Algebra Universalis, 12 (1981} 81-92 DO02-5240/81/001 0811280150 +0.20/0
(& 1981 Birkhiuser Verlag, Base]

Sets of natural numbers of positive density and cylindric set algebras
of dimension 2

Paur ErpOs, Vance Faper anD JeEan Larsown

A (diagonal-free) cylindric algebra of sets (of dimension 2} is a Boolean
algebra of subsets of the cartesian product X x Y of two sets (called the axes)
which is closed under the operations ¢, and ¢, of cylindrification parallel 1o an
axis:

cA={ue XxY|u,=uv, for some veAl,
¢ A={ue XxY|u, =uv, for some ve A}

Cylindric algebras of higher dimensions are defined analogously (see [7, p. 164]).
Examples of eylindric algebras of sets are the projective algebras of subsets of the
plane: classes of sets situated in the Euclidean plane, closed under Boolean
operations and under projection onto either axis, and containing the direct
product Ax B whenever A and B are situated on the x-axis and y-axis
respectively.

In [11, p. 12], Ulam has asked some Fundamental questions about projective
algebras of sets in the plane (and higher dimensional Euclidean spaces). It is the
purpose of this paper to settle some of these guestions. In §1 certain questions
concerning sets of natural numbers of positive density are discussed which arise
from computations involved in the construction in §2 of a countable collection of
sets in the plane which is not contained in a finitely generated cylindric algebra of
sets in the plane. In §3 we summarize the status of each of the other problems on
projective algebras mentioned by Ulam in [11]. The first author is responsible for
&1 while the results in §2 and §3 are due to the other two authors.

We use the following notation and terminology. Each ordinal is identified with
the set of ordinals smaller than it. Each initial ordinal is identified with its
cardinality. The first infinite ordinal 15 w. Often we call a cylindric algebra of sets,
i cylindric set algebra, We should also point out that our netation and terminology
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concerning cyclindric algebras of dimension 2 does not follow precisely that given
in [7]. First, we use ¢, and c, for the cylindrifications they call ¢, and c,. Second,
and more important, we are mainly interested in what they call diagenal-free
cylindric algebras, so we omit the term diagonal-free from our definitions.
However, many of our cyclindric set algebras of dimension 2 whose axes are the
same set X do, in fact, include the diagonal, {(x, x)|x< X}, and s0 are truly
cylindric algebras of sets in terminology of [7]. Thus one must be careful to
understand that when we count the generators of a cylindric set algebra, the
diagonal is treated just like any other set. Finally, if we wish to include the
diagonal as a distinguished element, we refer to a cylindric algebra with diagonal.

§1. A set I=w has upper density 5(I) =Tim sup [I N k|/k and lower density p(I}=
liminf (TN k|/k. If p(I)=p(I), we say I has density p(I)=p(I). Notice that if
I=1Ul,, then p(I) =g} +p(ls).

LEMMA 1. If I has positive upper density, then for some J< I and for some
d =0, J has positive upper density and J+d={j+d|jeJic]

Proof. Choose i so large that pil)-i=2. Then for infinitely many natural
numbers k, I has at least two elements in the interval [ki (k+ 1)i). Any two
elements in an intérval of length @ have a difference | with 0<[<i Let I' be the
set of all natural numbers which are the largest element of I in some interval
[ki, (k +1}i). Then |I'N ki|=k for every k € w, 5O

'Nk| 1" kil

k 1 2
glI'y=lim supTEHm sup =lim sup—=T-=:?-=: piI}

ke ki
=pll')+plI\I),
so GINI)=>=0. For | with 0<<i<i let i={xel-I|x+lel}. Since I-I'=

IU---UTI_y, we can find d such that I, =17 has positive upper density. This
completes the proof of the lemma.

An integer d =10 belongs to a set I =w if d oceurs as a difference of elements
of [ infinitely many times, that is, (I+d)N1I is infinite.

THEOREM 2. Suppose w is partitioned into two infinite sets A ={a;} and
B ={h} listed in their natiral order. If both lim inf (@, ,—a;) and lim inf (b ; — &)
are finite, then there is a d which belongs to both A and B.

Proof. Since lim inf (a,,., —a,)} and lim inf (b, — &) are finite, then there is a d,
which belongs to A and a d. which belongs to B, Assume there is na common d
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which belongs to both A and B. Then d. does not belong to A and d, does not
belong to B. It follows that there is some integer N e w such that b, +d, e A and
u, +dseB for every n>N. S0 b +d +deB and a,+d,+d,e A whenever
n>= N. Consequently, d,+ d. belongs to both A and B.

Remark 3. Erdos conjectured that if A and B are two sequences of positive
upper density, then there is a d which belongs to both of them. Stewart and
Tijdeman [10] and independently, Prikry [9] have shown that if A, A; ..., A,
are sequences with positive upper density, then the set A of integers which belong
to each of the A,’s has positive lower density. Stewart and Tijdeman give an
explicit lower bound for the lower density of A.

§2. The main results in this section can be summarized in the following statement.
There is a countable cyclindric set algebra € of dimension 2 with the properties

(Theorem 14) € is not isomorphic o a subalgebra of any finitely generated
cylindric set algebra of dimension 2,

(Theorem 15) every finitely generated subalgebra of € is contained in a 2-
generated cyclindric set algebra on w * w,

Before proving this statement, we prove that certain families of rectangles are
subsets of finitely generated cylindric set algebras of dimension 2.

THEOREM 4. Let U and V be infinite sets. Let F={X XY, |i<w} be a
family of (rectangular) subsets of U >V and let p=(u, v) e U V. Then there exists
a set R such that F is a subser of the cylindric set algebra generated by {{p}, R} in
U=V,

Proof. Let U=, Uy V=1., Vi, where U,={u}, V,={v} and |Uj|=
|Vi|=1 for j=1, 2, 3, 4. We shall show below that s, the cylindric set algebra
generated by {{p}, R} contains the sets UxV, j<5,  and
(XU =s U)X (Y A\ U ;=5 V). (Note that {p}=U;x V) Once this is accom-
plished, it is not hard to show that s contains X, % Y. so without loss of
generality we may assume for all i<e that X, N(U,-s U)=@ and
Y: N, =5 V;) = . We break the proof into a series of lemmas.

LEMMA 5. [7; p. 253] If N is countable and well-ordered as {a, | i< w}, then
the cyclindric set algebra generated by the upper miangular set {la, a)|i<j}
includes all singletons.

Proof. Let 4 ={(a, a;)|i<j}. Let & be the eyclindric set algebra generated by
A. For each icw, let N;={a | jew\ i} and let 4;=AN(N,xN,). We claim that
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assuming that 4, N, % N; are elements of &, then {{a..,, a0} Ay Noa X Ny
are all elements of . It is enough to show that {{ag, ag)}, Aq, NyX N, are all
elements of & since the claim is exactly this statement relativized to N, x N, Note
that X=(c, 4) ={(g,a;,)|icw} and Y=_(c (A°\ X)) ={(ay, a;}|icw}. Thus
{lag, ao)}=XNY and N,xN,=(XUY). Thizs proves the claim. Finally,
{(ay, a)} = e dla; adbNcdla; a)} for all i je w.

Let E;= Uicoen Uss E’J=Ulemn Vi 01=U\E4 and O,= V\ E;. Let AE=
UfU,x V, |Ljeveni<j} and AO=U{UxV |ijodd i<j. Let C=
Ul |i=k (mod4) and i>4} and D, = U{V,|i=k (mod4) and i >4} for k=
1.,2,3,4. Let $=U{UXDs;|1=is4U{C. XV, |1=i=4}. Let %=
UX, NG % Ve, | i<w} and & = U{U 2 (Y,ND) | i<w} for j=1, 2,
3. 4. Finally, define R={p}U(0,x V)U AEUAOUEU(U{ZF U, |1=j=4})
and let & be the cyclindric set algebra generated by {{p}, R}.

LEMMA 6. The sets {p}; Oy % Vi (E\ % Ex)\ph O, %05 UxDs  1=j=
41'. C5"1 x VI' '].E;IE“'; ":}x V-1i+9—_rr EEﬂJq i£j£4: ﬂﬂl’j Ud,.'.n.:'l-fx-DJ: I‘Etth IEJE
4, are mutually disjoint and cover R.

Proof. Details of this proof are left to the reader. Note that j has parity
opposite to 5—f, 4i+9—jand 4i+11-f.

LEMMA 7. The sets E\ % E;, AE, O, % 05, AQ and U; % V, for all i, je @ are
members of &,

Proof. Since (Ux ViINR=(0,x V)U{p}. we have O,xV,=(c{phn
(Ri\fphes, and E;x V,=(c{ph\VO;xVy)esd Since (L,XVINR=
(Uyx VIN(AEU{p}), we have U,xE,=(c¢{phNRed, and U,xO,=
(e, iph\(Usx Es)ed. Thus O x Ox=¢c (O % V)N (Upyx O,) and E xE;=
e(E ¥ VN (UgxE)esd. Hence A0=(0,x0,)NRed and AE=
(E\*E:)N Red. Finally, the proof of Lemma 7 relativized to Oy % O, and
E, % E; shows that U, x V, e when i and j have the same parity; so if i and j
have opposite parity U; % Vi = (U % V))Ne (U x V), jed

LEMMA B. For each iew and 1=j=4, =<V, o edand Uy, xDe
.

Proof. For iew, CX V. =(GXDs )N llUpx Vi) for 1sj=4,
Ur-u-—lt—,l}:Dr'z'jc:l—;XDJ}nCy{U‘qH.H_JX Vy) for j=1, 2, and U_u.,.”_rKDJ:
(Cr x D) Mg, (Uyyqg- % V) for j=3, 4. Hence it is sufficient to show that
CxDjesi when 1=, j=4. Let §=R\AE\AOQ. By Lemma 7, Se s Since
(LxV)NS=%, 1=j=4, then UxD, =(UxVINE€=(LUxV)NS=
c(U=xV)INSed, 1=j=4 by Lemma 7. Since (Ux VINS=(UxV,)N%E,
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l=j=4, then C, xV,=(UxV)INE=(UxV)INS=¢c(UxV)NSed, 1=
j=4, by Lemma 7. Finally, G, x D, =(¢,{G* Vs )N (e (Us_ x D)) e o for 1=
Li=4

LEMMA 9. For each icw, X, XY, e

Proof. Since we Thave assumed X NU =&, then X =XnNU=
UIXiNG |1=k=4}. Also RN(CX Ve )&, so (XNC)X Vo=
ENCx Vg )=RN(Cx V., Jesd by Lemma 8. Similarly, Uy .,,-X
(Y,ND)ed Then X, x V=c (H{RN(C XV, o )| 1sj=dled and Ux Y, =
e (U{R N Uy D} | 1=j=4)) el Finally, X, x Y, = (X, X V)N({Ux Y, ) e &,
This completes the proof of Theorem 4.

Remark 10, As the referee has pointed out, the assumption that U and V are
both infinite is necessary, since the theorem fails in case one of the sets U, V is
finite while the other is infinite. For example, if L'={u}, then the algebra
generated by any finite collection of subsets of U=V is finite.

Remark 11. H U=V, u=vand UU,=U V., then the intersection of R with
the diagonal, {(u, u)|ue U7}, is {p}, so the cylindric set algebra with diagonal
generated by R contains all the sets X = Y, for i<w. In [8], the third author
shows exactly which families of rectangles can be subsets of a cylindric set algebra
{without diagonal) generated by a single set.

Now we need some lemmas. Let L; be the line y=x+d in w % w. The upper
triangular set A ={(i, j) | i<j} generates a cylindric algebra in w * @ which con-
tains all singletons by Lemma 5. As before, for Jow and dew, J+d=
i+d|jed.

LEMMA 12. Let & be a finitely generated cylindric set algebra of dimension 2
on L% V. Then there is a finite partition of Ux V, # ={H, | i<n}, so that every
element L of & can be expressed as L=, (B,MH,) where each B; is a finite
disjoint union of rectangles.

Proof. Let {A,|i<m} be a set of generators for & Take ¥ to be the
collection of sets of the form X, NX,N---NX, where each X;= A, or Af for
some i Let 33 be the Boolean algebra of all finite unions of rectangles in & The
Boolean algebra generated by 8 L # contains {A,} and is closed under cylindrifi-
cation, thus it coincides with #. The statement in the lemma follows easily.

LEMMA 13. Let € he the cylindric set algebra on w > w generated by the lines
L, with dew and A. There is no finitely generated cylindric set algebra & of
dimension 2 on w X w such that € is a subalgebra of .
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Proof. Suppose to the contrary that such an & exists. Then by the previous
lemma there is a finite partition of w X w, % ={H, | i <n}, so that each L, can be
expressed as L,=|J;.,(B,NH) where each B; is a finite disjoint union of
rectangles. We claim that we may assume that the B, satisfy

(1) B.= fy{Hr' ML),

(2) B, is a disjoint union of rectangles of the form Ix(I+4d).

To prove (1) note that since L, is a function on @*w, ¢ (H NL)NL;=
H, NL, Thus if we consider

L= (BNe(HNL)NH)SL,

I==h

we have

LNL= U (B Ne(HNL)NHNL)

=

= |} (B;ritH, A L) =1,

1=n

so L=1L, To prove (2) note that if Bj=R,U---UR, is a disjoint union of
rectangless and HNL,<B, then HNMNL;=sR{U---UR, where Rj=
¢, (RNL)MNe (R NL,). Notice that if ¢ (R NL;)=Ix%w, then ¢ (R NL,)=
wx(I+d), so Rj=1Ix(I+ad).

Now by using the distributive law, L, can be expressed as a disjoint union of
terms of the form I'=(I+d)M H, Call this expression the given cananical decom-
position of L,. The following facts about the given canonical decomposition of L,
follow from (1) and (2);

(3) The I's form a partition of w,

(4) Each term Ix(I+d)NH, satisfies LyN({I+d))=(I*x({I+d)NH,

Since the terms are disjoint, since ¢ (Ix(I+d))=I*w and since c (L;)=
w X a, (3) is clear. To prove (4), we use L, Ne¢,(H, N L} =L, N H, again and (1):

LynIx{I+dieL,Ne,(HNL)=Ly;NH cH,

s0 Ly N{I=x{I+d)=(1x({1+d))n H. The other inclusion s clear,

We define J, I, cw, d ew and r(i)<n for i=n by recursion. First set d,= (.
By (3) and remarks immediately preceeding Lemma 1, we can find a term
(I;% I;) M H, g, in the given canonical decomposition of L, so that I, has positive
upper density. Set J,= I, Second, find e, = () and J{ = J,, of positive upper density
so that FH+e=d, (by Lemma 1). Set d;=e;+d; Find a term
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(Lyx (I +d)) N Hyy, in the given canonical decomposition of L, so that J,=
JiM I has positive upper density. Notice that not only is Jy=J,, but also
Li+di=F+te+dyet,+dy. At the stage i+1, find e, >0 and Jj,, = of
positive upper density so that J{,,+e.,=J. Set d,,,=d, +¢.,. Find a term
(g +dia )M H .y, in the given canonical decomposition of L,  so that
=L NI, has positive upper density, Notice that not only is J,,, =J, but
also S tdg =L te tdied+d. Suppose rli)=rj)=3 with j<i Then
Ix(+d)nHelx(L+d)nH =L, N %L +d)) by (4) and J=J;N 1. Let
pelt. Then (p.p+d)eLl, and Jx{J+d)cx(l+d), so (pp+d)jeH. In
addition,  (J,x(J, +d))NH, = (J; % (j;+d) N H, = (I, % (L +d)) N H, = L, N (I, %
(I, +d)). Thus (p,p+d;) is in both L; and Ly, a contradiction. Thus we have
defined a one-to-one function r from n+ 1 into n, This contradiction completes
the proof of this lemma.

THEOREM 14, The cylindric set algebra % is not isomorphic to a sub-
algebra of any finitely generated set algebra of dimension 2.

Proof. The proof proceeds by contradiction, so assume that & on Ux V is
finitely generated and that h : € — @& is an isomorphism of % into a subalgebra of
&,

Since h preserves cylindrifications and since a set R is a rectangle if and only if
it is the intersection of its cylindrifications, R=c,RN¢ R, the isomorphism h
must take each rectangle of € o a rectangle of 3. Singletons are rectangles, and
since A € €, all singletons are in € (by Lemma 5). For each i<w, let U %V, be
the rectangle to which h takes {(i, i)}, that is, h({i, i})= U, x V;# &, Now we show
that if i# f, then U, N U =&, It is enough to show that (U, = V)N, = V)=,
Now U x V=c (U x Vi) =¢, (h{i. iD= hic ({L i}}) = hi{i} x w). Similarly, U, x V=
hifj}2w). Since (ilxw)N{jlxw)=3, it follows that (U, = V)n(L,x V)=
@ and U,NU =, Similarly, if i#], then V,NV,=&. For each i <, choose
el and eV, Let U={u |i<w} and V={y, |i<w}. Then U and V are
both infinite.

Let # be the algebra obtained from & by relativizing to Ux V. Then ¥ is
finitely generated by the relativizations of the generators of @. Define g:% — ¥
by g(L)=hi{L)n (0 x V). We shall prove that g is an isomorphism of € onto a
subalgebra of €, It is not hard to check that g is a cylindric algebra homomorph-
ism. To prove that ¢ is one-to-one, let L and M be different sets in € and choose
a point (i, j) that is in one but not the other, say (i j)e L\M. Then {{i j)}= L and
fli N M= . Now h{{(i )= LU, x V|, since h preserves cylindrifications and
{(i, j¥} can be expressed in terms of cylindrifications of {(i, i]} and {{j, j}}. Thus
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Ux Vieh(L) and (U x V)N h(M)=@. So (u,v)egll) and (u, v)¢ g(M).
Therefore, g is an isomorphism into €.

MNow define a function f from & into subsets of e@xae by f(L)=
{(i, ) | (wy ;) e L}, Then f essentially changes the names of the points in the
underlying set Ux V of &. So [ carries € isomorphically onto an algebra o on
w ¥ w. Composing g and f gives an 1somerphism n of € into sd. We prove that n
is the identity on € as follows. If (i, jie L, then {(i, D}= L, so h({(L j)}) = U, Vie
(L) Thus {(u. v)}e(Ux VIN(Ox Vieh(L)N(0x V)=g(L). So i, j)}=
ff(w, g = flg(L)) = n(L). Thus (i, )€ n(L). Similarly,-if (i, j}€ L%, then (i, j)e
n(L*)={n(L))", so L=x(L).

We have shown, therefore, that % is a subalgebra of & Now & is isomorphic
to &, so & is finitely generated, Thus % is a subalgebra of a finitely generated
algebra & on o ¥ w, contradicting Lemma 13.

THEOREM 15. Every finitely generated subalgebra of € is contained in a
2-generated algebra on w x w.

Proaf. € is generated by {A}U{L, |dew} Let & be a finitely generated
subalgebra of €. Each of the generators of @ can be expressed in terms of a finite
subset of {A}U{L,|dew}. Choose k so large that each generator of @ can be
expressed in terms of a subset of {A}U{L,|d <k} and let & be the algebra on
w % w generated by {A}U{L, |d<k}. Then @ is a subalgebra of %. So to prove
that 2@ is a subalgebra of a 2-generated algebra, it is enough to show that & is.

For each icw, let [i] be the residue class of { modulo k. let R=
(UL, | d <k U (ULi1x{i} | i<k}). Let & be the cylindric set algebra on w % @
generated by 4 and R. Since @ is a subalgebra of €, to prove the lemma it is
enough to show that & is a subalgebra of &, To prove this, we show that the
generators of & are members of F. Since 4 is a generator of &, it is enough to
show that each L, is 4 member of & for d < k. First we show by a series of claims
that W{L, :d <k} and the sets [i] =[], where i <k and j <k, are all members of .

CLAIM 1. For every i <k, the sets [i]1%{i} and [i]* w are members of F

Proof. Since 4 € &, by Lemma 5, every finite subset of @ w is & member of
. Since {(i, i)} = ([iT>x{ihy Nk >{i}) is finite, it is a member of #. Now [i]={i}=
(= fip ik < MU= ) Nilw Y k) *{i}). So to prove that [i]%{i} is a
member of F, it is enough to show that ([i]={ih N {{w’ &k)1={i}) is a member of F,
But {[il={itnilw\ ki={ith=RN{{w' k)=1i}) as the reader can easily check. So
([i]={ipNilw k) x{i}) and [i]x{i} are both members of F Since [i]*aw=
e, ([i]%{i}), it follows that [i]%w is also a member of F.
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CLAIM 2. The set U{L, |d <k} is a member of &

Proof. Since A is a member of &, the sets {(0, 03}, {{1, 17}, ..., {(k—1}, (k— 1))}
are in F; so the cylindrifications parallel to the x-axis of these sets are members
of & That is, w* {0k wx{1} ..., @ %k -1} are members of % Thus the union,
w % k, of these cylindrifications is a member of ¥, as is its complement, w % (@, k).

Since

UL, | d<k}=((U{Ls |d<kDM(ox kDU (UL, | d <k} {wx(w\ k),

it is enough to show that (U{L,|d<=EkPNi{e\k) and (U{L;|d<k)N
(e {w' k) are members of F.

We show that §=(U{L, |d <k})N{w x k) is a member of F by showing that
it is finite. Suppose (i, jl€ 8. Then { <k, and for some d with d <k, j=i+ d. So for
some d with d <<k, both j=i+d and i=j—d<j< k. That is, both i and j are less
than k. This shows that § is finite and a member of .

Since

Uflil={i}| i<kls Uwxiil| i<kl=wxk,
it follows that
(ULIx{i} | i<k Nlw x (o) k)= 2.

Using this fact, the definition of R and the distributive law, it is easy to see that
UL | d=k}N{w*(w\ k) =R N{w*{w' k), a member of &

CLAIM 3. The line L; is a member of F,

Proof. Since A is a member of &, {(i, j) | i=j}=A" is a member of . If d and
i are in w and d =0, then the line L, ={(i,i+d)|i<w} has empty intersection
with A, Thus by the distributive law, the intersection of U{L,|d <k} and A" is
LyNA®=L,; By claim 2, the set U{L, |d<k} is a member of & so L; is a
member of .

CLAIM 4. For each i and | less than k, the set [i]x[j] is a member of F.

Proof. Suppose i and | are each less than k. By Claim 1, the sets [i]* w and
[j1# w are members of F. Since [i]*[j]=([i]* w) N{e x[j]), it 15 enough to show
that wx[j] is a member of & By Claim 3, the line L; is in F. Note that
e (LaNi[f]®w)) is the set of all pairs (n, m) for which (m, m)e[j]* w. Since
{m,mje[jl*w if and only if me([j], we have c (L,N{[j]% w))=wx[j]. Thus
w #[j] is a member of F. This establishes Claim 4.

Finally, we show that for all d <k, the set L, is a member of #. The sets of the
form [i]=[f]for i and j less than & form a partition of w * w. so for d < k. the line
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L, can be expressed as the union of the non-empty intersections of L, with
elements of this partition. For d, i and | less than k, the set ([i]=[[INL, is
non-empty if and only if i+d={, Thus for e<Tk,

L ={[ilx[i+eDNL, |i<k}
= U{([i]x[i+eD)NL,|i=k and d <k}
=(U{[i]x[it+e]|i<khN(ULL; [d <k}

It follows by Claims 2 and 4 that L, is a member of &

Remark 16. In [8], the third duthor shows that the cylindric subalgebra
generated by A and L, in % is not isomorphic to a subalgebra of 4 1-generated
cylindric set algebra of dimension 2.

§3. Abstract projective algebras, defined by Everett and Ulam in [3], have been
shown by Chinn and Tarski [3] to be definitionally equivalent to (diagonal-free)
cylindric algebras of dimension 2 with a distinguished element p (which we shall
call a base point) which is an atom and satisfies ¢,p N ¢, p= p. Thus many theorems
concerning cylindric algebras which can be found in [7] apply to projective
algebras. For example. by [7: pp. 252-3], both the projective algebra generated
by the finite subsets of w * w and the algebra @, of all subsets of the square of a
finite set n are generated by a single element. (The latter fact was overlooked in
[1] where the authors proved that 3, was generated by two elements.) Every
cylindric algebra of sets of finite dimension is simple since the ideal of all sets
congruent to the empty set must be closed under cylindrifications and hence
contains the universe [7; p. 170 and p, 281]. It follows that there are no free (in
the sense that no relations exist between the elements except those that are
universally truej cylindric algebras of sets of finite dimension.

In a forthcoming series of papers [8]. the third author proves the following
results.

{(A) There are exactly 7 non-isomorphic 1-generated cylindric algebras of sets
of dimension 2 (without diagonal).

(B) There are 2™ non-isomotphic l-generated cylindric algebras of sets of
dimension n with 2=n< @ (with diagonal),

(C) There are 2 non-isomorphic 1-generated projective algebras.

(D)} There are 2™ non-isomorphic 1-generated cylindric algebras of sets of
dimension n (without diagonal) with 2<n<w,
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We shall now show that all the guestions in [8] on projective algebras have
been settled. The italies denote a direct quote from [8; pp. 12-13]. The answers
follow the guestions.

Griven a countable class of sets in the plane, does there exist a finite number of
sets which generate a projective algebra containing all sets of this countable class?
Angther statement might make this assertion for a countable class of sets given in
E™ with the generating sets required to be in some E" with n<m.

The answer is “no” by Theorem 14,

Does there exist a universal countable projective algebra, ie., a couniable
projective algebra such that every countable projective algebra is isomorphic 1o some
subalgebra of it?

The answer is “no” for otherwise there would only be countably many finitely
generated projective algebras contradicting (C).

Is it true that, for every positive integer k, there exists a projective algebra
generated by k sets in the plane and which is free in the sense that no relations exist
hetween the generated sets except those that are true in every projective algebra? Can
every projective algebra be obtained by a homomorphism of a free projective
algebra?

The answer is “no" by the discussion at the beginning of this section.

How many non-isomorphic projective algebras exist with k generators?

The answer is 2% by (C),

84. S. Comer has shown [4]:

If 2=n<w and o is a cylindric algebra of sets of dimension n with a base U
such that |U|=n, then s is generated by a single element.

L. Henken has shown [6]:

For 2=n, m < w there is a cylindric algebra of sets & of dimension n with base
L such that |U|= nm and such that & cannot be generated by fewer than logs m
elements.

G. Bergman has shown [2]:

There is a monotone invariant, rank, on cylindric algebras of sets of dimension 2
and if rank (l)=r, then & requires at least log, r generators. If & is finitely
generated, then & is contained in a cylindric algebra generated by at most log, r+ 1
gENerdtors.

J. D. Monk suggests the guestion:

Let 2=n, m=w. let f(n, m) be the largest k& <w such that there is a cylindric
algebra & of sets of dimension n with base m such that o cannot be generated by
<k elements. Find f.
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