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Sets of natural numbers of positive density and cylindric set algebras
of dimension 2

PAUL ERDÓS, VANCE FABER AND JEAN LARSON

A (diagonal-free) cylindric algebra of sets (of dimension 2) is a Boolean
algebra of subsets of the Cartesian product X x Y of two sets (called the axes)
which is closed under the operations c x and cy of cylindrification parallel to an
axis :

c,A={uEXx YI uy =vy for some vEA},

cYA={uEXx Yl u.= v, for some vEA} .

Cylindric algebras of higher dimensions are defined analogously (see [7, p . 164]) .
Examples of cylindric algebras of sets are the projective algebras of subsets of the
plane: classes of sets situated in the Euclidean plane, closed under Boolean
operations and under projection onto either axis, and containing the direct
product A X B whenever A and B are situated on the x-axis and y-axis
respectively .

In [11, p. 12], Ulam has asked some fundamental questions about projective
algebras of sets in the plane (and higher dimensional Euclidean spaces) . It is the
purpose of this paper to settle some of these questions . In §1 certain questions
concerning sets of natural numbers of positive density are discussed which arise
from computations involved in the construction in §2 of a countable collection of
sets in the plane which is not contained in a finitely generated cylindric algebra of
sets in the plane . In §3 we summarize the status of each of the other problems on
projective algebras mentioned by Ulam in [11] . The first author is responsible for
§1 while the results in §2 and §3 are due to the other two authors .

We use the following notation and terminology . Each ordinal is identified with
the set of ordinals smaller than it . Each initial ordinal is identified with its
cardinality. The first infinite ordinal is w . Often we call a cylindric algebra of sets,
a cylindric set algebra . We should also point out that our notation and terminology
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concerning cyclindric algebras of dimension 2 does not follow precisely that given
in [7] . First, we use cx and c y for the cylindrifications they call c o and c J . Second,
and more important, we are mainly interested in what they call diagonal-free
cylindric algebras, so we omit the term diagonal-free from our definitions .
However, many of our cyclindric set algebras of dimension 2 whose axes are the
same set X do, in fact, include the diagonal, {(x, x) I x E X}, and so are truly
cylindric algebras of sets in terminology of [7] . Thus one must be careful to
understand that when we count the generators of a cylindric set algebra, the
diagonal is treated just like any other set . Finally, if we wish to include the
diagonal as a distinguished element, we refer to a cylindric algebra with diagonal .

H. A set I g co has upper density p(I) =1im sup I ink I/k and lower density p(I) _
lim inf Iink I/k . If p(I)= p(I), we say I has density p(I)= p(I) . Notice that if
I= IJ U 1, then p(I) p(II) + p(I2) .

LEMMA 1 . If I has positive upper density, then for some J( -- I and for some
d > 0, J has positive upper density and J+ d = {j + d j c J} I .

Proof. Choose i so large that p(I) • i > 2 . Then for infinitely many natural
numbers k, I has at least two elements in the interval [ki, (k + 1) i) . Any two
elements in an interval of length i have a difference l with 0 < l < i . Let I' be the
set of all natural numbers which are the largest element of I in some interval
[ki, (k + 1)i) . Then lI' n kil <_ k for every k c w, so

(I) = lim
suII'nk1 .

	

~nkil <

	

k _ 1 2
pp	

k

	

lim sup
I'

ki

	

lim sup
ki i < i < p(I)

~P(I)+P(I\h),

so p(I \ I') > 0 . For l with 0<1<i, let h = {x E I - I' I x + l E I} . Since I - I' _
I I U . . . U li -, we can find d such that Id = J has positive upper density . This
completes the proof of the lemma .

An integer d > 0 belongs to a set I c- co if d occurs as a difference of elements
of I infinitely many times, that is, (I + d) Cl I is infinite .

THEOREM 2 . Suppose w is partitioned into two infinite sets A = {a,} and
B = {b,} listed in their natural order . If both fim inf (a, +i - a,) and fim inf (b,+J - b,)
are finite, then there is a d which belongs to both A and B .

Proof. Since fim inf (a,,,-a,) and fim inf (b,+J- b,) are finite, then there is a dJ
which belongs to A and a d2 which belongs to B. Assume there is no common d
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which belongs to both A and B. Then d2 does not belong to A and d l does not
belong to B. It follows that there is some integer N E co such that b„ + d 1 E A and
a71 + d2 E B for every n > N. So b„ + d, + d2 EB and an + d2 + d 1 E A whenever
n > N. Consequently, dl + d2 belongs to both A and B.

Remark 3 . Erdos conjectured that if A and B are two sequences of positive
upper density, then there is a d which belongs to both of them. Stewart and
Tijdeman [10] and independently, Prikry [9] have shown that if A, A 2 , . . . . A k
are sequences with positive upper density, then the set A of integers which belong
to each of the A,'s has positive lower density . Stewart and Tijdeman give an
explicit lower bound for the lower density of A .

§2. The main results in this section can be summarized in the following statement .
There is a countable cyclindric set algebra 16 of dimension 2 with the properties

(Theorem 14)

	

is not isomorphic to a subalgebra of any finitely generated
cylindric set algebra of dimension 2,

(Theorem 15) every finitely generated subalgebra of (6 is contained in a 2-
generated cyclindric set algebra on w x w .

Before proving this statement, we prove that certain families of rectangles are
subsets of finitely generated cylindric set algebras of dimension 2 .

THEOREM 4. Let U and V be infinite sets . Let _ {Xi X Y I i < w} be a
family of (rectangular) subsets of U X V and let p = (u, v) E U X V. Then there exists
a set R such that JW is a subset of the cylindric set algebra generated by {{p}, R} in
U x V.

Proof. Let U= 0 i , Ui, V= CJ,, V; where Uo =Jul, Vo ={v} and I U;I _
Vi I = 1 for j = 1, 2, 3, 4. We shall show below that .4, the cylindric set algebra
generated

	

by

	

{{p}, R}

	

contains

	

the

	

sets

	

U; X V;,

	

j <5,

	

and
(X, \ U ;<s U;) X (Y \ U ;<s V;) . (Note that {p} = Uo x Vo .) Once this is accom-
plished, it is not hard to show that .i contains X, X Y, so without loss of
generality we may assume for all i < w that Xi n (u i<s U;) = 0 and
Y n (U,<S V;) = 0 . We break the proof into a series of lemmas .

LEMMA 5. [7 ; p. 253] If N is countable and well-ordered as Ja r I i < w}, then
the cyclindric set algebra generated by the upper triangular set {(a,, aj ) I i < j}
includes all singletons .

Proof. Let A ={(a,, a;) I i < j} . Let s4 be the cyclindric set algebra generated by
A . For each i E w, let Ni _ Jai I j c w \ i} and let A, = 4 f1 (Ni X N,) . We claim that
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assuming that D i , Ni X Ni are elements of s-4, then 1(ai+J, ai+J)1, di+J, Ni, J X Ni+ 1
are all elements of s4 . It is enough to show that 1(a, a,)}, d o , No X No are all
elements of A since the claim is exactly this statement relativized to Ni X Ni . Note
that X = (cx A)` =1(ai a,) I i c w} and Y= (c, (A' \ X))` =1(a o , ai ) I i E w} . Thus
1(a,,, ao )} = X n Y and No X No = (X U Y)` . This proves the claim. Finally,
1(a i, a;)}= cy 1(ai ai)}n cxf(a;, a;)} for all i, j e w.

Let E, = U i even Ui, E2 = U i even Vi, 0,= U \ E, and 0,= V \ E2 . Let 4E _
U f Ui x V; I i, j even i < j} and AO= U 1 Ui x V; I i, j odd, i < j} . Let Ck =

U 1Ui I i =- k (mod 4) and i>41 and D k = U 1Vi I i = k (mod 4) and i>41 for k -
1,2,3,4 . Let 1P= UlUi XDS- i I1<_i<_41UIC 5- i x Vi I1<i<4} . Let X,=
U f(Xi n Ci ) x V4i+9-; I i < w} and 6Jj = U 1U4í+„_j X (Yi n Dj) I i < w} for j=1, 2,
3, 4 . Finally, define R =1p} U (0, X V,) U AE U A0 U 16 U (U f Tj U'Jj I 1< j <_ 4})
and let s4 be the cyclindric set algebra generated by f1p}, R} .

LEMMA 6. The sets 1p} ; 0, x Vo ; (E, X EZ) \ fp}; 0, x 02 ; U; X D5 - j , 1 < j

4 ; C5- j X V,, 1-< j -4 ; C X V4i+9-p iE w, i<-j- :::4 ; and U4i+rr-i X Di , iE w, 1< j
4, are mutually disjoint and cover R .

Proof. Details of this proof are left to the reader. Note that j has parity
opposite to 5-j, 4i+9-j and 4i+11-j.

LEMMA 7. The sets E1 X E 2 , AE, 0, x 0 2 , d0 and U X V; for all i, j e w are
members of s4l .

Proof. Since (U x V(,) n R = ( 0, x Vo) U Jp}, we have o, x Vo = (c.1 p}) n

(R\1p}) E .qi, and E l x Vo = (c. f p})\(0, x Vo ) E s4. Since (U(, x V) n R =
(U,,XV)n(AEUfp}), we have Uo XE 2 =(c,fp})nREs4, and UO X02 =
(cy 1p}) \ (Uo x EZ ) E si . Thus O, x 02 = cy (O, x Vo ) n cX (Uo x 02 ) and E, X E2 =
cy (E, X Vo) n cX (Uo X E 2 ) E sál . Hence AO = (O, x 0 2) n R E sál and AE-
(E, X EZ ) n R E qi . Finally, the proof of Lemma 7 relativized to O, X 02 and
E, X E 2 shows that U X Vi c 4 when i and j have the same parity ; so if i and j
have opposite parity u, x y, = c x(U, +I x y) n cy (U, x y,,) c si .

LEMMA 8 . For each i E w and 1 < j < 4, Ci X V4,+9-i E sál and U4i+„- ; X D; E
s1 .

Proof. For i E C0, C X V4i+9-1 _ (C X D 5_á ) n c. (u(, xV4,+9-,) for 1< j< 4,
U4i+1_jX Dj (C3-, x D,)n cy (U4i+JJ-, X Vo ) for j 1, 2, and U4i+,,_,X D,
(C., , x D;) n C, (U 4i+„ , X Vo ) for j=3, 4 . Hence it is sufficient to show that
C x Dj E si when 1-i, j-4. Let S = R \ DE ~ d 0. By Lemma 7, S E ,4. Since
(U;x V)nSg~,., 1<j<4, then U;XD, ,=(U;XV)ne=(U;xV)nS=
c,,(U;x V;)nSE .4, 1<j<4, by Lemma 7 . Since (Ux V;)nSsi~(Ux V;)nw,
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1<j<_4, then CS j x Vj =(Ux V,)nl ,, =( Ux Vj)f1S=cx (Uj x Vj)f1SESál, 1-
j< 4, by Lemma 7 . Finally, Ci x Dj = ( cy (Ci x VS i )) n (cx (U,_ j x Dj )) E gi for 1-
i, j < 4 .

LEMMA 9. For each i c w, Xi X Yi E si .

Proof. Since we have assumed Xi n U; _ 0, then Xi =Xi n U=
U {Xi fn C,

I
1 < k < 4} . Also R n (Cj x V4L+9_j) C_ 3(p so (Xi n Cj) x Vai+9-j =

GLj n (Cj x V4,+9-,) = R n (c, x V41+9 )E sd by Lemma 8 . Similarly, U4i+11-j x
(Yi n Dj ) E s4 . Then Xi x V = cy (U {R fl (C, x V4i+9-j) I 1 < j < 4} E sál and U X Yi =
cx (U{Rfl(U4i+ri - j xDj ) I 1<j<4})Esál. Finally, Xi x Yi =(Xi x V)n(UxYi ) ES4.
This completes the proof of Theorem 4 .

Remark 10 . As the referee has pointed out, the assumption that U and V are
both infinite is necessary, since the theorem fails in case one of the sets U, V is
finite while the other is infinite . For example, if U={u}, then the algebra
generated by any finite collection of subsets of U x V is finite .

Remark 11 . If U= V, u = v and U Ui = U Vi, then the intersection of R with
the diagonal, {(u, u) I u E U}, is {p}, so the cylindric set algebra with diagonal
generated by R contains all the sets X i x Yi for i<&) . In [8], the third author
shows exactly which families of rectangles can be subsets of a cylindric set algebra
(without diagonal) generated by a single set .

Now we need some lemmas . Let Ld be the line y = x + d in co x w . The upper
triangular set A = {(i, j) i < j} generates a cylindric algebra in w x w which con-
tains all singletons by Lemma 5. As before, for J ci w and d E w, J+ d =
{j+d I jeJ} .

LEMMA 12 . Let s4 be a finitely generated cylindric set algebra of dimension 2
on U X V. Then there is a finite partition of U X V, k = {Hi I i < n}, so that every
element L of 4 can be expressed as L = U i , (B i fl Hi ) where each Bi is a finite
disjoint union of rectangles .

Proof. Let {Ai I i < m} be a set of generators for sál. Take k to be the
collection of sets of the form x, fl x, n . . . f1 Xm where each Xj = A i or A, for
some i . Let be the Boolean algebra of all finite unions of rectangles in sál . The
Boolean algebra generated by 93 U W contains {A i { and is closed under cylindrifi-
cation, thus it coincides with J. The statement in the lemma follows easily .

LEMMA 13 . Let 16 be the cylindric set algebra on w x w generated by the lines
Ld with d c w and A. There is no finitely generated cylindric set algebra sál of
dimension 2 on w x w such that (6 is a subalgebra of .4 .
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Proof. Suppose to the contrary that such an sál exists . Then by the previous
lemma there is a finite partition of w x w, X = {Hi I i < n}, so that each Ld can be
expressed as Ld = U i< „ (Bi n Hi ) where each Bi is a finite disjoint union of
rectangles . We claim that we may assume that the B i satisfy

(1) Bi -- c, (H, n L,),
(2) Bi is a disjoint union of rectangles of the form I X (I + d) .
To prove (1) note that since Ld is a function on co x w, c,, (Hi n Ld ) n Ld =

Hi n Ld . Thus if we consider

L= U (Bi ncy (Hi nL,)nHi )--Ld ,
i<n

we have

LnLd = U (B i ncy (Hi nLd )nHi nLd )
i<n

= U (B i n Hi n Ld ) = Ld ,
i<n
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so L = Ld . To prove (2) note that if B i = R, U . . . U R k is a disjoint union of
rectangles and Hi n Ld c Bi , then Hi n Ld c R', U . . . U Rk where RI -
c, (R, n Ld) n c x(Ri n Ld ) . Notice that if cy (R, n Ld) = I x w, then cx (Ri n Ld ) _
cox(I+d), so R,=IX(I+d) .

Now by using the distributive law, Ld can be expressed as a disjoint union of
terms of the form I X (I + d) n Hi . Call this expression the given canonical decom-
position of Ld . The following facts about the given canonical decomposition of Ld
follow from (1) and (2) :

(3) The I's form a partition of w,
(4) Each term I x (I + d) n Hi satisfies Ld n (I + d )) _ (I x (I + d )) n H, .
Since the terms are disjoint, since c,, (I x (I+ d)) = I x w and since c,, (Ld) _

w x w, (3) is clear . To prove (4), we use Ld n c,, (Hi n Ld) = Ld n Hi again and (1) :

Ldnix(I+d)CL,nc,,(Hi nL,) = L,nH, - Hi,

so Ld n (I x (I + d)) c (I X (I + d)) n Hi . The other inclusion is clear .
We define Ji , Ii c w, d i c w and r(i) < n for i < n by recursion . First set d o = 0 .

By (3) and remarks immediately preceeding Lemma 1, we can find a term
(Io x Io) n H,(,) in the given canonical decomposition of Lo so that Io has positive
upper density . Set Jo = Io . Second, find e l > 0 and Ji S Jo of positive upper density
so that J, + e, c J, (by Lemma 1) . Set d, = e, + do . Find a term
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(L, X (I, + d,)) n H,,, ) in the given canonical decomposition of Ld, so that J, _
Jl n I, has positive upper density . Notice that not only is J, c J0 , but also
J, + d, = J, + e l + do g Jo + do . At the stage i + 1, find ei+, > 0 and J;+, g J, of
positive upper density so that Y,+r + e,+r g J, . Set d,+r = d, + e,+ , . Find a term
(I,+, X (I,+, + d, +,)) n H, (, + ,) in the given canonical decomposition of Ld, + , so that
Jc+, = I,+, n Jf+, has positive upper density . Notice that not only is Ji+ , -- J,, but
also J, + , + d,+, = J,+, + e,+r + d, c J, + d, . Suppose r(i)=r(j)=s with j < i. Then
J,x(J,+d,)flH,cI,x(I,+d,)nHS=Ld,n(I,x(I,+d ;)) by (4) and J,=Jj nI, . Let
pcJ, . Then (p,p+d,)EL di and J,x(J,+d,)(-- I,x(I,+d,), so (p,p+d,)EH, . In
addition, (J,x(J,+d;))nHS c(Jj x(jj +d,))nHS c(hx(h+d,))nH.=Ld,n(hx
(h + d;)) . Thus (p, p+ d;) is in both Ld, and Ld,, a contradiction . Thus we have
defined a one-to-one function r from n + 1 into n . This contradiction completes
the proof of this lemma .

THEOREM 14. The cylindric set algebra 16 is not isomorphic to a sub-
algebra of any finitely generated set algebra of dimension 2 .

Proof. The proof proceeds by contradiction, so assume that 9 on Ux V is
finitely generated and that h :16 - 2 is an isomorphism of into a subalgebra of
2 .

Since h preserves cylindrifications and since a set R is a rectangle if and only if
it is the intersection of its cylindrifi cations, R = c„R n c,R, the isomorphism h
must take each rectangle of (6 to a rectangle of 2 . Singletons are rectangles, and
since A E `,, all singletons are in 16 (by Lemma 5). For each i < (0, let U X V, be
the rectangle to which h takes {(i, i)}, that is, h({i, i}) = U, X V, 0 0 . Now we show
that if i 0- j, then u, n u, = o . It is enough to show that (U x v) n (U x v) = o .
Now U X V = cy (U X V) = c,, (h{i, i}) = h (c, ({i, i})) = h({i} x co) . Similarly, U; X V =
h({j}x li,) . Since ({i}x co) n ({j} x co) = o, it follows that (U x V) n (U x V) _
0 and U n u, _ o . Similarly, if

Let F be the algebra obtained from 2 by relativizing to U x V . Then W is
finitely generated by the relativizations of the generators of ~ . Define g : -> W
by g(L) = h(L) nW x V). We shall prove that g is an isomorphism of CC onto a
subalgebra of W . It is not hard to check that g is a cylindric algebra homomorph-
ism. To prove that g is one-to-one, let L and M be different sets in 16 and choose
a point (i, j) that is in one but not the other, say (i, j) E L\M. Then {(i, j)} c L and
{(i, j)} f1M= 0 . Now h({(i, j)})= U X V, since h preserves cylindrifi cations and
{(i, j)} can be expressed in terms of cylindrifications of {(i, i)} and {(j, j)} . Thus
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U x V, - h(L) and (Ur x v,) fl h(M) = 0 . So (ui , vi ) E g(L) and (u,, v,) 0 g(M) .
Therefore, g is an isomorphism into K

Now define a function f from e into subsets of w x w by f(L) -
j){(i, I (ui , v ;) E L} . Then f essentially changes the names of the points in the

underlying set U X V of W. So f carries W isomorphically onto an algebra s4 on
to x w . Composing g and f gives an isomorphism 71 of 16 into s4. We prove that rj
is the identity on as follows . If (i, j) e L, then {(i, j)}= L, so h({(i, j)}) = U, x Vj c
h(L) . Thus {(u,,v,)}E (U,x vi ) n(UxV)-h(L)fl(Ux V)=g(L). So {(i,j)}=
f({(u„ vj )}) c f(g(L)) _ Tj(L) . Thus (i, j) E rj (L) . Similarly, if (i, j) e L`, then (i, j) G

-q (L`) _ (71(L))`, so L = 71(L) .
We have shown, therefore, that `6 is a subalgebra of .4. Now is isomorphic

to Z, so 4 is finitely generated. Thus `6 is a subalgebra of a finitely generated
algebra 4 on co x (o , contradicting Lemma 13 .

THEOREM 15 . Every finitely generated subalgebra of `', is contained in a
2-generated algebra on w x w .

Proof. `6 is generated by {d} U IL, I d c w} . Let 2 be a finitely generated
subalgebra of `6 . Each of the generators of 2 can be expressed in terms of a finite
subset of {a} U {La, I d c w} . Choose k so large that each generator of 2 can be
expressed in terms of a subset of {d} U {Ld I d < k} and let Z be the algebra on
w x w generated by {a} U {Ld I d < k} . Then 2 is a subalgebra of W . So to prove
that 2 is a subalgebra of a 2-generated algebra, it is enough to show that W is .

For each i c w, let [i] be the residue class of i modulo k . Let R =
(U {Ld I d < k}) U (U {[i] x {i} I i < k}) . Let Ow be the cylindric set algebra on w x w
generated by A and R. Since 2 is a subalgebra of W, to prove the lemma it is
enough to show that is a subalgebra of 9 . To prove this, we show that the
generators of W are members of 9 . Since A is a generator of , , it is enough to
show that each Ld is a member of 9 for d < k . First we show by a series of claims
that U{L. : d < k} and the sets [i] x [j], where i < k and j < k, are all members of 9 .

CLAIM 1 . For every i < k, the sets [i] x {i} and [i] x w are members of JW.

Proof. Since 4 E , by Lemma 5, every finite subset of w x w is a member of
JW. Since {(i, i)}= ([i] x {i}) n (k x {i}) is finite, it is a member of 9. Now [i] x {i}=
(([i] x {i}) (1(k x {i})) U (([i] x {i}) n (((o\ k) x {i})) . So to prove that [i] x {i} is a
member of JW, it is enough to show that ([i] x {i}) fl ((w \ k) x {i}) is a member of J~.
But ([i] x {i}) n (((o \ k) x {i}) = R n ((w \ k) x {i}) as the reader can easily check . So
([i] x {i}) n ((w \ k) x {i}) and [i] x {i} are both members of . Since [i]x(,) -
c, ([i] x {i}), it follows that [i] x w is also a member of 9 .
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CLAIM 2. The set U {Ld I d < k} is a member of Ow.

Proof. Since A is a member of , the sets {(0, 0)}, {(1, 1)}, . . . , {(k - 1), (k - 1))}
are in ; so the cylindrifications parallel to the x-axis of these sets are members
of ~F. That is, w X101, w X111, . . . , w x {k - 1} are members of 9. Thus the union,
w x k, of these cylindrifications is a member of 3w, as is its complement, w x (w \ k) .

Since

U {Ld I d < k} _ (( U {Ld I d < k}) n (w x k)) U ((U {Ld I d < k} n (w x (w \ k))),

it is enough to show that (U {Ld j d < k}) n (w\ k) and (U {Ld j d < k) n
(w x (w\k)) are members of 97.

We show that S = ( U IL, I d < k}) n (w x k) is a member of Ow by showing that
it is finite . Suppose (i, j) E S. Then j < k, and for some d with d < k, j = i + d . So for
some d with d < k, both j = i + d and i = j - d < j < k . That is, both i and j are less
than k. This shows that S is finite and a member of . .

Since

it follows that

U {[i] x {i} i<k}c U{wx{i}I i<k } =wxk,

(U{[i]x{i}I i<k})n(wx(to\k))=0 .

Using this fact, the definition of R and the distributive law, it is easy to see that
U IL, I d < k} n (w x (w \ k)) = R n (w x (w \ k)), a member of Ow.

CLAIM 3. The line Lo is a member of .

Proof. Since A is a member of , {(i, j) I i j}=4` is a member of Ow . If d and
i are in w and d > 0, then the line Ld = {(i, i + d) I i < w} has empty intersection
with A Thus by the distributive law, the intersection of U {Ld I d < k} and 4 ` is
Lo n A ` = L, . By claim 2, the set U {Ld I d < k} is a member of 9, so LO is a
member of .w.

CLAIM 4 . For each i and j less than k, the set [i] x [j] is a member of J.

Proof. Suppose i and j are each less than k . By Claim 1, the sets [i] x w and
[j] x w are members of 9. Since [i] x [j] _ ([i] x w)n (w x [j]), it is enough to show
that w x [j] is a member of . By Claim 3, the line Lo is in Ow. Note that
c.(L,, n ([j] x w)) is the set of all pairs (n, m) for which (m, m) E [j] x w . Since
(m, m) c [j] x w if and only if m e [j], we have cx (Lo n ([j] x w)) = w x [j] . Thus
w x [j] is a member of . This establishes Claim 4 .

Finally, we show that for all d < k, the set Ld is a member of JW. The sets of the
form [i] x [j] for i and j less than k form a partition of w x w, so for d < k, the line
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Ld can be expressed as the union of the non-empty intersections of Ld with
elements of this partition . For d, i and j less than k, the set ([i] x [j]) n Ld is
non-empty if and only if i + d = j . Thus for e < k,

LQ={([i]x[i+e])nLQ I i<k}

= U {([i] x [i + e]) n Ld I i < k and d < k}

=(U{[i]x[i+e]1 i<k})n(U{Ld I d<k}) .

It follows by Claims 2 and 4 that LQ is a member of .

Remark 16 . In [8], the third author shows that the cylindric subalgebra
generated by A and L, in W, is not isomorphic to a subalgebra of a 1-generated
cylindric set algebra of dimension 2 .

V. Abstract projective algebras, defined by Everett and Ulam in [5], have been
shown by Chinn and Tarski [3] to be definitionally equivalent to (diagonal-free)
cylindric algebras of dimension 2 with a distinguished element p (which we shall
call a base point) which is an atom and satisfies cxp n cyp = p . Thus many theorems
concerning cylindric algebras which can be found in [7] apply to projective
algebras. For example, by [7 ; pp. 252-3], both the projective algebra generated
by the finite subsets of w x w and the algebra , of all subsets of the square of a
finite set n are generated by a single element . (The latter fact was overlooked in
[1] where the authors proved that 93 n was generated by two elements .) Every
cylindric algebra of sets of finite dimension is simple since the ideal of all sets
congruent to the empty set must be closed under cylindrifications and hence
contains the universe [7 ; p. 170 and p. 281]. It follows that there are no free (in
the sense that no relations exist between the elements except those that are
universally true) cylindric algebras of sets of finite dimension .

In a forthcoming series of papers [8], the third author proves the following
results .

(A) There are exactly 7 non-isomorphic 1-generated cylindric algebras of sets
of dimension 2 (without diagonal) .

(B) There are 2x- non-isomorphic 1-generated cylindric algebras of sets of
dimension n with 2 :5 n < w (with diagonal) .

(C) There are 2x- non-isomorphic 1-generated projective algebras .
(D) There are 2x- non-isomorphic 1-generated cylindric algebras of sets of

dimension n (without diagonal) with 2 < n < w .
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We shall now show that all the questions in [8] on projective algebras have
been settled . The italics denote a direct quote from [8 ; pp . 12-13] . The answers
follow the questions .

Given a countable class of sets in the plane, does there exist a finite number of
sets which generate a projective algebra containing all sets of this countable class?
Another statement might make this assertion for a countable class of sets given in
En` with the generating sets required to be in some En with n < m .

The answer is "no" by Theorem 14 .
Does there exist a universal countable projective algebra, i .e ., a countable

projective algebra such that every countable projective algebra is isomorphic to some
subalgebra of it?

The answer is "no" for otherwise there would only be countably many finitely
generated projective algebras contradicting (C) .

Is it true that, for every positive integer k, there exists a projective algebra
generated by k sets in the plane and which is free in the sense that no relations exist
between the generated sets except those that are true in every projective algebra? Can
every projective algebra be obtained by a homomorphism of a free projective
algebra?

The answer is "no" by the discussion at the beginning of this section .
How many non-isomorphic projective algebras exist with k generators?
The answer is 2'- by (C) .

§4. S . Comer has shown [4] :
If 2<_ n < tv and sál is a cylindric algebra of sets of dimension n with a base U

such that I Ul < n, then sál is generated by a single element.
L. Henken has shown [6] :
For 2<n,n, m < to there is a cylindric algebra of sets ,l of dimension n with base

U such that I Ul = nm and such that l cannot be generated by fewer than 1092 m
elements .

G. Bergman has shown [2] :
There is a monotone invariant, rank, on cylindric algebras of sets of dimension 2

and if rank (.l) >_ r, then .l requires at least 1092 r generators. If .l is finitely
generated, then si is contained in a cylindric algebra generated by at most 109 2 r+ 1
generators .

J. D . Monk suggests the question :
Let 2<n, n, m < w . let f (n, m) be the largest k < to such that there is a cylindric

algebra .l of sets of dimension n with base m such that sál cannot be generated by
< k elements. Find f.
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