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Solving an old problem of P.ErdSs, we prove the best possible in
order estimation for the Lebesgue function of Lagrange inter-
polation.

1. Introduction

Let z:{xkn}' n=1,2,...; 15k<n, be a triangular matrix

where

-] =
(1.1) I_xnn<xn—l,n<'7'<xln$1 (=)

are n arbitrary points in [-1,11 (shortly =x _=x, ).

k "kn
Putting
n
(1.2) w(x)=wn(z,x)= Il (x-xk) (n=1,2,.v4),
k=1
. oo wfx) _:
(1.3) 8 (x)=R, (Z,%)= TR, I OeR (k=1,2,...,10)

are the corresponding fundamental polynomials of the Lagrange
interpolation. It is well known that the so called Lebesgue
function and Lebesgue constant

n

A (x)=x (Zx)= L 14 (x)| , A _ =\ (Z)=max A _(x)
n n k=1 X 28T Toagesy B
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play a decisive role in the convergence and divergence properties
of Lagrange interpolation,
G.Faber [1] proved that

A2 <

n 12 ln n

for arbitrary matrix 2Z. Later S.Bernstein [1] obtained
that for any system of nodes (l.1)
(1.4) lim A _ (x ) = =
n+re Tt Q
for a certain on(—l,l)_

In 1961, P.Erd&s [51 improved an earlier result of P.Erd®s

and P.Turdn [6] proving

Ao> o lnn-c (n2n )

n T o
for all system (l.1) again. (Here and later CrCyrCorrrey will
denote positive absolute constants.)

Finally we quote the result of P.Erd®s [4] which says as

follows.

THEOREM 1.1. Let €& and A be any given positive numbers. Then,

considering arbitrary matrix 2z , the measure of the set in

x (-=<x<*) for which

(1.5) A (x)=A if nzn (A,e) .,
n — (=]

is less than €.

2. Results

Here we prove the following improvement of Theorem 1.1.

THEOREM 2.1. Let € > O be any given number. Then for arbitrary

matrix Z there exist sets H with IHnISs and n(e)>0
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such that

(2.1) An(x)>n{e)1nn whenever xEE—l,lj\Hn and nznc(EJ.

The case of Chebyshev nodes shows that the order of (2.1)
is best possible.

By this theorems it is easy to obtain the following

COROLLARY 2.2. Let €>»0 and n(e)>0 be as above. If SnEE—I,ll

are arbitrary measurable sets then for any matrix Z

(2.2) I An(dex>(lSnl-e)n(E)lnn whenever nznore) .

S
n

The case S =s=[a,bl was treated by P.Erd8s and J.Szabados

L71.

2.1. The relation (2.1) is obviously valid if |x|=lI+e because
n n

of g 7 x;_l R (%) which means Ix1n_ls B lﬁk(XJl. So we

k=1 k=1
have (2.1) on the whole real line apart from a set of measure

=3¢ (nanofe))

2.2, Nearly 50 years ago S.Bernstein [1] conjectured that

min An(z)

is assumed if all the n+l! maxima in (-1,1) of hn(xJ are
the same. P.ErdSs conjectured that the smallest of these n+l
maxima is largest again if all these n+! maxima are the same.
ErdGs further conjectured that if the z;, are on the unit
circle then the corresponding extremal problems are solved if
the z, are the n-th roots of unity.

All these conjectures were recently proved in a series of
remarkable papers by T.A.Kilgore [10], C.de Boor and A.Pinkus
£2]1 and L.Bratman [31.
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3. Proof

3.1, In what follows, sometimes omitting the superfluous

notations, let xon=l, xn+l,n=- and
(3.1) Jkn=txk+l,n'xkn] (k=0;1;.ivapny O=li2px au)
Let us define the index-sets K, and K, s further the
sets Dln and J.'J:“l by
< n”1/6 dgf iff  k€k,
n In
IJan
) > 8 iff K€k,
n 2n
D, = U J F D, =[=1,13\D <
1n kexln kn 2n 1n

= i € C
If 1J, 1s6 (which means k€K, and 7, Dln) we say that

the interval is short; the others are the long ones.
3.2. In our common paper [8] we proved

i i <k<
LEMMA 3.1; Let IJan>6n ( k is fixed, 0<k<n). [Then for any
fixed 0<g<l/4 we can define the index t=t(k,n) and the set

s <dg
hkn Jen 50 that Ihkn]_éqlenl, mOoreover
n&i _
. = i € > :
(3.3) Iﬁtn(x)l 3 if x Jkn\hkn and n nl(q)

(See (8], Lemma 4.4. In [81] 6n=1/1nn but this does not make any
difference in the proof.)
Now, if g=¢/32 , f o r t he long inter -~
. : g .
vals w e obtain (2.1) (see (3.3))if «x D2n\Hln
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def = -
1 =T u < <
Here - hkn » which means |H1n1_4q ZIJkl_e/4

(nzn, (). =y k

3.3. To settle the short intervals we introduce the following

notations

= = - <k <
I, (gq)=7,  (g)=Cx +q|Jk|, X, qleJ] (0<k<n)

k+1

where 0=<g=<l/2. Let zk=zkn(qJ be defined by

(3.4) Iwn(szI= min Lue tx P o F=@pdgies 0
'S
finally let wET )
EJi,JkI=max(Ixi+l—xkl,ka+l-inJ (0<i, k<n) .

In [8],Lemma 4.2 we proved

LEMMA 3.2. If I<k, r<n then for arbitrary o0<gs<1/2

Iwn(zr)l |Jk|

Iwnrzk)i IJr,Jkl

(3.5) 1%, (x)1+1%, . (x)]2g if €7 _(q)

k+1

3.4. Later we shall alsoc use the

LEMMA 3.3. Let Ikztak,bk] , 1<k<t, tz2, be any t intervals

in [-1,1] with Irkﬂr.|=o (k#3), 11 _l=p {1<k=t),
L Hibh 5 k
Y iIk|=p. Supposing that for certain integer R=2 we have

k=1
R i .
u =2 p, there exists the index s, 1<s<t, such that
t Iz, |
(3.6) s =} 'Il,k—Il- = % i %
k=1 s’k
IS will be called accumulation interval of {Ik};=l i

(Here and later mutatis mutandis we apply the notations of
3.3. for arbitrary intervals.)

Note that we do not require by < a1 *
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The lemma and its proof correspond to [81, 4.1.3. Indeed,
dropping the interval Ij containing the middle point of
[-1,1] and bisecting the same interval C[-1,1], we have (say)
in [0,1] a set of measure Z(p-IIjI)/E = (u=-p)/2 consisting

of certain I, - Doing the same, after the £&-th bisection we
. ; - i . v
cbtain that interval of length 21 which contains certain
-1 —f-
Ik's of aggregate measure >2 u-pz22 luZp for Isi=p |l

R-1.

Consider these intervals L?,Lg,...,Lg (Fig. 1).
L*
P
*
3
*
L
*
i
| | | |
| | ! | i
0 L L L L
3 2 I D
Figure 1.

Obviously lLiI=2E_p . Further each Li contains at least
-1

2 intervals I, because
h-p=-2
€3.7) L 1,1 z2 in (1=%<p) .
k
&
IkCLz
=T % —T % .
Let Ll_Ll , further LR_LR\LE—l (2<4<p) (see Figure 1).
If 5 1is an index, for which ISEI._1 , We can write
p IIkl def
(3.8) s =z 7 = EaE A B .
=1 k s" Tk
IkCL2
To estimate B , let
(3.9) L |z | 9er 5 u (1=<4=p) .
k £
k
I, CL
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By (3.7) and construction we can write

i ,
(3.10) wy o, 227° 2, (1<i<p)

2.:1

L-p

(3.11) Ir ,7.1 < 2 if I.CL (1<<p) .

FES i &

It is worth to remark that
%-
(3.12) oy = 277 %, (2s02p) .
k=1 L=2
i < ¥ <
(Indeed, by construction a,Sa, oy > o, *2151 @, .

3£4<p, from where we get (3.12).)

Now by (3.11), (3.9), (3.10), finally by the Abel trans-
formation we obtain as follows

P - p-1 S
p2u2f 3 270wy = w2z 27T
=1 L=1 1

I~ =
=
.

S
+
)

1
o
[ it L ]

Q2

()
v

el fepeguie =3 = +1
> w2Pe g 2°°F 1,2 )= L2 7 (p-1)+2 "1 = =y
=1 g

_p_2
which was to be proven.

3.5. Suppose xEJkn(q)CDln (1£k=n-1) ; whenever An(xjs
sn(e)lnn (n will be determined later), the point x, the
intervals T n and Jkn(q) , finally the index k will be
called e x ce ptional. Let g=e/12.

W e s hall prowve

dgf

o=

(3.13) g, | E =
X kn a g (nZno-no(s)J -

Here and later the dash indicates that the summation is extended

only over the exceptional indices &k . To prove (3.13) it is
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o 98y o which

enough to consider those indices ‘{ni i=1

yn >z e/lo .
* We can apply Lemma 3.3 for the exceptional Jkn's with

H=U p=6n and R=ET§§H1/?3+1 if nEN and nano(a) (shortly
€ .
n Nl)

Denote by M =M, the accumulation interval. Dropping Hl,
we apply Lemma 3.3. again for the remaining exceptional intervals

with p=un—IMlI>un/2 and the above p and R , supposing

uanE’ﬁH'l whenever nENl . We denote the accumulation interval
i — <i<
by Mz' At the 1i-th step (2_1_¢n) we drop Ml’ Mz, - Mi—l
and apply Lemma 3.3. for the remaining exceptional intervals
i=1
with w=u - x IMil using the same p and R.
j=1

Here ¢n is the first index for which

L ¢
U n H
(3.14) L lm 1s— but T I 1>, n€N_ .
i=1 7 i=1 * 1
If we denote by M¢ 1 M¢ b2 M¢ the remaining
n n n

(i.e. not accumulation) exceptional intervals (by IHil£6n ’

(a/20}n1/6<¢n<mnj , by (3.6) we can write
?n IMk1 unlnn
> i < €
(3.15) k; L H T 2 112 if 1sr<¢ (n€N,) .
=r r 'k

3.6. To go further in proving (3.13) let n=cle3/6 5

Eminrq) (lsiﬁmn, nENlj be exceptional points, where e,

u.
in
will be determined later.
If for a fixed neml there exists ¢, létsmn, such that
(3.16) A (u, ) = ¢ 621.1 lnn
* n “tn’ T "1 n ’

by nlnnZAn(uth we obtain (3.13) for this n. W e s hall
prove (3.16) f or arbitrarsy nENi . Indeed, let
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us suppose that for a certain mENl

2
(3.17) Ap(u, )<c,e”u lnm where u €M (q), 1<r<g .

By (3.17) we obtain

m

2 2
(3.18) rEllmrmli\m(urm)<cle: W lnm where mENl .

On the other hand, by (3.5), for ar b i trary nENl

n

4 1 ,
lmrl % Iik(urJl = 2 IMrI % tlikrur)|+|ik+l(ur)11 >
k=1 k
£ Yn w(z ) M
= Z I —_— | r (ISrécp ) ’
2 Pa w(zk) IMr’Mk] n

so, by (3.14) and (3.15) we have

?n ?n n 2 ®n %y mfzg) | M I1Mk|
M I (u )= | L lr (u )2 T ¥ | —=] - 2
rm1 TR oy T pap KOUET 2,05 pap WOE) MMM
0 ® — -
2
g % : En Zn[m(ir) X N(EFJ j:HrIIM_TJ "
r=1 k=r m(sz uJ(ZrJ M:’Mk
2 L"n ®n | M. | 2 4 u_lnn
5 k n 'n 2 2

}g— —_— =
=77 rgl 5 'kzr T, ] =3 "5 “1i3 ¢ e i, lnn

if cl=8.l44.112 . This contradicts to (3.18), i.e. (3.16) is
valid for arbitrary nENl s, which proves (3.13).

3.7. By definition, if the short Jen is not exceptional, then
for any x€J  (g) (2.1) valid, supposing that k#0,n . If Jon

k
is short it should belong to H . The same should be done with
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Jrm Moreover, the sets Jkn\Jkn(q) of aggregate measure c,
: n
should belong to H_, too. Obviously c_S2g }, |J, |l=4g=¢/3 .
n 2 k=0 kn

So using these, 3.2 and (3.13), we obtain

< =
|Hnt5|Hln|+un+25n+°2J5/4+5/5+5/4+5/3 e ,

which completes the proof.

The authors are indebted to G.Haldsz for his valuable

remarks and suggestions.
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