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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS
IN SHORT INTERVALS AND ON SOME RELATED

QUESTIONS
By

P. ERDŐS, member of the Academy and I . KÁTAI (Budapest), corresponding member of the
Academy

1. Let (a, b) and [a, b] be the greatest common divisor and the least common
multiple of a and b, respectively . p„ denotes the n'th prime ; p, q, q1 , q2 , . . . are prime
numbers. A sum Z and a product f f denote a summation and a multiplication,

respectively, over primes indicated . The symbol # { . . .} denotes the number of
elements indicated in the bracket 11. Pµ is the product of the first p primes .

The aim of this paper is to continue our investigation on the distribution of
the maximal value of additive functions in small intervals .

In the sequel let g(n) be a non-negative strongly additive function,

(1 .1)

	

fk(n) = max g(n+j) .j=1, . . ., k
Let

(1 .2)

	

Q(k, e) = sup 1 # { n _ xlfk (n) > (I +e)fk(0) },
xz1 X

(1 .3)

	

8(k0 , a) = sup
z
# {n ~ xj3k, k > k o , fk(n) > (1+e)fk(0)},

0(k, a) = lim sup 1 # {n ~ xj fk (n) >fk (0)(1 +8)} .X=- x
It is obvious that
(1 .4)

	

0 (k, a) -- o (k, a),
and that
(1.5)

	

5 (k 0 , e) -- sup o (k, a) .
kzk o

In [1] we tried to determine those additive g(n) for which

(1.6)

	

6(k o , a) -- 0 (k 0 -> -), de > 0

holds. There we noticed that (1.6) implies

(1.7)

	

Z min (1,g(p))
p

	

p
but we could not decide if the condition

(1 .8) z
	 g (p)

n p

the relation

17
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were necessary . Now we shall prove this . More exactly, we shall prove the follow-
ing assertion .

THEOREM 1 . If
(1 .9)

	

0(k, E) -- 0 (k--)
for all E>0, then

(1 .10)

	

g (P)r

P P
for every r' 1 .

Let F(x) be the limit distribution function of g(n), the existence of which is
guaranteed by (1 .7) .

THEOREM 1' . Assume that

(1 .11)

	

k(1-F(fk(0)(1+E))) --0

holds for every E >0. Then (1.10) holds for every r l .

Theorem 1 is an immediate consequence of Theorem 1' . Indeed, (1 .11) implies
that the density of integers n, satisfying g (n) > (1 +E) fk (0) is o (1lk), consequently
(1 .9) holds .

Perhaps (1 .11) implies that
eug(P) - 1

p

	

p
for every a>0. We could not give a counter example .

THEOREM 2 . If for some constant A>0

(1 .13)

	

k(1-F(fk(0)+A)) -0 (k ---),

thne (1 .12) holds for every u>0 .

On the other hand, we shall prove that (1.6) does not imply g(p)=0(1) .
This will follow easily from the following

THEOREM 3 . Let L(k) he a junction on [l, -) tending to infinity arbitrary slowly .
Then there exists a strongly additive non-negative g(n) with HE g(p)so that

(1 .14)

	

sup
1

# {n xl3k ~ ko ,fk (n) > L(k)} -- 0 (k,--) .
xzl x

We are interested in the conditions that imply

(1 .15)

	

sup1 # {n - xjElk ko , fk (n) fk (0)+A} -- 0
Xzl x

with some suitable constant A.

THEOREM 4 . If g (p) = 1 , then
P

(1.16)

	

sup1 # {n xl]k > ko,fk(n) ::-fk(0)+~k} - 0
x=1 x

where 4=3/(log log k) .

(1 .12)
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THEOREM 5 . If g(p)=11pó, 0<b<1, O>0 being an arbitrary constant, then

(1 .17)

	

lim lim 1 # fn-- x jfk (n) >fk (0)+(log k)1-8-e} = 1 .
k-- x=- x

By somewhat more trouble we could prove that

(1 .18)

	

sup1 # {n xjElk ka , fk (n) < fk (0)+(log k)1 -ó_ e} -- 0,
xzi x

as k,- - .
Let Fó (x), FY (x) denote the limit distribution functions corresponding to

g(p)=11p6, g (p) _ (log p) -7 , respectively ; Gó(x) =1- Fó (x), G,(x) =1- F,(x) .
We shall consider G(x) for large x(>0) .
THEOREM 6. We have for b =1

(1 .19)

	

log log	
G1(T)

	

ei-a-CT 2e-1 ,

where a=y-k,Z Z kI k
; y being Euler's constant, c denotes a suitable constant .

Furthermore, if 0--6-<l,

(1 .20)

	

log Gó1 T)

	

(i log T) 1 ' (1-ó) (1 +0(log T)-1) (T

	

I),
and

(1 .21)

	

log GY(T) ~ T(log T)Y+I- c"r(log T)Y,

cl being a positive constant depending on y .

REMARK . It is easy to see that the previous inequalities are quite sharp . Indeed,
if g is monotonically decreasing on the set of primes p, then for P,,--k<Pµ+i we
have

1-F

	

1

	

1
(g(Pµ)) ' P,, - k

259

Hence, after some simple computation, we have the following inequalities for r >-1 :

(i) log log I 	-- e1-'+0(e-`), B being an arbitrary but fixed number ;Gó =1 (T)

(ü) log	
Gó(T)

s (T log T)1 1 (1-a) (l +0((log T) -1)), if 0 < b < I ;

(iii) log	GY	(-c)
T(log T)7+ 1 (1-1.0 ((log T) -1 )) .

17*
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(1 .28)

for a suitable y >-O . Then

As it is well known

THEOREM 7 . Let 0--t(x) monotonically tend to zero in [1, -), let g(n) be strongly
additive defined for primes p by g(p)=t(p) . If (1 .22) holds, then for every fixed k,
P„~k-Pµt ,, we have
(1 .26)

	

Fk(n) - kPy)+AIogk -Ek

for every but O(6 kx) of n--x ; Ek - O, 6k --0 as
Suppose, in addition, that

(1 .27) lim (Y)
ll °° yt (eeyó)

for every 6 :-0, and that

2

Z
t P) << t 2 (Y) (log log Al (Y _--.

P-y p

1
(1 .29)

	

lim sup - # n x j 3 k > ka ,
k o-- x_1 x

k--- .

	 Fk(n) -1
(log k)

for every e>0.

2. Asymptotic of distribution functions for large values. Let g(n)--0 be
strongly additive. Then for every u-0

(2.1)

	

Z e"9(") :-5 x
,(,+ en9(P) - 1

n=x

	

PSx

	

p

1
.2,

	

//

	

- 1
e "9(") -- K(u) = ff 1 1 +

e"9(P)

p

	

,
X nsx

if the infinite product on the right hand side converges . Let F(z) be the distribution
function of g(n) . Then

(2.3)

	

1-F(,c) -- K(u) e u" (0--u

By choosing a appropriately, we shall use (2 .3) to give an upper estimate for G (i) _
=1- F(c) for some special additive functions .

Ac . a Maücematica Academ!ae Scientiarum Hungaricae 35, 1980

260 P. ERDŐS AND L KÁTAI

Let now

(1 .22) g(p) g 2 (P)

(1 .23)

P p P

	

P

g (p)Ax =

	

,Z
(1 .24)

P=x p

(A _ Z g (p),

(1 .25)

Psy

Fjn) = max {g(n+j)-An + ;}.
15jgk



1

Let t(x), xE[l, -), tend to zero monotonically, g(p)=t(p) for primes
t (y)= f t(p) . Suppose that t(x) is differentiable .

Psy

Let the values to , t1 be defined by the relations

(2.4)

	

ut(to) = log to+H; ut(t1 ) = log t 1-H,

where H> 1 . Let
K(u) = K, (u)K2(u)K3(u),

where in Kj(u) (i=1, 2, 3) the product is extended over the primes in the intervals
(1, to ], (to , t1], (t 1 , -), respectively.

For pE(1, to) we use the inequality

e"9(P) - i

	

e"s(P)
log (1 + •	

P
	 , < log

P
+e-"g(P) p ug(p) -log p+e-H,

and deduce
(2 .5)

Since

1 +	
e"9(P) - 1

	

1
1---1-eA < eH+1

P

	

P
in pE(to , t1], therefore
(2.6)

	

logK2(u) < (H+ 1) (rc (t 1) -7L (to)).
Furthermore

1
(2 .7)

	

logK3 (u)

	

2"9(P) -
<

P>t l

	

P

We shall give an upper estimate for the right hand side of the last inequality when
t(x)=x- ó (0<S 1) ; t(x)_(log x)- y. For this we use the prime number theorem
in the form

where c3 is a large constant . Let

(2.8)

Then
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log K, (u) < uo (to) - Z log p+ Z pe-" 9( P ) ,
PSto

	

Psto

7c(x) = li x+R(x), IR(x)j - c 2 x(log x)- `3,

e"t(x) -1

e"g(P) - 1
=

I1+ I2'
I1

	

f (x) A,
= tf log x ' 12 =

	

f(x) dR(x) .
P>t i

	

P

For the estimation of I2 we integrate by parts :

(2 .9)

	

12 = R(x)f(x)

Suppose that
f,
- f R(x)f'(x) dx .

eut( x ) (ut'(x)x-1)+1
f (x) -	x2

P,
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changes its sign in [t1, -) at most once, for example at zo . Then, by integrating
by parts, we have

f IR(x)I Lf'(x)I dx - c2 I ,r (logx)C3f'(x) dxti

So, observing that

if H--- 1 log ti .

+ C2
zo

«f (t1)

	

ti c +	 f (x) dx .
(log t1) 3

	

ti (log x)`3

.f( t1) e-H t1-1 , e-Ht1) =

	

t1
we get

(2.10)

	

I2 « e-H	t t `3 +

	

l °3-1 I1
(log 1)

	

(log t1)
To estimate I,, we write

f (logx)`af'(x)dx

ear(ex) _ 1

	

uk

	

t(ez)k
(2.11)

	

I1 = f	A	 dA = k~ kt f	d,, - (g; log t1) •
log tl

	

log tl
For the integral

J(Y, h) = f Zk e-z d, ,
v

we have
J(Y, h) = yhe-Y+hJ(y, h-1) .

Let now t(p)=p-,' (0<S--1). Then

t (ez)k

	

a-a ak

	

a-6k tog rl
f	dA = f	dA = J(ak log t1, -1) <	,

tog tl

	

A

	

log tl

	

A

	

6k log t1
and so
	 1 ó)k	.3e( ó, log t1)	 (ut-

p

	

k! 0 log t1
Since uti a=log t1-H, we have

(2.12)

	

4e-H t1
1

	

S (log t1)2 '
if H--- 2 log t1 .

Let now t(p)=(logp)-y, (y~-0). Then, from (2.11),
k

((log p)-Y ; log t1) _

	

u f A-ky-1 dA _
k!k=1

	

log tl

(u (log t1)-y)k - G (log t, -H)k

	

4e-H tI
kzj k! (ky+ 1)

	

ki-=, k! (ky+ 1) - y log t,
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So for t(p)=p_' (0<8~1)

(2.13)

	

log K3 (u) -- Be-H
tl

(log t l ) 2 '

while for t(p)=(logp)_ 1 (y-0)

log K3 (u) - Be- H tog tl 'I
B being a constant .

For the sake of brevity we shall write u 1 =1og u, u 2 =1og u1 i u3 =log u2 .
Let us first consider the case t(p)=p -1 . By choosing H=1, and collecting

our inequalities we have

log K(u) < u Z 1-to+0 ( to ,
PEt o P

	

log to )
where

U

	

u
t0
_

log to + 1 ' tl

	

log t' -1

Since, from the prime number theorem

1- = log log to +a+O(u1 2),
p~sto P

where

So, from (2 .3),

(y being Euler's constant), and observing that

log log t o = u2-12 +0(u2ui 2), to= u +O (uu2ui 2) ,
u l

	

u l
we get

1
a=1

k_-2 p kpk

log K(u)< u[u 2+a-
u2+1 J

+O(uu2u~ 2)
11 1

log (1-F(i))- u [u2+a-i-ulu2+1 , } O(uu2ui 2)

Let u be chosen according to the equation

z = u 2+a-u 2ui1 .

Then, by an easy calculation, we get

log (1-F(T)) -
Llu
+0(uu2 u12),

I

see log log	
1 -

	 1
F(i)

	

U1-u2 +0(u2ui1)
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Since
z

	

2
u l = et-°+úi = et

	

1+ i I O (úi) = ez -a + u2+O (úl),

we have Y-eT-°-cite- t, that is (1 .19) holds.
Now we consider the case t(p)=p- a, 0<b<l . By choosing H=1, we have

a _	u	u	- a
t0

	

log to + 1 < log t 1 -1 - tl ,

and so t1/to-e2 . Consequently, by (2 .3)

log	1- F(i)

	

iu- U~ (to) + to+0 (to /(log to)) .
Since

I-s
~G (to) _

	

/PI = 0 -6) log to 1 +0 ( log to ) 'P5 í0

and u=to(log to +1), we have

(o)	 o
( , + O(Io9l

u t = I t 8

	

to )
and so

log 1- F(i) j zu - 1 S & to+0 (to /(log t o)) .

By choosing to to satisfy

we have

log 1-F(i)
~ to+0( log to)=(ilogi),la-ó)(1+O(Iog

i)J ,

and so (1.20) holds .
To prove (1.21), we observe that

log
1-F(i)

~ zu-logK(u) -- ui+to-
(toggt oo)Y + I lo

C4 to
g to

By choosing u=(log i)Y+ 1 , we have

log	1	 = z (log z)v+I - cl i (log i)v
1- F(i)

and this proves (1 .21) .
Now we shall prove Theorem 4 . Let g(p)=I/p,

g, (n) _ Z g(p) ; g(y ; n) = g(n)-gy(n) .
P-Y
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def 1

	

(

	

e"9(P) - I
Ya =- # {n : x1gto (n) ? ~(to)+d} -- e-u(0(to)+a)

	

l l

	

)X

	

PSto

	

p

where u=uto is defined according to (2 .4), i .e . uto =to (log to +H). By using (2 .5),
we get

lOgYA < -du-to +0 ( to~)+ Z pe-A/P ,
(Iog to)

	

Psto

where c is an arbitrary large constant . Sine
2

~, pe- "1P y7c (y) e
-uty

«	
g Y

e- °ly,
y

	

109

choosing y=yk=
Zk

(k=0, 1, 2, . . .), we have

Z pe-u/P G<
tp	 e-u/to = e-H to .

PSto

	

log to

	

log to

By choosing H= clog log t o , with a fixed c,

(2.14)

	

logYj < -dut -- to+Bto(log t,)° '
B being a constant.

Let utl =t l (log t l -H). Then, by choosing H=c log log tl ,

(2 .15)

	

1
# {n : xlg(tl , n) -- R} -- exp (-Rut , + B (log tl)c+2 )

Let
.

to = t l = (log k)1+Ek ak = log log log k
log log k '

fkl) (n) _

	

k
max gto(n+J) ; fk 2) (n) _ , max g(to ; n+J) •J-1, . . .,k

	

J-1, . . .,k
Let

def

	

1

	

_ log log log k

	

1
Hk = ~ (to)-log k = log 0 +Ek) + O (log log k )

	

log log k + ( log log k )

Let k be so large that Hk--2s k . Then, by (2.14),

(2 .16)

	

a(x, k, 2ek)

	

- #
def

	

{n -- xIfkl)(n) ~ (log k)

	

k}+2s

c ll+ x) x+k # {n - x+k1gt o(n)' ~(to)}

ll+ z) kexp(-to+B	lots c) -
l l+ X) k-io g iogk+c

(log( g o)
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c being a constant . Similarly, from (2.15),

(2.17)

	

b (x, k, Ek) = I # {n e xIf(2) (n) ek}

(1~ z, kexpl-ekutl +0((lo tt  )

	

(l+ k k loBlogk
l

	

g ~)
So for k x we have

(2.18)

	

1
# {n : xlfk(n) > >G(log k)+38 k} < 1/k 3,

if k is large . For k ::-x, nCx we have

fk(0) ~fk(n) c fk+x(0) _ ~(log k)+ 0 ( 1log k
Hence it follows immediately that

x # {n : xl3k > ko ,fk (n) ~(log k)+3Ek} < k2

By this, Theorem 4 has been proved .

3 . Proof of Theorem 7. Suppose that the conditions of Theorem 7 are satis-
fied. Let g (n) be strongly additive defined for primes by

%(P) -
{g (P) If P > Pp

0 if P { P ' .

It is obvious that g(Ppm)=g(P,,)+g(m) . From the Turán-Kubilius inequality

{g (m) - A'}2 <<P Z 91 (p)
µ P>Pµ P

if P,,-<x ; A'=Ax/rµ-AP,, . Hence we get immediately

def

	

x

	

,

	

x

	

9	2	 (P)(3.1)

	

MB = # m = - I%(m) -A I ? B <<	2Pp

	

PpB p>pµ p

If g(m)-A'i-B, then

g(P,,m) _ ~(Pg)+%(m)'- ~(pl)+A'-B.

So for Pp(m-l)<n<Ppm we get

(3.2)

	

Fr,,(n) ' g(Pµm)-A(m+1)rµ'- (p p) +Ax/rµ-A(.+,)rµ-Apµ-B.

Let now x For m-_C we have
(~ 1 ` 1/2(~ g2 ,_) ` 1/2

Ax/Pµ-A(m+l)p,~ «

	

PJJJ/

	

~l
JJ
/

P
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where the summation is over the primes in (m+1)pµ, P . By choosing
P

1/4
BP =

B =
g2(P)

P>P µ pP

we obtain (1 .26) immediately for k=Pµ .
Let now PP<k<Pµ+1 . To prove (1 .26) it is enough to observe that Fk(n)

=FP ,,(n), and that Alogk-ÁPµ-'0 (k -~) .
Now we assume that (1 .27), (1 .28) hold. If Pµ:k<Pµ+1 then, (log k)=

=á(pµ)(1+o(1))=> (pµ+1)(I+o(1)) and FPµ+ jn)iFk (n)~FPµ (n), and so it is
enough to prove (1 .29) for k=Pµ . From (1 .28) we have

267

MB «P	B2	 t 2 (Pµ)(loglogpµ )Y .

µ
From the monotonicity of t we have

	 t 2 (P µ)

	

1 /µ 2'
q1 2 (pµ)

so by choosing B=~µO(pµ),

	

we have

x

	

(log log01
MB «	

PP
A2

	

2
P

	

P

Let x > Pµ . In the interval n E [1, x] we drop the n' s for which n--X112 . Ob-
serving that AP,,=o(~(pµ)), and that A,-A.,-=O(1) (0<a<1), from (3.2) we
get that

FPµ(n) ~ (1- 2A m) 0 (Pµ )
for all but x (1

2;2p)y of n-.x, if A. tends to zero sufficiently slowly . Let x<Pµ .

Then, for every n--x,

FP, ,(n) = max (g(n+j)-An+j) O(pµ)-Ax+Pµ •
Since

1 1/2

	

t 2

	

1/2
Ax+P -AP «

	

Z -~~ ( Z	 (P) ) «
µ

	

µ (P"-pePµ+x P

	

P>Pµ, P

« t(Pµ) (log log pµ) Y (log pµ)1/2«	 O (~P) (log log Pµ)Y(log Pµ)1/2 = o (0 (PA,
therefore

FP, (n) ~-= (1-2AJ1)~(Pµ)

holds for every n if y is large. Applying this argument for the sequence x=2 we
get the relation :

VETO : lim sup 1 # {n { xl3k kó, Fk (n) < (1-s)i (log k)} = 0.
ko- x-1 x
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To prove the second half of (1 .29) we choose log log to =pµ, where 0<8<y
(see (1 .27), (1 .28)), and define g(to , n), g,.(n) to be strongly additive satisfying

0

	

if p - t o ,
g(to ; P) _

Ig(p), if p > t o ,

gto (n) = g(n) - g(to ; n) •

Let Ax°=Ax -Ato . For every u-:0 we have

D (x U)
def Z eu(9(t . n) Ax ) = x

	

1 +	
e"9(P) - 1 e

- ng(P)lP
nsx

	

t o<psx

	

p

whence it follows that

1 # {n C xlg(t o ,n)--d}--exp(-du + u2 Z g2(p)

x

	

P>tn pP ),

	 1	if
u= 2t to) . Let d= tj µtG(pµ), 7l µ --0 slowly. Then, from (1 .2

(

	

7)

du = uá(pµ) > 4pµ ,
2t (to)

if µ is large. Furthermore, from (1 .28)

4t2(to) p>r
g2pp) << (log log to) 7 = pl y = 0(pµ),

a

since by-<l . Consequently

(3 .3)

	

# {n ~-25 xjg(t ; n) ~-- gl o(pµ)) < x/Pµ .

Let Cr (x) be the number of those nf x, that have at least r prime factors in
[1, to] . We have by Stirling's formula,

C'(x) < x • 1~ l Z

	

c x exp (- r log	a
r

( )) }
O (log r)J .Mp<to P

	

e(Pµ+O 1

Let r=[(1+4Q)µ], p being a small positive constant . Then,

rlog

	

a
r

	

'(1+4g)(1-25)pµ (I +2 Q) p,,
e(pµ-I-O(1)) -

if S is small enough . Consequently
xG(x) << PI+p •

Let n be a such number that has s(>µ) prime factors in [l, t o] . From the mo-
notonicity of t(y) we get

gto(n)- g(pi . . .ps) (pµ)+(S-µ)t(P,) ~-<
lµ

-1, ~(P,) •
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So, if gto(n)~(1 } 4~)~(pµ), then sir . Consequently

(3.4)

	

# {n - x1gto(n) > (1+4o)~(pµ)} << P 1+Q
From (3.3) and (3.4) we get immediately that

#{n-xl i max k g(n+j)>(1+52)t (pjj<<pQ ,
µ

if P„-<x.
For Pµ >x we have

FP,, (n) - n maxP g(n) :E á(Pµ+1) _ ~(pµ)+o(1) .
k

Applying this estimation for x=2° (v=1, 2, . . .) and summing up for
we have

sup
z

{n - xllµ > It o , FPµ(n) > (1+5o)O(PP)} << Peµo
By this we proved (1 .29) .

4. Proof of Theorem V and Theorem 2. To prove Theorem F we suppose that
(1 .11) holds . From the existence of the distribution function F(x),

min (1,g(P))
P

	

P
Let 6 ::-0 be fixed, -60k be the set of those primes p, for which

(1+Wk(0) `= 9(P) ¢ (1-1 - 5)í2k(0)
holds. Then

Z 1/P --,
PE -"'k

if fk(0) 0 . Let b(n)=(n+1) . . .(n+k) ; Rk= ff p.
PE~k

From (1 .11),
Z 1 ~ (1-£)x,
n~x

(b(n), R k)=1

and

if k is sufficiently large .

if k>-k,(5,£). Since 1-F(fk(0))~1/k for every k, from (1 .11) it follows that

fvk(0) c 0 + £)fk (0)

for every fixed v, if k is large. So f,á (0) = 0 (k1 ) and for PEI° k we have p/k --
(k- -). Consequently

PEgk l l

	

)P

k < 2£,
PEgk P
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So we have
g(P)r <

	

i 0+8) .Í2~(0) «
2=v < ~

9(P)>(1+ó)rk(0) P

	

2"zko

	

2' 2v

and Theorem V has been proved.
The proof of Theorem 2 is almost the same . We need to observe only that

from (L 13)
(4.1)

	

fk(0) = o(log k)
follows. Since for fixed v

vk(1-F(fvk(0)))' 1,
and

vk(1-F(fk(0)+A)) 0 (k---),

therefore fvk (0)<fk(0)+A if k is large, that implies (4 .1) .

5. Proof of Theorem 3. Let L (k)/ - be given. We can give Ll(k)

	

so
that Ll(k) :L(k), LI (k +k2)--2L,(k), Ll (k) has integer values with jump 1 . It is
enough to prove our theorem for LI (k) instead of L (k) .

Let 9 = {q, < q2 < . . . } be a rare sequence of primes. We shall define g (n) so
that g (q i ) / -, and g (p) = 0 for p 4 9.

Let Bk be a sequence tending to infinity monotonically, _9 be so rare and the
increase of g(qi) so slow that

(i)

It is obvious that

Furthermore

P. ERDSS AND L KáTAI

g(qi) < Bk
9;>k qi k'

1(ii)

hold for every k' 1 .

So fk(0) 4 LI (k)

fined for primes as
0,

	

p > k,
8i(P) _ {g(p), p :--- k,

g (~ qi) `= 4 LI (k)q

for every k - 1 . Let gl (n), 92 (n) be strongly additive de-

g2(P) = g(P)-gI(P), .fk`) (n) =
i
max k gi(n+1) .

fil) (n) --5 g(~ qi) C
1
4 L l(k).q

.Ík(2) C k f 92 (n) ~ k Z g(gi)
x+k

n~x

	

nsz+k

	

q t>k

	

qi
and so for x ::-k,

1

	

1

	

1

	

k

	

-L - Zfk(2) (n) = 2

	

z
	 g(qi) 2Bk

X n5x

	

Ck nsx

	

Ck 4;>k qi

	

Ck
fk 2 >( n)>Ck
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Let Ck =4LI (k), Bk =
8

• } L1 (k) . Then C k = ( ~LI (k)) -I

Since, for ki~ x, nsx,

fk(n) :~E fk+x(0) s 4 L1(k+x) - 4 L,(2k) 2 LI (k) .

Since fk (n) ~fk(1) (n) +fk( 2 ) (n), therefore

sup 1 #{n -5 xlfk (n) > 1 L, (k)} 12k ,
x=1 x

	

2

Let now ko be fixed, the sequence k1--k2-- . . . be defined by

It is clear that

ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS

k,, =

	

min

	

k .LI(k)=2L,(k„ -i)

A (ko) _

	

Qk v ` hL(ko)
,Z(k o)-0 (k o- -) •

Applying this argument for x=2µ (p=0, 1, 2, . . .) we deduce that

sup 1 # {n : xjw : fk,.(n) > 1 LI(k)} ~(Q.
x~1 x

	

2

Let now n be such a number for which fk,(n)<2 L, (Q (v=0, 1, 2, . . .) holds .

Then for every kE(kv_1i k v ),

fk(n) fk,.(n) C 2 LI(k,) = L1(k,-1) LI(k) .

This finishes the proof of Theorem 3 .

6 • Proof of Theorem 5• Let a>0 and t be given, °01, ° 2, °Y3 be the set of
primes in the intervals [1, (1-E) t], ((1-s) t, t,] (t, (1 +s) t,] P; be the product of
the elements 90 i , i .e .

Pi= H P.
PEYj

Let r, s be natural numbers . In this section b„ b r(j) , j=1, 2, . . ., denote a number
that is a product of r distinct elements of Y, . Similarity Cs' csl) , C! 2) , . . . denote such
numbers that are the product of s distinct primes from -aP3 . Let H and K be the
number of elements in .92 , and in -,P 3 , respectively.

Then the number of b's is (Hl , and the number of c, s is (Kl .
From the prime number theorem

_ et

	

t

	

l	 Et

	

t

	

\'
H log t

+0 (log t) 2 ) , K 1Og t	 +0 ( log t) 2 J
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Let d be the set of those integers that have the form n= b2 m, where
r

(m, P2)=1, and that contains at least s prime factors from -60 3 . Let

F(n) _ Z 1,
c,jm

if nEsl, and F(n)=0 otherwise .
Let 0<S<1, r=[ta], s=[cr], c>1 being a constant .
To prove our theorem we shall deduce a Turán-Kubilius' type inequality

for the sum
def

	

P2

	

2

(6.1)

	

F(n+i)-A, ,
n=y i=1

where
(6 .2)

	

A = (~ b r) (Z 1/cs) .

For the sake of simplicity we shall assume that r, s, t are large but tem-
porarily fixed numbers, y--~.

Let
(6 .3)

	

S(y, i) _ Z F(n) F(n+i) .

Squaring out (6.1) we get easily that
n5y

P2
(6 .4)

	

&(y) _

	

2(P2 -i)S(y, i)+P2

	

F2(n)-2AP2

	

F(n)+
i=1

	

n-y

	

n-y

+A2Y+O(P2y1/1°) _

_ Z(1) +P2 ,Z (2) -2AP2 Z (3) +A2y +o(P2 y 1/1°) .

We shall use Eratosthenian sieve for some primes in -J' 2 . We note that

IÍ (1-')-1+0(108g,) (t_-)
PE~2

	

p

if y (p) is bounded by an absolute constant .
Then

H(z) _

	

1 = z jj (1-1 /p)+0(21) .
n-z

	

PE92
(n, P2) =1

Consequently

(6 .s) ,7(3) _ Z

	

1 = Z H( brY ) = 1 (1+0 (1E

))AY+ot(1),
b, m_b,y csjm

	

b„cs

	

P2 C S

	

P2

	

og t-
P2

(m, P2)=1

where t in the order term denotes that the constant involved may depend on t .
We shall give an upper estimate for Z(2) . We have

(2) =

	

z

	

1 B Y

	

br(6.6)

	

C(1)C(2)

	

b y

	

P2 (~ )
P2 (cs l ), cs2 )]
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where
1

(6 .7)

	

B=

	

[CM Cs2)] .

-(csLetc~
>)bhas

fixed product of µ prime factors from 60, . The equation £"_

(2 -µ11 )) (2 ss µ )~

solutions . For all of them [cs li , cs 2 >] ~t2s-" holds . 8 A can be chosen
(Kt)

times
Consequently

S

	

(K) K

	

(s-µ)
(6.8)

	

B

	

t" -2s( µ ) (2(s_µ))
(2
s-µ ) .

Furthermore it is obvious that

~b"-t"(H) .

So by the Stirling formula
r

b" < tH < exp (2r log t-rb log t+0(r)) = exp ((2-6) r log t+0(r)) .

Similarly, from (6 .8),

273

Consequently

(6.9)

Since

s

	

K2s -µ
B<

µ=0 t 2s-AP! (S - µ)1 2 li =
	1

	

< exp (-só log t+0(r)) .
~~(S - j) 12

exp ([(2-S)r-8s] log t+0(r».
2

Now we estimate A . Counting the b"'s and cs's we have

t" s (H) (K) A -
(1 +a

)s
, t" s

( H) (K) .

(H

o

r)r < (H)
<

H"

r .

	

r

	

r . '

from the Stirling formula we deduce easily that

r 2

	

s2
log A=(r-s) log t+r log es+O H)+slogK+O(K)-rlogr-slogs+O(r),

and so by (6 .1) that
(6.10)

	

log A = [2r-(r+s) S] log t+O(r log log t) .

18
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We choose c (s=[cr]) so that

(6.11)

	

a = 2-(1+c)c > 0 .

This guarantees that A»1 .
Let now consider the sum

b(1) b(2)
Since	"r -<t2(r- s)C á1) Cá2) -

where
g(1) = l log l+2(r-l) log (r-l)-2rá-1 .

_

	

b(1) b (2)	 r	r
B

	

A~P2 Cá l) C á2) '(6.12)

where
P2 (Cá

1)'
Cá 2) )d =[b(l) bi2)] .

r

	

r

The condition d >P2 implies that (Cá 1) , C(2))~[b('), b (2 )]
Let 6 1 , e, be fixed, where the index denotes the number of its prime divisors,

and consider those br( ' ) , b (2) , Cá 1) , Cá 2) for which b 1 =(b,l), br 2) ), E u =(cá1) , Cá 2) ) . If
d > P2 , then

{(I +8) t}µ ~- {(1-8) 02r-1 ,
i .e .

(	)µ1

	

'

	

1+E

	

> t2r-(L +µ)
(1 -E)2r-(1 +µ)

	

(1-E)2r-l

	

~

whence
1 ~ [(1-E)t]2" -(i+µ)~

i .e . 1+y--2r .
For fixed l and µ the number of br l) , b,(2) , C (1) , Cá 2) that satisfy co((b (1) , b (2) ))=1,

a) ([ c á 1) , C(2)]) =it is

(H)
l
H-Ij (2(r-l) ) (K) K-Ij (2(s-µ))

	

H"-1

	

KS li
l1

	

2(r-l)

	

r-l

	

µ 2(s-µ)

	

s-µ

	

- 1!(r-l)! 2 ' µ!(s-µ)! 2

and H--::: t, K< t, therefore
tr+s-l-µ

(6.13)

	

ZB « t2( " -s) Z

	

'

	

! L, ~

	

!< << t "-s+1 .
I+µ_2r 1 . (r-1) µ.(s-µ) L

Consider now

(6.14)

	

Zc (Z (b(1) br2))) (Z (1) 1 (2)[Cs , CS ]
Arguing as before, we have

t lH)
1

	

s

	

2s µ_(K/t)	 _~c~ H"
1- l~(

		 (
~{~ µ!(s-µ)!2}-

Z
(b)

. Z
(c

By Stirling's formula

1! (r
1

1) 12 `
exp (- g(1) +0(log r»,
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By differentiating, we see that the smallest value is achieved at l=lo , where to is
the solution of 1,=(r-10)2 . We have easily that

g(10) = rlog lo -r+O(C) = r6 log t-r+O(C) .

Since Hr(t/H)t--tr,

Z(1 ) < exp (r (1-6) log t-r+0({ár)) .

We have similarly that

Z ( °) < exp (-sb log t+0(s log log t)) .
Consequently
(6.15)

	

Zc < exp ([r-6(r+ s)] log t+0(s log log t)) .

Let now consider the sum S(y, i) . This is equal to the number of solutions
of the equation

(6.16) P2 c(2)v- P2 c ( i) u - i

	

P2 c ( i ) u - y,b r(2 > 'S

	

br(i) s

	

br(1)

(uv, P2)=1 ; in variable bri) , b (2) , esi ) , cs 2) , u, v . Let bra ) , csj ) (j=1, 2) be fixed ;
S = (bri), br2) ) ; E=(csi) , cs2)) ; ~0, f(s), d (j=1, 2) be defined by

c (s) _ ~0 e

	

5f(j) = bv) ; d =	 P2	(c(1)c(2)) .
S

	

,

	

r >

	

~br i) , br2)]

	

s , s

If (6 .16) has a solution, then d I i . Let i=di1 . Dividing by d we reduce (6.16) to

(6 .17)

	

~(2)f(i) Ü-~(i)f (2) u = l1, (uv, P2) = 1 .

It has a solution if and only if (ü, ~(2)~"))=1 . The solutions u, v are of the forms

u = Ito+lá(2) f(I)

	

v = vo+ lá (1) f(2)
(l = 0, 1, 2, . . .) .

To enumerate the l's for which (uv, P2) = 1, we sieve for primes p E 92 . Since the
number T(p) of the solution of uv=0 (mod p) is 1 or 2, we get

0pl (1-T
p) ) =1

+0 (log

On the previous assumptions (6 .16) has

Y(br i) ,br 2) (
P2[csi),cs2)] I1+0(

log +010)J)
solutions . 0, denotes that the constant

`

involved by the order term may depend on t .
Hence we have

* def P2

	

Y

	

E

	

(b(i) , b(2) )(6.1g)

	

z S(Y, i) =

	

1 +0 ( 1	)

	

~i) ~2)

	

z

	

1+01(1).i = i

	

P 2

	

Og t

	

[Cs , Cs ]

	

i1~P2/d

(I 1 ~(1) ~(2) =i

18*
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Since

(6.19)

Similarly, for the sum

(6.20)

we have

Since

for

and

r

	

E-<<	as
t

	

log t

d P2 ,

P2 I1+0(t))+0(1), if d ~P2 ,
1=

i1`-P21d

	

0,

	

if d

	

P 2 ,
(il, i11) ~(2»=1

t -~,

we have, as earlier

Z** = 2 (1 +0 (log t)) A2+0(Y(,B+GC))+Ot(1)'

Consequently for S (1 ~ defined in (6 .4) we have

(ó.2l) Z(1) = 2(P2 ,Z* -Z**) = y (1+0 (1
8 t)) A2 +0 (Y(ZB+,ZC))+Ot(1)

.

So, by (6.21) and (6.5) we have

9(Y) Bl	E A 2Y+B2Y(ZB+,fC)+O(P2Z2) - Ot(1)Ilog t

where B., B2 are absolute constants . Now by (6.10), (6 .13), (6.15) we get

ZC< t-r12Á, ZB < 1 .
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we have

~* = P2 I1+0(1 8 t)) (A2-ZB)+O(p2 ZC)+Ot(1),

~* = P2 I1+0(logt),A2+0(P2 (ZB+ZC))+Ot(1) .

def P 2
**_ Z iS(y, i)

** = Y

	

(1E

))

	

(b (1) b (2»P2 1 +O
og t

	

[Csl>> c(2

	

d{
i1

	

Id } .

(i 1 ~<1) ~(2)=1

2

	

/

tsz 11= 422 1+0 (t) +O d)
1- 2/d

(i1 i (1) ~(2»=1
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From (6.9) P2 Z2 << Aeo( r ) , and so from (6.10), (6.11),

Aeo(r ) <<	
tog t A2

.

Consequently

(6.22)

	

(6(Y) - B log t A 2Y+O,(,) •

Let M(y) be the number of n :y, for which no one of n + 1, . . . , n + P 2 is
belonging to mil. Then, from (6.22)

(6 .23)

	

M(Y) B log
t y+0,(1) .

Since
{P, (n+1), . . ., P,, (n+P2)} S- {Pi n-+, . . ., Pi n+P,P2},

we have immediately the following assertion .

THEOREM 8 . Let e > 0, 0 < 6 < 1, c be fixed so that

a
aee 2- (l+c)6 0,

t a large constant; r=[tó], s=[ct a] . Let 9 be the set of those integers n for which
there exist b r and cs so that

Let

Then

n - 0 (mod P1P2 cs) .
r

N(x) _ # {n-xl{n+1, . . ., n+P,P2}n-,~= o}.

1xm
N(x)

:B log t '

where B is an absolute constant .

Hence we deduce easily Theorem 5 . Indeed, if n=_ 0 (
P,P2

cs ) , then
r

g(n) g(PiP2)+$(es) - g(br)

Let g(p)=p-s . By choosing r=[t1], s=[ct'], y<1,

S

	

Y

	

C

	

1
g(cs)-g(br)' P+E)t]a [(1-s)t), j tY-s 1+E 1-81 > C

10-6

(c, > 0 constant)
if s is sufficiently small .

Let P,P2=p, . . .pµ~k-<P,P2p,,+, . Then f,(o)=g(P,P2) • If we put t=pu,,
we get immediately Theorem 5 .
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A CORRECTION TO OUR PAPER

-ON THE MAXIMAL VALUE OF
ADDITIVE FUNCTIONS . . ."

By

P. ERDŐS, member of the Academy and 1. KÁTAI,
corresponding member of the Academy (Budapest)

In our paper [1] we stated erroneously that Theorem 1 -is a consequence of
Theorem 1'. In fact, the converse implication is true : Theorem 1 implies Theorem 1' .

Now we prove Theorem 1 . From (1 .9) it follows that

( 1 )

	

Z min (1, g(p)) c~
P

	

P

Indeed, if (1) does not hold, then g(n)-- (n- -) for the set of n having asymptotic
density 1, that contradicts (19) . Let E' ::-0, v a fixed integer. We shall prove that

(2)

	

fvk(0) ~- 0 +E')fk(0)

holds for all k--ko (v, s') . Observing that

AJO) -fvk(n) = max {fk(n),fk(n+k), . . .,fk(n+(v-1)k)},

we have (2) from (1 .9) immediately. From (2) we get that f,(0) = 0 (k% E being an
arbitrary positive number .

The further part of the proof is the same as that of Theorem 1' in [1] .
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