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Let 1 £a; < ... <a, be a sequence of integers Consider the integers of the form
11} ai+a;. aa;, 1Zigjsn.

It is tempting to conjecture that for every = 0 there is an n, so that for every n >n.,

there are more than n?~* distinct integers of the form (1). We are very far from being
able to prove this, but we prove the following weaker

Theorem 1. Denote by f(n) the largest integer so that for every [a,. a, ..a,| therg
are ar least f(n) distinct integers of the form (1). Then
(2) ntracfim<n®exp(—c,logniloglogn).

We expect that the upper bound in (2) may be close to the “truth”.

More generally we conjecture that for every k and n > ny(k) there are more than n*
distinct integers of the form

g

k
a.+...+a, []a
i=1

At the moment we do not see how to attack this plausible conjecture.

Denote now by gi{n) the largest integer so that for every |a,.
g(n) distinct integers of the form

.., a,| there are at least
(3) E eai, [lai (&=0o0r1)
=y

f= ]

We conjecture that for n > nglk). gin) > n*. Unfortunately we have not been able to
prove this and perhaps we overlook a simple idea. We prove
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Theorem 2.
gln)<exp(c, log®n/log logn).

Again we believe (without too much evidence) that Theorem 2 may be close to the
final truth. Perhaps our conjectures remain true if the a’s are real or complex numbers.

Some more conjectures: Let %(n, k) be a graph of n vertices x,, xjy, ..... x, and k
edges. Make correspond g; to x;. Consider the set of 2k integers.
(4) {a,+a;, aa
where x; is joined to x;. We conjecture that for every ¢é>0and O<xs1if k>n'""
then there are more than n' **~* distinct integers of the form (4). Our proof of Theorem
1 does not seem to apply here. The conjecture very likely remains true if the a's can
be real numbers. P. Ernos once thought that the conjecture may hold even if we only
assume k > cn, but A. Rusin showed that this is not true if the a's can be real numbers
and it perhaps fails even if the a's are restricted to be positive integers.

Finally we state a few related problems. Let a,b;=T i=1,2, ..., n. Consider the

sums
a; +a;,, b +b,, a+b, 1Z2i<i<n,

Is it true that all but one of three sets have more than n' ** distinct elements?

Consider the sets (kin—k), 1 £k <n} and {lim="), | £l<m|. Can one estimate the
number of integers which are common to both sets?

Let a,, ..., a, be such that there are only cn distinct sums of the form a;+a;.
1<i<j<n. Then there certainly must be more than n* ~* distinct products of the
form a;a;, 1 Si<j<n. Perhaps there are more than n?/(log nf products of the form
aa;, 1 Si<jsn. The deep results of Freiman can possibly be used here [1].

2

+

Finally a problem of different kind. Let 21— 1St < -

. Tt is easy to see that one

can find a sequence of integers a, < ... <a, so that there should be exactly t disunct
integers in the sequence a,+a;, | £i<j<n. Wedo not know for which ¢ is it possible to
find a sequence a, < ... <a, so that there should be exactly r distinct integers of the
form

Y ra, g=00r 1.
=]

[t is probably even more difficult to find out for which 7> f(n) i1s there a sequence
dy ... <a, so that there are exactly ¢ distinct integers of the form (1).

First we prove Theorem 2 which will not be difficult. Let x be large. The a's are the
integers of the form

Hp~, p;<llogx)?, 0Zz=(logx)'?.
Put

M
(5) [(log x)' 3)=1. m[(log x)* N =(1+otl)) Toglogn l
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The number of a's is

| ;
(6) n=(t+1) = exp (5 (log x)? ’).

All the a's are less than x, thus the'number of the distinct sums is less than x?,

Next we have to estimate the number of the distinct product of the form [] aZ,
i=1
£;=0 or 1. These integers are all composed of the first / primes. The highest exponent of

a prime p which can occurin [] afisat most tn<(t+ 1)~ ! =(t + 1)n. Thus the number

i=1

of the integers of the form [] a# &=0 or 1. is less than

i=1
(7N ((t4 D =(e + 1)+,

To complete the proof of Theorem 2 we only have to show by (5) and (6) that

(8) n:la;n Ioglogn-)“ + ]]“"‘4—)53 .

(8) immediately follows from (5) and (6), which completes the proof of Theorem 2.
Now we prove Theorem 1. First we prove the right side of (2). This will be a
standard and comparatively simple estimation. We do not try to obtain the largest
¢y logn )

possible value of ¢, since we are not at all sure that the term n? exp(— oz
oglogn

is the final truth. A
To prove the right side of (2) let 2j be the largest even integer not exceeding
log x

m—]@. s=mi(log x)*). The a, are the integers of the form

2j
9) T8, pi<(logx)®, &=0orl.

i=]

These integers are clearly all less than x, Their number clearly equals

5
10) t = EF il
: | (21) ¥

The number of distinct integers of the form a;+q; is by (10) and @;<x less than
2x <3271 and thus can be neglected. Next we have to estimate the number of

distinct integers of the form a;a,. We split these integers into two classes. In the first
class are the a,a, for which (v(n) denotes the number of distinct prime factors of n)

vilag, ay)) > j .
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The number of these integers is by a simple computation less than

it
t, log x ("')(j) < 1, log x 2¥(log x) M < p L3 Tal)
o

Thus the numbers of the first class can be also neglected.
Now if a,a, is in the second class we can write

ad,= Q:L

where Q =(a;, a,) is squarefree and L is the product of two relatively prime squarefree
log x
integers having 2j-- W Q) prime factors, where Q) < = - . But then clearly
6 log log x

2j ;
Q%L can be written in at least ( j) ways as the product of two numbers a;, a,
/

Wa,, a;)= Q. Thus the number of integers in the second class is less than

which proves the right side of (2).

Tocomplete the proof of Theorem 1 we now have to prove the left side of (2), and this
in fact is the main novelty and difficulty of our paper. We make no attempt to get a large
value for ¢, as stated in the introduction ¢, > 1 —¢ for every ¢>0 and our method

. 1
cannol even give ¢; = -

First a few remarks. If a, <n* our Theorem follows trivially with ¢, > 1 —&. thus the
only difficulty is if some of the a's are very large. First we prove that we can assume
without loss of generality that all the g; are in some interval u=<a;<2u.

Denote by S; the set of ajs satisfying 2' <a;<2'"". First observe that we can assume
without loss of generality that

() iSii=0 or |(Sjzn'"?.
Assume that (11) does not hold. Let §,. . . 5, satisfy
(12) 0<iS;l<n'* 1ZjSk.

5 n
If IS i< 5 we simply omit all the a's satisfying (12) and we only work with
=

e : . . . no..
the remaining a's and since their number is greater than 5 this clearly can be

& n
done. If | ] IS |Z - then by (12) clearly kZn*'*2. Let a_be an arbitrary element of
J=k: = '
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S, j=12 ...k kzn¥*2 Clearly a;,.,>2a; and thus the sums

ai:,- +argf D zéfl <.f;2 gk’
3
. n
are all distinct, so there are at least 5 distinct sums of the form a,+a,.
1 <u<v<n, which proves Theorem 1 if (11) does not hold.
Thus we can now assume that (11) holds.
Now we state the crucial

Lemma. Let m<b, <...<b,£2m. Then the number of distinct integers of the form
bi+b;, bb;, 1Zi<j=r
is greater than et' ** for some x>0 and &> 0.

Suppose that our Lemma has already been proved. Then by (11) and our Lemma
the number of distinct integers of the form a;+a;, a;a; is at least

(13) eS|t >en v

(where the dash indicates that the summation is extended over the i satisfving
IS;/=n'*) (13) of course gives the left side of (2) and hence proves Theorem .

Thus we only have to prove our Lemma. Put [t! #]=s. Denote by B, the set of b's
Bii—i1s=1s .« s bis). In other words we divided the index set of the b's into [17] sets of
size [1''*]. Denote by B= B, the B; of smallest diameter (i.c. b, _ . , —bj, is minimal).
Observe now that if u—v=10 and (u#r, v#r) bye B, b,eB, b;eB,, bye B, then
b, +by=b,+b, and b,by# b,b,. This is obvious for the sum and nearly obvious for
the product. Put b;=b, +x, b,=b;—y. Then if b,b,=b,b, we would have b b, =
=(b, +x)(by—y)or xy=>b,yx—b,y and this easily leads to a contradiction since y > 10x
by the minimality property of B=B, and u—uv=10. Further 1/2<by/b, <2. Thus
byx—hb,y<0<xy which is impossible.

Consider now the s’ /10 Bj's, j=1(mod 10). We divide the indices j into two classes,
In the first class are the indices j for which the number of distinct integers of the form

b;‘.“b;. b;b[. b,EB, b;E'B)

is greater than s' *%% If at least half of the indices belong to the first class then our
Lemma immediately follows since the number of distinct integers of the form b, + b,
. 11, 1 , A
bb; is greater than T L 5 t' ** which proves the Lemma in this case.
Let now j be an index of the second class. We remind the reader that in this case
the number of distinct integers of the form b,+b., bb, b,eB. b,eB,; is less
than s' 8%
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We want to find six integers b,, by, by, by, bs, by, bye B;(i=1,2), e B(35i<6),
satisfying

[14] b;'f'b_}-':b:‘i"‘h.; al‘ld b|b5=bzb6‘

Consider the s* products b,b,, b, € B, b, € B;. Since B; is in the second class there
are fewer than s' 3% distinct integers of this form. Therefore there is a T so that
T =b,b, has at least s' ~* solutions. Put

T'=b,b,. b, eB b eB;, 15rgs'™®
Consider now the s*~'°* sums of the form b, +b, . For sufficiently small 2 these
sums clearly cannot all be different.

Thus there are indices u,, t;, u,. v, so that b, +b =b, a.»b But b,b,=b,b, .
Thus b, , b, b, b, B, b,, b, €B; are our rcqunred six mtegem Obser\ee that if
by. by, hs, b are fixed there s at most one b,, b, pair which solves (14).

L ,
We have at least T Bs in the second class and the number of different

by, by, bs, by quadrouples is at most s*. This contradicts our observation, and
this contradiction completes the proof of Theorem 1,
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