,...,[X][}

We say that a set A © X s selective with respect to the coloring ¢
if either ¢} 4 is 1-1 or c} 4 isa constant. In this case we also say that
¢ captures the set A.

Clearly a hypergraph is selective if every coloring ¢ captures an edge
of the hypergraph.

Let s(k) denote the minimal number of edges of a selective k-graph.
We prove the following

1
s(k)*

Theorem 2.1. lim %

k— oo

= 1.

Proof. It follows from the results proved in [5] (see also [3]), that the
number of edges of a k-chromatic k-graph is at least (1 + o()*k*. As
every selective k-graph is also at least k-chromatic we thus get that s(k) >
> (1+ o(1))*k*. Hence, it suffices to prove that there exists a selective
k-graph with (1 + o(1))*k* edges. We shall use the following

Claim. Let n, k be positive integers such that k> 18n?. Then for
every coloring of the set of cardinality nk? there exist at least [nkk] k-
tuples which are either monochromatic or 1 1.

Proof of claim. Suppose that the set of cardinality nk? is decom-

posed into pairwise disjoint classes. We can clearly restrict ourselves to the
case that all of those classes are of cardinality less than An. On the other

hand there are less than § partition classes of cardinality at least 9n2.
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k
2

(This follows as (9n2)2 = 3%kpk > (k;] and from the fact that every

p-tuple, p< ﬁ, which is 1 -1 can be extended to a k-tuple which is also

1—1.) As none of these classes has cardinality bigger than kn such classes

2
cover at most E.;E_ points. Thus the remaining points (the number of

2
which is at least -’%) are covered by sets of cardinality at most 9n2. The

2
number of such sets is therefore bigger than % and hence there are
k2
more than [ 18”] = (nkk] 1—1 colored sets. This proves Claim.
k

Now we prove the theorem: let k,n be positive integers satis-
fying k> 18n%2. Let X be a set with nk? elements. We shall

construct a selective k-graph with the vertex set X and with at most
k

D= [k"e“’""kzn log k%n] edges by induction.

Suppose that the edges A A, .. ,Ar, r< p, have been chosen.
Let x_ be the number of partitions capturing none of sets 4, 1 <i<r.
If x <1 we are done, suppose therefore x > 1. According to Claim

these partitions capture at least xr(;‘;{n] k-tuples (where each k-tuple is
counted exactly so many times, as the number of partitions, capturing the
given k-tuple.). Thus, there exists a k-tuple 4_, , which is counted at
least

. (kn

rh ok - 1k 1 1
g >xr(nn ] F>x’ %
[ k ) kken

times. Hence, the number of partitions which contain none of edges

X,

: _ 2. .vk%n
Ags oo B q A8 X0 €, T As we have clearly x, < (k“n)
kken

and as
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1

(kzn)"‘z”(l— ]p<exp (kznlogkzn——Lk)é 1

k k
kken kken
we get that after p'<p steps Xy = 0<1 andthus 4,,... ,Ap. is
1
selective set system. Set now e.g. n= k3|, then
pk < kexp — k¥ =k(1+o0(1).0
k3

A hypergraph is called simple if any two edges intersect in at most one
point.

We refine the above theorem to the case of simple selective hyper-
graphs.

Let s(k) and sj(k) denote the minimal number of vertices and
edges of a simple selective k-uniform hypergraph.

. P
(sF(k)* (s3(k)*
Theorem 2.2. lim ——— =1, lim ——= 1
koo k kow K

Proof. Denote by n*(k) and m*(k) the minimal number of points
and edges of a k-uniform (r + 1)-chromatic hypergraph. It was shown in
[1] that

klin:u (":Uc))% =, k]inl (m,*(k)}% =rl.

As every selective k-graph has chromatic number > k we have
sp(k) = nf k),  sy(k)=mp (k).

Thus it suffices to show that

(1) sHK) < (1+ o(1)Fkk,

(2) s3 (k)< (14 o(1)* k2.

We get (1) and (2) as an easy combination of the following auxiliar results.
The first is an immediate consequence of Theorem 1,in[1].
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Lemma 2.3. Let n=80k**5, m= 1600 k2k+6  Then there exists
a simple k-graph H on kn points with at most m edges such that each
of n points contains an edge.

Lemma 2.4. Let n=80k**5 and let Xy, X, be pairwise
disjoint sets of cardinality kn. Then there exists a k-graph (X, #),
| # | <p=1[4e*k2nlog k2n] such that

() X=X, U...UX,,
(i) [ENX;,I<]1 forevery E€ # and i, 1<i<k,
(iii) |[ENE'|<1 forevery E,E'e #, E+E',
(iv) for every partition Y VY, U ... UY =X satisfying
(3) IY}.ﬂleén forevery i and j, 1<i<k, 1<j<t
there exists an E € # such that |EN Yj.lél forevery j, 1<j<t.

Using 2.3 and 2.4 it is easy to prove (1) and (2): Let X,,..., X,
be disjoint sets each of cardinality nk. The hypergraph with vertex set
X:)(l u...UXk and edge set E(Hl)u...UE(Hk)U M (Hf is a
copy of H with vertex set X;, 1<i<k) has 80k k+7 yertices and at
most 1600 k**¥*+7 + kp edges and is selective. Thus

sPK)< 80 KX+ T < (1+ o(1))kkk
and
sy(k)= 1600 k¥ +7 + kp < (1 + o(1))* k¥ .

Proof of Lemma 2.4. Similarly as in the proof of Theorem 2.1 we
shall proceed by induction. Suppose that the edges £,,...,E, have
been constructed in such a way that (ii) and (iii) hold for every E,E'€
€{E,,...,E}, E#E' Let y  be the number of partitions P, P,,

. ,Pyr, P.=(Yi, ..., Y}, satisfying (3) and capturing no one of the
[

edges £,,...,E. If y =0<1 we are done. Suppose therefore y, > 1.
Among all k-element sets satisfying (ii) we shall choose that one — B g
which has at most one element intersection with all Eyy...,E, and,

moreover, which is contained in as many of P, 1<i<y, as possible.
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Our aim is to show that y, <1 for some r<p= [4e"k2n log k2n].
For every i, 1< i<y, and jl,jz, 1 é;’] <j, < k, denote by ?\(f,,il,fz)
the number of (k — 2)-tuples E, |EN XJ.I =1 for je{l,2,...,k}—
—{j;»/,} such that |EN Yj"lél forevery j, 1<j<t,.

Using (3) and the fact that IXJ.I = kn forevery j, 1 <j< k one can

]
derive that NG, j,,/,) = -;52- nk =2 holds for every choice of i, and Jy

Set

i) = max {N\(i, j,,],); 1 <], <j, <k}

Then the number of 11 k-tuples satisfying (ii) (good k-tuples) is at least
Ai)n?.

On the other hand as every good set has 2-element intersection with
at most [g]?\(i) other good k-tuples which are 1—-1, the number of

candidates (i.e. good k-tuples E satisfying |[EN Efl <1 forevery j,
I <j<r and selective with respect to P;) for choosing E _, is at least

i) [n? - [;]r] > %‘ nk=2m? - k2p)> 541 n*.

'
Here we used that \(i) > %— nk=2 holds. As the total amount of good

k-sets equals to (kn)"‘ there exists one which is contained in at least

LI
LN T P
T (kn)k T 4 ok SR
Thus y, ., <y, (1- 71 ﬁ] and as obviously y, < (k2n)**"  and
(k%nlogk?n-—E=)
(kzn)kz"[l - —é e_lk)P <e 4¢*" < 1 we obtain after p steps

a k-graph with the desired properties. 8
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3. EXACT BOUND FOR THE CHROMATIC NUMBER OF
ASELECTIVE HYPERGRAPH

A k-graph G isa pair (X, E) where ES[X]" ={YCX; |Y|=k}l

We always assume k= 2. A proper coloring of G is a mapping
c: X~ {1,...,r} which is non-constant on every edge e € E. Minimal
r for which there exists a proper r-coloring is denoted by x(G) and
called the chromatic number of G.

A graph (V',E') is an induced subgraph of (V,E) if V'S V and
ecE' iff eC V' and e€ E.

Let G=(V,E) be a k-graph. Recall that a k-graph H= (W, F) is
selective for G if for every coloring ¢: W - W there exists an induced
subgraph G'= (V',E') of H, G' isomorphic to G such that r:]‘ y'is
either a constant or 1-1.

The purpose of this part is to prove

Theorem 3.1. Let G=(V,E) be a k-graph. Then the following
holds:

1. x(tH)= (x(G)— 1) V|- 1)+ 1 for every k-graph H which is
selective for G;

2. For every k-graph G there existsa k-graph H which is selective
for G and which satisfies x(H) = (x(G) — 1)(| V(G)| - 1)+ 1.

Proof. First, we prove 1. which is simpler. Let H be a selective
k-graph for G and assume X(H) < (x(G) — (| V(G)| — 1). Put x(G)=r
and | V(G)| = n. Consequently, there exists a proper coloring V(H)=
=V,u...uV, | suchthat the k-graph H, induced by H on the set
V,; satisfies x(H)<x(G) -1 forevery i=1,...,n— 1. Consequently
H, does not contain any induced subgraph isomorphic to G. On the
other side for every subgraph G' of H with at least n vertices there
exists an 7 such that [V, N V(G')| > 2. Consequently H fails to be
selective for G, a contradiction.

The proof of 2. is more involved and uses a modification of the
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partite construction (see [9], [12], [11]).
First, we introduce some necessary notions and terminology:

An a-partite k-graph G = (V,E) is a k-graph together with a fixed
proper coloring by means of a-colours. Explicitely, an a-partite k-graph
is a pair (( Vl.jf‘ E) where

a
(i) V,....,V, aremutually disjoint subsets of the set V' = _Ul Vi
=

(ii)) (V,e) isa k-graph;

(iii) e% V; forevery edge e€FE, i=1,...,a.

Let us remark that some of the sets V; may be empty.

Two a-partite graphs ((V)){,E) and ((V )l ,E') are said to be

isomorphic if there exists a bijection ¢: U Vo U V/ such that

i=1
0. a=b,
Loo(V)= V; for i=1;:: 94
2. {¢(v); vee}eE' iff e€E.

An a-partite k-graph G = ((V)){,E) is said to be a subgraph of
G'=((VDP,E) iff
1. there exists a monotone injection ¢ {1,...,a}—->{1,...,b}

such that V, & Viiy

2. e€E', eEUV‘_, iff e€ E.

= ke @

l.e. G is an induced subgraph of G’ which preserves the partition
into color classes (see Fig. 1).

Let G be a k-graph, x(G)=r, W(G)= {Mpas ¥k Pl
a=(n—1)(r—1)+ 1. The existence of a k-graph H which is
selective for (G and which has chromatic number = a will be proved
by a chain of amalgamations of a suitable family of a-partite k-graphs
PyiPys oo B =H
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First, let us construct the graph P :

Let G,,...,Gp, = (( Vu i=1 ,E;) be all a-partite k-graphs
arising as proper colorings of G by means of a colors (some colors
need not be used).

For each i=1,...,R let G =V

i } 1»E}) be an a-partite
k-graph with the following property:
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for every set w < {1,...,a} and for every coloring c¢ of the
a

set U V‘fj. which is 1—1 on every set V,.}, j € w, there exists
=1
(%) a subgraph G' of G,.', G' isomorphic to G;, such that c(v) #

# c(v') whenever at least one of the vertices v,»’' belongs to

the set V(G)n U V,'} and the other one belongs to V(G').

jeEw
The construction of graphs G is simple. Any graph of form

(VX {1, .., NDE |, ({0,7,); v, € €l €€ E, 1</, <ND)

will due for N sufficiently large.
Let Py =(( K7 ';,EO) be the disjoint union of graphs G/, i=

=1,...,R. The q-partite k-graphs P ,...,P, will be defined by in-
duction as follows:

l ]

Let P = ((st ‘i,E’), 0<s<a be given. Put | V:+1 | = K and let
(ij:ll, A) be a selective K-graph (we may put | V;:ll l=(K-—1)2+1
and for # we may choose the set of all K-element subsets of V:Ill).
In this situation let P, , = ((Vi*1)4,ES*1) be an a-partite k-graph
with the following property: for every M € .# there exists a subgraph
P'=((V))S, E') of P, , which is isomorphic to P_ and which satisfies

Vi S

s+ 1

PH , may be constrcucted as an amalgamation of | # | copies of the

graph P with respect to the hypergraph (V;:ll , #); in fact we may

assume that V;+1 = V;.’ X # forall j#s+ 1. Put

H=(U VI E) =W,F).

i=1
Obviously x(H)<a=(r—1)(n—-1)+ 1.
Claim. H is selective for G.

Proof of Claim. Let ¢: W W be a coloring. By downward induc-
tionon s=a,a— 1,...,0 we find an a-partite subgraph P' = (( V;)d LED
of P with the following properties:
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1. P’ isisomorphic to Py;

2. forevery i=1,...,a 01\ y iseither a constant or 1-1.
I
We consider two cases: First, let there exist numbers fl, o syl
iy <...<i, such that ¢}y is1-1, i=1,...,r. Consider a proper
I

coloring of G which uses the colors i i, only and let G; be the
0

ERE

corresponding a@-partite graph. As P’ contains a subgraph isomorphic

to G; andas G;o possesses the above property (*) there exists a sub-
0

graph G' of P', G' isomorphic to G such that ¢ restricted to the set
V(G') is 1-1. Thus assume that c | is 1-1forall i€ w where w is
1

a set with at most r— 1 elements. Put explicitely ¢}y =c,. As
I

n=Dr-D+1—-|wl=m—-2)(r—1)+ 1 either there exists «,
lkl=r such that ¢, = c,
KN w= ¢ such that ¢, # ¢ for all i# j€ k. In the former case we get
a subgraph G' of P' isomorphic to G such that CtV(G")E ¢o- In the
later case (again using the property (+)) we get a subgraph G’ of P’

isomorphic to G such that ¢ ]‘ v(G') is 1—1 mapping. &

for all i€ k or there exists k, |k|=n—1,

4. A CONSTRUCTIVE PROOF OF THE EXISTENCE
OF SPARSE SELECTIVE HYPERGRAPHS

We prove here:

Theorem 4.1. For every 2<k,p there exists a k-graph G, » with
the following properties;

114 (}',c # is selective,
2' X(Gk,p): k;.
3. G, P does not contain cycles of length < p.

This theorem was proved in [10] by probabilistic means. Here we give
a constructive proof of this result. This solves a problem stated in [7].

The proof of Theorem 4.1 is similar to that one given above in part 3:
the desired k-graph will be constructed by a chain of graphs Poonisss visk

a
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where a = (k — l)2 + 1. The main difference is that the construction of
the graph P, is more difficult.

We take time out for a lemma:

Lemma 4.2. For every k,p, k= 2 there exists a k-partite k-graph
Gy y = {(Vl.)f,E) without cycles of length <p with the following
properties

(1) len V=1 forevery e€E, 1<i<k;

k k

(2) for every coloring c: U1 V> U V. whichis 1-1 on each of
i= i=1

the sets Vl., i€Ew foran wC{l,2,...,k} thereexistsan edge e€ E,
e={v,,vy, ..., 1, V€V, such rhar c(v,) # c(v}.) whenever one of
indices belongs to w.

Proof. Let G'=(V',E’) be a k-graph without cycles <p and

. % ; k A
with chromatic number bigger than 2% (for the construction of such

k-graphs see [6], [9]. Put V'= {v;,vy,...,v,}. Define a k-graph
G=(V,E) as follow3' V=V'X{1,2,...,k}; V,=V'X{i}; E=
={{{vl.1, |5 e 78 LKL {vr A/AEEEN } €E}. (Ife—-{v‘ /TR
,v,,k} is an edge of G' and i <12 <...<i, then we write
{viz,vl.z. ;S vl.k}<.) Symbolically we put E=E'X{l,2,...,k}
see Fig. 2.
We prove that G = (¥, E) has the desired properties. (1) is obvious.
Consider (2): choose w C {1,2,...,k} and consider a coloring such that
c[‘V isl-1forall i=1,2,...,k. This coloring induces for every edge e

a partition p, of the set {1,2,...,k} defined by
jp, i iff ol )= C((v,-j,,f')-
As there are < k* possibilities for p, there existsa set EY S E such that
(1) x(V5.EY)2 &

(2) the partitions o, coincide for all e€ EY X {1,2,...,k}. Put
p,=p forevery e E¥ X {1,2,..., k}. If {i} is the equivalence class
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of the equivalence p for every i€ w then there is nothing to prove
(equivalently this means that c(v, , /) = c(, ,»J") whenever {j,j'} N w#
! ]

# 0). Thus assume that there exists j€ w such that jpj' fora j'€

€{1,2,...,k}, j#j'. Consider the graph GY=(V',F') where

Fr=({v, ;v B {0,V ey o €E"} AS x(V',E¥)> k it fol-
I ) 1 ) k

lows that x(G")> 2 and consequently G” contains a cycle. Then it is

easy to see that there exists edges

= 1 1 v o PR 2 v
e, ={v o o gl Vo IEE and e, ={y;,..., %} _€EE

]

such that vjl. =p? and vfl = vfz. But then c(v,,.l )= c(vfl,,}") =
— c(vf.z,, )= c(vj2 , J), a contradiction to ¢ [‘ V. being 1—1.
i

A L A A" -

P O Fat O O
~ et e

O ot O Fa Pt O
=2 © S

[ 1 (
(o)

Figure 2

Proof of Theorem 4.1. We proceed by induction on p (k arbitrary
> 2). For p=1 it suffices to take any selective k-graph. Let k,p> 1 be
fixed. The desired k-graph will be constructed by a chain P,, ... ,Pa of
a-partite k-graphs where a= (k—1)> + 1.
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Construction of P,

Let P, = (( VP 1” E%) be an a-partite k-graph which satisfies the
following conditions:

1. Forevery w&({l,2,...,a}, w={i,...,i}, thesubgraph of
P, induced on the set U V? contains a k-partite subgraph G, #

iew
constructed in Lemma 4.2;

2. P, does not contain cycles of length < p;
3. |len V?I%: 1 for every e€e EY (1<i<a).

The existence of P, follows immediately from Lemma 4.2 as we may
take the disjoint union of all e-partite graphs arising from graphs G, *

Construction of Per {

Let P, = (( Vf_)f,E‘) (0< s<a be given. Put | Vs’+l | = K and let
(VsHL ) be a selective K-graph without cycles of length <p—1. It

s+1°
is here where the induction hypothesis on p is used.

Construct Ps+ , asan amalgamation of | # | copies of the graph Ps
with respect to K-graph (VS*! ). Explicitely, this can be done as fol-

s+ 1

lows: Put Vf” = VX .# forevery i#s5+ 1 and forevery M€ #

choose a bijection ¢, : V7 , > M. Define E* I as the set of all sets of

form

for an M€ .# and e€ EF. An edge of this form will be denoted as
(e, M); thus, symbolically, E**1 =ESX .#.

a

Put H = [_U1 Ve, E%) = (W, F). Obviously x(H)< k.
f:

Claim 1. H isselective.

Claim 2. H does not contain cycles of length < p.

Proof of Claim 1. Let ¢: W— W be a coloring. As above in Part 3,
by the downward induction'on s=a,a—1,...,0 we find an a-partite

- 279 -



subgraph P'= ((V)){,E") of P, with the following properties:
(i) P' isisomorphic to P, (as a-partite k-graphs);

(i1) for every i c |‘ p Is either a constant or 1-1. Let w be the set
of all i for which ¢ [‘ V' Iis 1—-1.If |w|= k then the subgraph of P’ in-

duced on the set U V; contains a graph G, 4 constructed in Lem-
iEw ¢
ma 4.2 and consequently there exists an edge e€ E' such that c[‘e is

1-1.
If w=¢ then clearly there exists k¥ € {1,...,a}, |kl =k, such
that all constants ¢+, i€ k, either coincide or are distinct. Using the
i

construction of P, there exists an edge e€E’, eC U vie If

iEkK
O0<|w|<k then ¢ - |w|=(k—2)(k— 1)+ 1 and consequently either
there exists a set xS {1,...,a} — w, |k|=k, such that all constants
Cer* i€k, coincide or there exists a set kS {1,...,a} — w, |kl=
I

=k — 1, such that all constants Cer* i € k, are distinct. In the first
I

case there exists a monochromatic edge e < U V! in the second case
i€k

there exists an 1—1 edge ¢S U V.U V. for every i (see the state-

= l‘i)
ment of Lemma 4.2).

Thus H is selective. 8

Proof of Claim 2. We proceed by induction on s. By the construc-
tion (see Lemma 4.2) P(} does not contain cycles of length <p. Let
s> 0 be fixed and assume that the edges €1, n8, form a cycle in PSA
Recall that P was constructed as an amalgamation of copies of P,
and that for every edge e € E° there exists exactly one M € # such that

eC MU .U Vf‘l X {M}. Denote this edge M by e. It is clear that
1# 5
either é_l = g é;ﬂ or the edges ¢;,....¢, form a cycle in (V;, #).

In the second case we have I{E1 Gy Ep}l >p—1 by the induction
assumption (used for the K-graph (V:, A )) and as there are necessarily

i#j such that e_i = Ej we have a contradiction. If 671 =, .= Ep =M

then ¢, MU U V"' x{M} for i=1,...,p and asa consequence
its
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the edges e,,.. 1€ form a cycle in a subgraph of P which is
isomorphic to P . But this is a contradiction to the induction
assumption. 1

This completes the proof of Theorem 4.1. 1

5. CONCLUDING REMARKS

I. Let us outline the proof of the theorem stated in the introduction.
The theorem follows from the following slightly stronger result.

Theorem 5.1. Let G bea k-graph and p = 2 an integer. Then there
exists a k-graph H with the following properties:

(1) H isselective for G,

(2) x(tH) = (x(¢) - DHAWG) - 1)+ 1;

(3) If the edges e, e,,... '€, form a cycle of length at most p
in H then there exists a subgraph G' of H, G' isomorphicto G such
that G' contains all edges €1,€ys €.

In order to get Theorem 1.4 let p be the maximal size of a graph
belonging to .

To prove Theorem 5.1 observe that because of condition (2) we can-
not use standard amalgamation technique (see e.g. [11]). However we can
modify the above proofs of Theorems 3.1 and 4.1. We stress the main
differences only.

Sketch of the proof of 5.1. Let G = (V,E) be a k-graph with n
vertices; put x(G)= k. Let V=V, uV,U.. .UV, bea fixed coloring
of G. Assume without loss of generality that | Vil=1Vl=...=1V, |=
=1 (we can add some singletons if necessary) for some [ Put
a=(k— 1)(n— 1)+ 1. The resulting k-graph H will be built successively
by a-partite k-graphs Py, P,,...,P = H using sparse selective hyper-
graphs (without cycles of length < p). This step is similar as in proofs of
Theorems 3.1 and 4.1. The construction of a-partite k-graph P is based
on the following lemma (analogous to Lemma 4.2).
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Lemma 5.2. For every p,r,l, r=>=2 there exists an r-partite
ri-graph Gr‘!_p = (( VI.)’, E) without cycles of length <p with the fol-
lowing properties:

(1) |len VI.I=I forevery ec E (1<i<r);

(2) forevery coloring

r F
c: Uv-U v

i=1 ' =1 '
which is 1—1 on each of the sets Vl., i€w foran wC{l,2,...,k}
there exists an edge e€E, e={v1,v2,...,vﬂ}; VisVass s s € ¥y,
Vo g eoig Vg€ Vz""’V(r—1)1+1=""”rfe Vr such that c(vi)qéc(vf)
whenever one of the vertices belongs to U v,

iew

Construction of rl-graph G, p can be derived (similarly as in the
proof of Lemma 4.2) from an rl-graph G’ without cycles of length < p

and with chromatic number bigger than 2t

II. Given a graph G denote by A(G) the minimal number of
vertices of a graph H selective for G. Set

s(n) = max A(G)

where the maximum is taken over set of all graphs with »n vertices. We
can show

s(n)<(2+ )"
forany €>0 and n=n;(e).

However we do not know any nontrivial lower bounds.

ITI. We have some further results concerning this topic. These concern
critical selective k-graphs defined similarly as chromatic critical k-graphs.
Particularly we can show that do decide whether a given 3-graph is selec-
tive is NP-complete. Surprisingly presently we do not see a simple proof
of this.
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