Pal Erdös and Péter Vértesi Mathematical Institute of the Hungarian Academy of Sciences
Budapest

Solving an old problem of P.Erdôs, we prove the best possible in order estimation for the Lebesgue function of Lagrange interpolation.

1. Introduction

Let $z=\left\{x_{k n}\right\}, n=1,2, \ldots ; 1 \leq k \leq n$, be a triangular matrix where

$$
\begin{equation*}
-1 \leq x_{n n}<x_{n-1, n}<\ldots<x_{1 n} \leq 1 \quad(n=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

are n arbitrary points in $[-1,1]$ (shortly $x_{k}=x_{k n}$).
Putting

$$
\begin{equation*}
\omega(x)=\omega_{n}(z, x)=\prod_{k=1}^{n}\left(x-x_{k}\right) \quad(n=1,2, \ldots), \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\ell_{k}(x)=\ell_{k n}(Z, x)=\frac{\omega(x)}{\omega^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)} \quad(k=1,2, \ldots, n) \tag{1.3}
\end{equation*}
$$

are the corresponding fundamental polynomials of the Lagrange interpolation. It is well known that the so called Lebesgue function and Lebesgue constant

$$
\lambda_{n}(x)=\lambda_{n}\left(z_{k} x\right)=\sum_{k=1}^{n}\left|\ell_{k}(x)\right|, \quad \lambda_{n}=\lambda_{n}(z)=\max _{-1 \leq x \leq 1} \lambda_{n}(x)
$$

play a decisive role in the convergence and divergence properties of Lagrange interpolation.
G.Faber [1] proved that

$$
\lambda_{n}>\frac{1}{12} \ln n
$$

for arbitrary matrix z. Later S.Bernstein [1] obtained that for any system of nodes (1.1)

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty} \lambda_{n}\left(x_{0}\right)=\infty \tag{1.4}
\end{equation*}
$$

for a certain $x_{0} \in(-1,1)$.
In 1961, P.Erdős [5] improved an earlier result of P.Erdős and P.Turán [6] proving

$$
\lambda_{n}>\frac{2}{\pi} \ln n-c \quad\left(n \geq n_{0}\right)
$$

for all system (1.1) again. (Here and later c, c_{1}, c_{2}, \ldots, will denote positive absolute constants.)

Finally we quote the result of P.Erdôs [4] which says as follows.

THEOREM 1.1. Let ε and A be any given positive numbers. Then, considering arbitrary matrix Z, the measure of the set in $x \quad(-\infty<x<\infty)$ for which

$$
\begin{equation*}
\lambda_{n}(x) \leq A \quad \text { if } \quad n \geq n_{0}(A, \varepsilon), \tag{1.5}
\end{equation*}
$$

is less than ε.
2. Results

Here we prove the following improvement of Theorem 1.1.

THEOREM 2.1. Let $\varepsilon>0$ be any given number. Then for arbitrary matrix Z there exist sets H_{n} with $\left|H_{n}\right| \leq \varepsilon$ and $n(\varepsilon)>0$
such that
(2.1) $\quad \lambda_{n}(x)>\eta(\varepsilon) 1 \ln n \quad$ whenever $\quad x \in[-1,1] \backslash H_{n} \quad$ and $\quad n \geq n_{o}(\varepsilon)$.

The case of Chebyshev nodes shows that the order of (2.1) is best possible.

By this theorems it is easy to obtain the following

COROLLARY 2.2. Let $\varepsilon>0$ and $n(\varepsilon)>0$ be as above. If $S_{n} \subset[-1,1]$ are arbitrary measurable sets then for any matrix Z
(2.2) $\quad \int_{S_{n}} \lambda_{n}(x) d x>\left(\left|S_{n}\right|-\varepsilon\right) n(\varepsilon) 1 n n \quad$ whenever $\quad n \geq n_{o}(\varepsilon)$.

The case $S_{n} \equiv S=[a, b]$ was treated by P.Erdős and J.Szabados [7].
2.1. The relation (2.1) is obviously valid if $|x| \geq 1+\varepsilon$ because of $x^{n-1} \equiv \sum_{k=1}^{n} x_{k}^{n-1} \ell_{k}(x)$ which means $|x|^{n-1} \leq \sum_{k=1}^{n}\left|\ell_{k}(x)\right|$. So we have (2.1) on the whole real line apart from a set of measure $\leq 3 \varepsilon \quad\left(n \geq n_{o}(\varepsilon)\right)$.
2.2. Nearly 50 years ago S.Bernstein [1] conjectured that

$$
\min _{z} \lambda_{n}(z)
$$

is assumed if all the $n+1$ maxima in $(-1,1)$ of $\lambda_{n}(x)$ are the same. P.Erdors conjectured that the smallest of these $n+1$ maxima is largest again if all these $n+1$ maxima are the same. Erdơs further conjectured that if the z_{i} are on the unit circle then the corresponding extremal problems are solved if the z_{i} are the $n-t h$ roots of unity.

All these conjectures were recently proved in a series of remarkable papers by T.A.Kilgore [10], C. de Boor and A.Pinkus [2] and L.Bratman [3].

3. Proof

3.1. In what follows, sometimes omitting the superfluous notations, let $x_{o n} \equiv 1, x_{n+1, n} \equiv-1$ and

$$
\begin{equation*}
J_{k n}=\left[x_{k+1, n}, x_{k n}\right] \quad(k=0,1, \ldots, n ; n=1,2, \ldots) . \tag{3.1}
\end{equation*}
$$

Let us define the index-sets $K_{1 n}$ and $K_{2 n}$, further the sets $D_{1 n}$ and $D_{2 n}$ by

$$
\begin{align*}
& \left|J_{k n}\right|\left\{\begin{array}{l}
\leq n^{-1 / 6 \text { def } \delta_{n}} \text { eff } \quad k \in K_{1 n}, \\
>\delta_{n}, \\
D_{1 n}=U_{k \in K_{1 n}} J_{k n}, \quad D_{2 n}=[-1,1] \backslash D_{1 n},
\end{array}, \quad k \in K_{2 n},\right. \tag{3.2}
\end{align*}
$$

If $\left|J_{k}\right| \leq \delta_{n}$ (which means $k \in K_{1 n}$ and $J_{k} C_{D}{ }_{1 n}$) we say that the interval is short; the others are the long ones.
3.2. In our common paper [8] we proved

LEMMA 3.1. Let $\left|J_{k n}\right|>\delta_{n} \quad(k$ is fixed, $o \leq k \leq n)$. Then for any fixed $0<\bar{q}<1 / 4$ we can define the index $t=t(k, n)$ and the set $h_{k n} \subset_{J}{ }_{k n}$ so that $\left|h_{k n}\right| \leq 4 \bar{q}\left|J_{k n}\right|$, moreover
(3.3) $\left|\ell_{t n}(x)\right| \geq 3^{n \delta_{n}^{5}} \quad$ if $\quad x \in J_{k n} \backslash h_{k n} \quad$ and $\quad{ }_{n \geq n_{1}}(\bar{q})$.
(See [8], Lemma 4.4. In [8] $\delta_{n}=1 / 1 \mathrm{nn}$ but this does not make any difference in the proof.)

Now, if $\bar{q}=\varepsilon / 32$, for t her $1 \circ \mathrm{n} \mathrm{g}$ interval we obtain (2.1) (see (3.3)) if $x^{\prime} \in_{D}{ }_{2 n} \backslash H_{1 n}$.

Here $H_{l n} \stackrel{\text { def }}{\underline{=}} \underset{k \in K_{2 n}}{h_{k n}}$, which means $\quad\left|H_{I n}\right| \leq 4 \bar{q} \sum_{k}\left|J_{k}\right| \leq \varepsilon / 4$ $\left(n \geq n_{2}(\varepsilon)\right)$.
3.3. To settle the short intervals we introduce the following notations

$$
J_{k}(q)=J_{k n}(q)=\left[x_{k+1}+q\left|J_{k}\right|, x_{k}-q\left|J_{k}\right|\right] \quad(0 \leq k \leq n)
$$

where $0 \leq q \leq 1 / 2$. Let $z_{k}=z_{k n}(q)$ be defined by (3.4) $\left|\omega_{n}\left(z_{k}\right)\right|=\min _{x \in J}\left|\omega_{n}(x)\right|, \quad k=0,1, \ldots, n$, finally $1 \mathrm{et} \quad{ }_{k} \in_{J_{k}}(q)$

$$
\left|J_{i}, J_{k}\right|=\max \left(\left|x_{i+1}^{-x_{k}}\right|,\left|x_{k+1}^{-x_{i}}\right|\right) \quad(O \leq i, k \leq n)
$$

In [8], Lemma 4.2 we proved

LEMMA 3.2. If $1 \leq k, r<n$ then for arbitrary $0<q \leq 1 / 2$
(3.5) $\left|\ell_{k}(x)\right|+\left|\ell_{k+1}(x)\right| \geq q^{2} \frac{\left|\omega_{n}\left(z_{x}\right)\right|}{\left|\omega_{n}\left(z_{k}\right)\right|} \frac{\left|J_{k}\right|}{\left|J_{r^{\prime}} J_{k}\right|} \quad$ if $\quad x \in J_{r}(q)$.
3.4. Later we shall also use the

LEMMA 3.3. Let $I_{k}=\left[a_{k}, b_{k}\right], \quad l \leq k \leq t, t \geq 2$, be any t intervals $\frac{i n}{t}[-1,1] \quad$ with $\left|I_{k} \cap I_{j}\right|=0 \quad(k \neq j), \quad\left|I_{k}\right| \leq \rho \quad(1 \leq k \leq t)$,
$\sum_{k=1}\left|I_{k}\right|=\mu$. Supposing that for certain integer $R \geq 2$ we have $\mu \geq 1{ }^{R} \rho$, there exists the index $s, \quad 1 \leq s \leq t$, such that

$$
\begin{equation*}
S=\sum_{k=1}^{t} \frac{\left|I_{k}\right|}{\left|I_{s}, I_{k}\right|} \geq \frac{R}{8} \mu \tag{3.6}
\end{equation*}
$$

I_{s} will be called accumulation interval of $\left\{I_{k}\right\}_{k=1}^{t}$.
(Here and later mutatis mutandis we apply the notations of 3.3. for arbitrary intervals.)

Note that we do not require $b_{k} \leq a_{k+1}$.

The lemma and its proof correspond to [8], 4.1.3. Indeed, dropping the interval I_{j} containing the middle point of $[-1,1]$ and bisecting the same interval $[-1,1]$, we have (say) in $[0,1]$ a set of measure $\geq\left(\mu-\left|I_{j}\right|\right) / 2 \geq(\mu-\rho) / 2$ consisting of certain I_{k}. Doing the same, after the $\ell-t h$ bisection we obtain that interval of length $2^{1-\ell}$ which contains certain I_{k}^{\prime} s of aggregate measure $>2^{-\ell} \mu-\rho \geq 2^{-\ell-1} \mu \geq \rho$ for $1 \leq \ell \leq p$ def $R-1$.

Consider these intervals $L_{1}^{*}, L_{2}^{*}, \ldots, L_{p}^{*} \quad(F i g, 1)$.

L_{3}^{*}

Figure 1.
Obviously $\left|L_{l}^{*}\right|=2^{\ell-p}$. Further each L_{ℓ}^{*} contains at least 2^{l-1} intervals I_{k} because

$$
\begin{equation*}
\quad \sum_{k}\left|I_{k}\right| \geq 2^{\ell-p-2} \quad \quad(1 \leq \ell \leq p) \tag{3.7}
\end{equation*}
$$

Let $L_{1}=L_{1}^{*}$, further $L_{\ell}=L_{l}^{*} \backslash L_{l-1}^{*} \quad(2 \leq \ell \leq p)$ (see Figure 1). If s is an index, for which $I_{S} C_{L_{1}}$, we can write
(3.8)

$$
S \geq \sum_{\ell=1}^{p} \sum_{I_{k}^{k} \subset_{L}} \frac{\left|I_{k}\right|}{\left|I_{s}, I_{k}\right|}={ }^{\operatorname{def}} B
$$

To estimate B, let

$$
\begin{equation*}
\quad \sum_{k}\left|I_{k}\right|^{\text {def }} \alpha_{\ell} \mu \quad(1 \leq \ell \leq p) \tag{3.9}
\end{equation*}
$$

By (3.7) and construction we can write
(3.10)

$$
\mu \sum_{\ell=1}^{i} \alpha_{\ell} \geq 2^{i-p-2} \mu \quad(1 \leq i \leq p),
$$

$$
\begin{equation*}
\left|I_{s^{\prime}} I_{i}\right| \leq 2^{\ell-p} \quad \text { if } \quad I_{i} \subset L_{\ell} \quad(1 \leq \ell \leq p) . \tag{3.11}
\end{equation*}
$$

It is worth to remark that

$$
\begin{equation*}
\alpha_{\ell} \leq 2^{\ell-2} \alpha_{1} \quad(2 \leq \ell \leq p) . \tag{3.12}
\end{equation*}
$$

(Indeed, by construction $\alpha_{2} \leq \alpha_{1}, \quad \alpha_{\ell} \leq \sum_{i=1}^{\ell-1} \alpha_{i} \leq 2 \sum_{i=1}^{\ell-2} \alpha_{i}$, $3 \leq \ell \leq p$, from where we get (3.12).)

Now by (3.11), (3.9), (3.10), finally by the Abel transformation we obtain as follows

$$
\begin{aligned}
& B \geq \mu 2^{p} \sum_{\ell=1}^{p} 2^{-\ell} \alpha_{\ell}=\mu 2^{p}\left[\sum_{\ell=1}^{p-1} 2^{-\ell-1}\left(\sum_{i=1}^{\ell} \alpha_{i}\right)+2^{-p} \sum_{i=1}^{p} \alpha_{i}\right] \geq \\
& \geq \mu 2^{p}\left(\sum_{\ell=1}^{p-1} 2^{\ell-p-2-\ell-1}+2^{-p-2}\right)=\left[2^{-3}(p-1)+2^{-2}\right] \mu=\frac{p+1}{8} \mu .
\end{aligned}
$$

which was to be proven.
3.5. Suppose $x \in J_{k n}(q) \subset D_{1 n}(1 \leq k \leq n-1)$; whenever $\lambda_{n}(x) \leq$ $\leq n(\varepsilon) 1 n n$ (n will be determined later), the point x, the intervals $J_{k n}$ and $J_{k n}(q)$, finally the index k will be called ex ceptional. Let $q=\varepsilon / 12$.

$$
\text { We } \quad \text { shallofore }
$$

(3.13)

$$
\sum_{k}^{\prime}\left|J_{k n}\right|{ }^{\text {def }} \mu_{n} \leq \frac{\varepsilon}{6} \quad\left(n \geq n_{0}=n_{0}(\varepsilon)\right) .
$$

Here and later the dash indicates that the summation is extended only over the exceptional indices k. To prove (3.13) it is
enough to consider those indices $\left\{n_{i}\right\}_{i=1}^{\infty} \operatorname{def}_{N}$ for which $\mu_{n_{i}} \geq \varepsilon / 10$.

We can apply Lemma 3.3 for the exceptional $J_{k n}$'s with
$\mu=\mu_{n}, \rho=\delta_{n}$ and $R=\left[\log _{\log _{n} 1 / 7}\right]+1$ if $n \in N$ and $n \geq n_{o}(\varepsilon)$ (shortly $n \in N_{1}$).

Denote by $M_{1}=M_{1 n}$ the accumulation interval. Dropping M_{1}, we apply Lemma 3.3. again for the remaining exceptional intervals with $\mu=\mu_{n}-\left|M_{1}\right|>\mu_{n} / 2$ and the above ρ and R, supposing $\mu_{n} \geq \rho 2^{R+1}$ whenever ${ }_{n} \in_{N_{1}}$. We denote the accumulation interval by M_{2}. At the i th step $\left(2 \leq i \leq \psi_{n}\right)$ we drop $M_{1}, M_{2}, \ldots M_{i-1}$ and apply Lemma 3.3. for the remaining exceptional intervals with $\mu=\mu_{n}-\sum_{j=1}^{i-1}\left|M_{i}\right|$ using the same ρ and R.

Here ψ_{n} is the first index for which
(3.14) $\sum_{i=1}^{\psi_{n}-1}\left|M_{i}\right| \leq \frac{\mu_{n}}{2}$ but $\sum_{i=1}^{\psi_{n}}\left|M_{i}\right|>\frac{\mu_{n}}{2}, \quad{ }_{n} \in_{N_{1}}$.

If we denote by $M_{\psi_{n}+1},{ }^{M_{\psi_{n}}+2} \cdots M_{\varphi_{n}}$ the remaining (i.e. not accumulation) exceptional intervals (by $\left|M_{i}\right| \leq \delta_{n}$, $\left.(\varepsilon / 20) n^{1 / 6}<\psi_{n}<\varphi_{n}\right)$, by (3.6) we can write

$$
\begin{equation*}
\sum_{k=r}^{\varphi_{n}} \frac{\left|M_{k}\right|}{\left|M_{r^{\prime}} M_{k}\right|} \geq \frac{\mu_{n} 1 \mathrm{n} n}{112} \quad \text { if } \quad 1 \leq r \leq \Psi_{n} \quad\left(n \in N_{1}\right) \tag{3.15}
\end{equation*}
$$

3.6. To go further in proving (3.13) let $n=c_{1} \varepsilon^{3} / 6$, $u_{i n} \in_{M}{ }_{i n}(q) \quad\left(1 \leq i \leq \varphi_{n}, \quad{ }_{n} \in_{N_{1}}\right)$ be exceptional points, where c_{1} will be determined later.

If for a fixed ${ }_{n} \in_{N_{1}}$ there exists $t, \quad l \leq t \leq \varphi_{n}$, such that

$$
\begin{equation*}
\lambda_{n}\left(u_{t n}\right) \geq c_{1} \varepsilon^{2} \mu_{n} \ln n \tag{3.16}
\end{equation*}
$$

by $n 1 n n \geq \lambda_{n}\left(u_{t n}\right)$ we obtain (3.13) for this n. We shat 1

us suppose that for a certain $m \in N_{1}$
(3.17)

$$
\lambda_{m}\left(u_{r m}\right)<c_{1} \varepsilon^{2} \mu_{m} 1 \mathrm{~nm} \text { where } u_{r m} \in_{M m}(q), \quad l \leq r \leq \varphi_{m}
$$

By (3.17) we obtain
(3.18)

$$
\sum_{r=1}^{\varphi_{m}}\left|M_{r m}\right| \lambda_{m}\left(u_{r m}\right)<c_{1} \varepsilon^{2} \mu_{m}^{2} \text { lnm } \quad \text { where } \quad m \in N_{1} .
$$

$$
\begin{aligned}
& \left|M_{r}\right| \sum_{k=1}^{n}\left|\ell_{k}\left(u_{r}\right)\right| \geq \frac{1}{2}\left|M_{r}\right| \sum_{k}^{\prime}\left[\left|\ell_{k}\left(u_{r}\right)\right|+\left|\ell_{k+1}\left(u_{r}\right)\right|\right] \geq \\
& \quad \geq \frac{q^{2}}{2} \sum_{k=1}^{\varphi}\left|\frac{\omega\left(\bar{z}_{r}\right)}{\omega\left(\bar{z}_{k}\right)}\right| \frac{\left|M_{r}\right|\left|M_{k}\right|}{\left|M_{r}{ }^{\prime} M_{k}\right|}, \quad\left(1 \leq r \leq \varphi_{n}\right),
\end{aligned}
$$

so, by (3.14) and (3.15) we have
$\sum_{r=1}^{\varphi}\left|M_{r}\right| \lambda_{n}\left(u_{r}\right)=\sum_{r=1}^{\varphi_{n}}\left|M_{r}\right| \sum_{k=1}^{n}\left|\ell_{k}\left(u_{r}\right)\right| \geq \frac{q^{2}}{2} \sum_{r=1}^{\varphi_{n}} \sum_{k=1}^{\varphi_{n}}\left|\frac{\omega\left(\bar{z}_{r}\right)}{\omega\left(\bar{z}_{k}\right)}\right| \frac{\left|M_{r}\right|\left|M_{k}\right|}{\left|M_{r}, M_{k}\right|} \geq$
$\geq \frac{1}{2} \frac{q^{2}}{2} \sum_{r=1}^{\varphi_{n}} \sum_{k=r}^{\varphi}\left[\frac{\omega\left(\bar{z}_{r}\right)}{\omega\left(\bar{z}_{k}\right)}+\frac{\omega\left(\bar{z}_{k}\right)}{\omega\left(\bar{z}_{r}\right)}\right] \frac{\left|M_{r}\right|\left|M_{k}\right|}{\left|M_{r}, M_{k}\right|} \geq$
$\geq \frac{q^{2}}{4} \sum_{r=1}^{\Psi_{n}}\left|M_{r}\right| \sum_{k=r}^{\varphi_{n}} \frac{\left|M_{k}\right|}{\left|M_{r}, M_{k}\right|}>\frac{g^{2}}{4} \frac{\mu_{n}}{2} \frac{\mu_{n} 1 \mathrm{nn}}{112}=c_{1} \varepsilon^{2} \mu_{n}^{2} 1 \mathrm{n} n$
if $c_{1}=8.144 .112$. This contradicts to (3.18), i.e. (3.16) is valid for arbitrary $n \in N_{1}$, which proves (3.13).
3.7. By definition, if the short $J_{k n}$ is not exceptional, then for any $\quad x \in J_{k n}(q) \quad(2.1)$ valid, supposing that $k \neq 0, n$. If $J_{o n}$ is short it should belong to H_{n}. The same should be done with
$J_{n n}$. Moreover, the sets $J_{k n} \backslash J_{k n}(q)$ of aggregate measure c_{2} should belong to H_{n}, too. Obviously $c_{2} \leq 2 q \sum_{k=0}^{n}\left|J_{k n}\right|=4 q=\varepsilon / 3$. So using these, 3.2 and (3.13), we obtain

$$
\left|H_{n}\right| \leq\left|H_{1 n}\right|+\mu_{n}+2 \delta_{n}+c_{2} \leq \varepsilon / 4+\varepsilon / 6+\varepsilon / 4+\varepsilon / 3=\varepsilon \text {, }
$$

which completes the proof.

The authors are indebted to G.Halasz for his valuable remarks and suggestions.

REFERENCES

[1] Bernstein, S., Sur la limitation des valeurs d'un polynome. Bull. Acad. Sci. de 1'URSS. $\underline{8}$ (1931), 1025-1050.
[2] de Boor, C. - Pinkus, A., Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation. J. Approximation Theory. 24 (1978), 289-303.
[3] Bratman, L., On the polynomial and rational projections in the complex plane. SIAM J. Numer. Anal. (to appear).
[4] Erdös, P., Problems and results on the theory of interpolation I. Acta Math. Acad. Sci. Hungar. ${ }^{\text {9 (1958), 381-388. }}$
[5] Erdös, P., Problems and results on the theory of interpolation II. Acta Math. Acad. Sci. Hungar. 12 (1961), 235244.
[6] Erdös, P. - Turán, P., An extremal problem in the theory of interpolation. Acta Math. Acad. Sci. Hungar. 12 (1961), 221-234.
[7] Erdös, P. - Szabados, J., On the integral of the Legesgue function of interpolation. Acta Math. Acad. Sci. Hungar. 32 (1978), 191-195.
[8] Erdös, P. - Vértesi, P., On the almost everywhere divergence of Lagrange interpolatory polynomials for arbritrary system of nodes. Acta Math. Acad. Sci. Hungar. (to appear).
[9] Faber, G., Über die interpolatorische Darstellung stetiger Funktionen. Jahresber. der Deutschen Math. Ver. 23 (1914), 191-210.
[10] Kilgore, T.A., A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm. J. Approx. Theory 24 (1978), 273-288.

