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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS
IN SHORT INTERVALS AND ON SOME RELATED
QUESTIONS

By
P. ERD(S, member of the Academy and 1. KATAI (Budapest), corresponding member of the
Academy

1. Let (g, &) and [a, &] be the greatest common divisor and the least common
multiple of @ and b, respectively. p, denotes the a'th prime: p, ¢, §, §s, ... are prime
numbers, A sum 3 and a product [J denote a summation and a multiplication,

respectively, over Pprime:s indicated. The symbol 4 {...} denotes the number of
elements indicated in the bracket { }. P, is the product of the first y primes.

The aim of this paper is to continue our investigation on the distribution of
the maximal value of additive functions in small intervals.

In the sequel let g(n) be a non-negative strongly additive function,

(1.1) fln) = max g(n+j).
Let
(1.2) glk, &)= sgg% # {n = x{fi(n) = (1 +-2) fu(0)}
(1.3) 8(kgy 8) = s-;.:-;- # {n = x|3k, k = ky, fi(n) = (1 +) f:(O)},

: |
Bk, g) = |11:l=S£]] = # {n = x| fiu(n) = fL.(O)(1 +2)}.
It is obvious that

(1.4) ok, &) = plk, &),
and that
(1.5) dky, 8) = 25? olk, ).

In [1] we tried to determine those additive g{n) for which the relation
(1.6) dlkg. 8} =0 (kg—==) Ve=0
holds. There we noticed that (1.6) implies

(L.7) sun(he®)
" p
but we could not decide if the condition
(1.8) 5 glp) _
B P
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258 P. ERDOS AND 1, KATAL

were necessary. Mow we shall prove this. More exactly, we shall prove the follow-
ing assertion.

Taeorem 1. If

(1.9) Bk, &) =0 (k—==)
for all ¢=0, then
(1.10} 2> g{_p]" =5

r P

Jor every r=1.
Let F(x) be the limit distribution funetion of g(n), the existence of which is
guaranteed by (1.7).

THEOREM 1. Assume thar
(L11) k(1= F(f(0)(1 +2))) ~ 0
holds for every e=0. Then (L10) holds for every r=1.

Theorem 1 is an immediate consequence of Theorem 1°, Indeed, (1.11) implies
that the density of integers m, satisfying g(n)={(1-+28) fi{0) is e(l/k), consequently
(1.9} holds.

Perhaps (1.11} implies that

(py
(1.12) =k
I r

for every w=0. We could not give a counter example.

L]

THEOREM 2. If for some constant A=0
(1.13) k(1= F(fi(0)+A4)) =0 (k—=2),
thne (1.12) holds for every u=10.

On the other hand, we shall prove that (1.6) does not imply g(p)=0(1).
This will follow easily from the following

TueoreM 3. Let L(k) be a function on [1, =) tending to infinity arbitrary slowly.
Then there exists a strongly additive non-negative g(n) with lm g(p)=-<=, so0 that

(1.14) sup k-1 s {n = x|3k = ke, filn) = LK)} =0 (kg —~=).

x=l1 X
We are interested in the conditions that imply

1
(1.15) sup— # {n=x|3k = ko, fi(n) = fi(O)+A4} = 0 (kg +==),
=l
with some suitable constant 4.

THEOREM 4. If g[p}=%, then

(1.16) SHP% # {n = xI3k = ko f(n) = L0+ 4} - 0 (Ko +==),

=l

where A,=3/(log log k).
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0% THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 259
THEOREM 5. If g(p)=1/p*, 0=d=1, p=0 being an arbitrary constant, then

(L.17) 1“'”' hlIl — # {n = x|fy(n) = f () +(log kY ~*~¢} = 1.

E=oo xeso

By somewhat more trouble we could prove that

(1.18) sri[i'--:? # {n = x|3k = ky, fy(n) = f,(0)+(log k) ~*~¢} - 0,

as fy— =,

Let Fy(x), F,(x) denote the limit distribution functions corresponding to
g(p)=1/p% g(p)=(logp)~", respectively: G;(x)=1—Fy(x), G,(x)=1-F,(x).

We shall consider G(x)} for large x(=0).

TueoreM 6. We have for §=1:

=t —prte

1
(1.19) log log A

where a=y— 2 Z’ i 7 being Euler’s constant, ¢ denotes a suitable constant,
k=2 p

Furthermore, if ﬂ-::i-cz L,

l
Ga(r)

(1.20) log

and

= (tlog V"1 +0(log )Y (r=1),

{1.21) log --1TJ-I = t{log )" —eyr{log ),

¢, being a positive constant depending on 7.

REMARK. It is easy to see that the previous inegualities are quite sharp. Indeed,
if g is monotonically decreasing on the set of primes p, then for P, =k=P, ., we
have

1
- F(g(P) = - = T

Hence, after some simple computation, we have the following inequalities for t=1:

(i) log IDgG L @ = ¢ "+0(e~™), B being an arbitrary but fixed number;
a=1
(i) log———— ][ = (rlog V-1 4+0((logr)™), if 0<d=<1;

(i) log ﬁ = t(log )" (1+0((log 1) 7).
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260 P. ERD{IS AND T, KATAL

Let now .
(1.22) .ﬂzﬂfl=m; EZE{;—}-ﬂm-
(1.23) A, = ng%;
(1.24) W () =n§;g{p},
(1.25) Filn) = max {g(n+1)—Au

Tueorem 7. Let 0=1(x) monotonically tend to zero in [1, =), let g(n) be strongly
additive defined for primes p by g{p)=t(p). I (1.22) holds, then for cvery fixed k,
Py=k=P, ., we have

(1.26) Fe(n) = (P + Ay —5

Jor every but O(8,x) of n=x; g—=0, 6,0 av k—=,
Suppose, in addition, that

(1.27) lim % —
Rl
Jor epery 8=0, and that
2
(1.28) 22D ) Qoglogsy (¢ =)

for a suitable y=0. Then

Fi(n)

: 1 a
(1.29) lim sup s 4 {r: = x93k = kg Jlogh)

ky—~oa x=l

—I‘éa}=ﬁ,

for every g=0,

2. Asymptotic of distribution functions for large values. Let g(n)=0 be
strongly additive. Then for every u=0

[0
@.1) 3 e = x H[|+-‘°’L'],
LE- & e P
As it is well known
-
(2.2) L3 e k)= [l+"‘”"Tl-],
REx "

if the infinite product on the right hand side converges. Let F{z) be the distribution
function of gin). Then

(2.3) I—F(z) = Kluwye ™ (0 = u—=x=)

By choosing » appropriately, we shall use (2.3) to give an upper estimate for G(r)=
=1—F(r) for some special additive functions,
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 261

Let r(x), x&[l, =), tend to zero monotonically, g(p)=t(p) for primes p,
Y (¥)= 2 t(p). Suppose that ((x) is diflerentiable.

PEy

Let the values 1,1, be defined by the relations
(2.4) utlty) = logty+H; ui(t,) = logt,—H,

where H=1. Let
K(u) = K, (u) Ky (u) K5(u),

where in Kj(u) (i=1,2, 3) the product is extended over the primes in the intervals

(11 rﬂ]' {I{" Ii]-r {'rl,; m}; TESpEcti}fEIy. -
For pe(l, 1) we use the inequality

_ i)
lng[l +%] = log it +e Pl p = yg(p)—log p+e ¥,

and deduce
(2.5) log K (u) = w(ty) — 3 logp+ ZHI PP,

PEry =
Since

i _
+i;_1 =1 —%-l—e” = pfiHl
in pe(ty, ty], therefore
(2.6) log K, (u) = (H+ D{(r{t)—n(ty).
Furthermore
purlel |

(2.7) log Ky(u) = 3 g

rly

We shall give an upper estimate for the right hand side of the last inequality when
t{x)=x"* (0=d=1); t{x)=(log x)~*, For this we use the prime number theorem
in the form

n(x) =lix+R(x), |R(x)| = cxx(logx)™",

where ¢y i a larpe constant, Let

M=) __
(2.8) f{x]=f——l«
Then
euate) _ | f{x} -
25 itk A= [iggeds A [ I@ERR.

For the estimation of I, we integrate by parts:

(2.9) L= R@)fx)| — [ RS (x)dx.

Suppose that
S (" (x)x—1)+1

£ = -

Acta Mathematica Acedemiae Seienticrum Hungaricae 25, 1980



262 F. ERDOS AND 1. KATAT

changes its sign in [f;, =) at most once, for example at z,. Then, by integrating
by parts, we have

[ IRGIIF @ dx = ¢,

fnlﬂTngf’{x}dxl'l-Fgl fm-;—ﬁf’{x}dx <=
J(x)

=/(1) {log H)fe f (log x)% g
So, observing that
ey —1
)= % =g B
ril-
we get
- 1o fo
(2.10) e e et ey i
To estimate [}, we write
o aut{=t) _ e gk
(2.11) h= [ - f I{E}*dﬂ_f{g, log 1,).
A =1 k!
Togty - log1y
For the integral
Iy, by = [ e-*di
we have i

J(y, by = Y e+ hI(y, h—1).
Let now 1(p)=p~? (0<&=1). Then

logs, leng £y

— Ak pdkloge,
e | R
e sy

and so
= s ftr b
"f[p‘ I':'g'] 2 K ks logn, "
Since wuty*=log t,— H, we have
4e—Hy
(2.12) L=< o8 ﬁ;g
if H{a;—lng.rl.

Let now (p)=(logp)~7", (y=0). Then, from (2.11),
—. sl i S0 mege
#((log p) ’,losh)—lgl'-ﬂ-m{ Ahr=td) =

_ E[H[Icrgt,J“f'}' - Z{Iogtl—H)’ _ de~Hyy
T aEm k(D) & Ky +1) T oylogy

if H.% I6gts.
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 263

So for t(p)=p~* (D<=6=1)
(2.13) log Ky(u) = Be "
while for ¢(p)={logp)~" (y=0)
t

-g h
log K,(u) = Be —I-::sg %

. -
(log1,)*’

B being a constant.

For the sake of brevity we shall write w,=loguw, wa=loguy, wy=logu,.

Let us first consider the case f(p)=p~'. By choosing H=1, and collecting
our inequalities we have

1 f
log K(u) < u ——I-I—D[ 2 ].
B E(w) P%LP 3 logt,
where
u u

s logi,+1° = logr,—1"

Singce, from the prime number theorem

Z'—I = loglogty+a+0(u ),
p=ty P
where

1
ﬂ—?_zgzp_tt

k=g

{y being Euler's constant), and observing that

loglogt, = ug—-t:—n+ Hus™, 4= ?u"f- O(uusu®),
1 i
we get
ll'-g+ 1

O (uudur ).
™ + 0 (uujug ®)

log K{u) = u [ug‘l"ﬂ_

So, from (2.3),
g+
Uy

Ing[]—F{r}}éu[u,+a—r-—~ I]+G[uu§u;“.

Let u be chosen according to the equation
T =yt a—ugurt.
Then, by an easy calculation, we get

lng[I—F{r}}E—f—+G(uu§u{“],
1

del |
F=log IGEW =y —u+O(uiurt).
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264 P, ERDOS AND L KATAL
Since
— T ﬁ R E [E;_] =t —a [H_E]
iy =¢ +u1 € [l—rm1 + t g+ O a)’

we have #=¢" "—crhe*, that is (1.19) holds.
MNow we consider the case t(p)=p~2, 0=8=1. By choosing H=1, we have

i 7] g u
Y logh+1  logh—1
and so f/t,=¢% Consequently, by (2.3)

— gl
""Ill

log et l“ = i —u () + 15+ O(ty/(log t5)).
Since

vw= 3 =8 (iro( ).

pEI, &) log i, log 1,

1+G[lu;r,]]'

] [
log ——— R = l_a.t‘.;,+0[1ml'{lﬂg ta))-

and w=tHlog t;+1), we have

i (ty) =

and so

By choosing 1, to satisfy
rI-J

(1—&logr,’

1 = Iy ]_ f(1—8) ' ]]
log = fat+0 [m = (tlog r)/" 1+0[|°gr ,

and so (1.20) holds.
To prove (1.21), we observe that

i —

we have

Uty Cyly
(log ty***  logty

log ——— —F@ = =ru—log K(u) = nr+t,—

By choosing u=(log t)**!, we have

1 = Ty
log T—F@ = t{log 1y 1 —¢ytllog 7y

and this proves (1.21).
MNow we shall prove Theorem 4. Let gip)=1/p,

g, (n) = %’ g(p); glyin) = gln)—g,(n)

p=y
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS ITN SHORT INTERVALS 265

Then
(g
S 5 (n = 2l ) = () +4) = 0w+ 7 (| +%).
pEly
where u=u, is defined according to (2.4), i.e. w,=¢,(log t,+H). By using (2.5),
we get

= =, LA —llan
logs#y = —Au— r“+0{ﬂ E!rﬂ"]+ 2 pe

P=Ey

where ¢ is an arbitrary large constant. Since

2
—".'IF y = T e_l_-" s Jf' e—h'.'jl
> pe yr(y) g ;

¥
o
2 =¥

. f
by choosing y=y,‘=—2%{k=ﬂ, 1,2,...), we have

B — —H
Speriral? 2 _2 b
pEry log & log s,

By choosing H=cloglogt,, with a fixed ¢

(2.14) log#, =—du, —ty+B———

(lﬂs o)
8 being a constant.
Let w, =t (logt;—H). Then, by choosing H=cloglog1,,

1
(2.15) = 4 {n=xlglty,n) =R} = exp[ Ru, +B

Let

(lo t,}““]

logloglog k
logloghk '

fiP) = max g (ntj); fi®(m)= max g(; ntj).

=t =(ogh)* &=

Let
Hy 2 (1) —logk = log{l+s.J+G[

| ] _ logloglogk [ ]
loglogk)  loglogk ' \loglogk)’

Let & be so large that H,<2g. Then, by (2.14),

(2.16) a(x, k, 28) g% 4 {n = 2if0 () = Y (log k) 26} =
[l-l- } # {n=x+klg, (n) = (1)} =

k — k ~loglogk4-c
[1+ ]kexp[ r“+B|[]og.!.}}‘] [H-?]k s
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266 P. ERDOS AND 1. KATAT

¢ being a constant. Similarly, from (2.15),

@17 b,k e) =~ 4 {n = XD () = 1)) =

=|l+—|kexp|—gu,+0 {mgr,] = 1+; | L
(1+2) ko[-0 ) = (1+3)

So for k=x we have

(2.18) é— # {n = x|fi(n) = Y (log k) + 35} = 1/k%,
if k is large. For k=x, n=x we have

110) = 130 = fi0) = ¥ 08 +0 (1o )-
Hence it follows immediately that

_;]r # {n = x[3k = ko, fi(n) = Y (logk)+3e,} = Fl.‘:.

By this, Theorem 4 has been proved.

3. Proof of Theorem 7. Suppose that the conditions of Theorem 7 are satis-
fied. Let g(n) be strongly additive defined for primes by

< glp) if p=p,
glp) = .
0 if p=p,.
It is obvious that g(P,m)=g(P,)+E(m). From the Turan—Kubilius inequality
> @m-ayp =i 3 50,
MES}F B P=py P
if Po=x; A'=A,p —A, . Hence we get immediately

’ x g*(p)
- ;B} = &
| P B J-gi",. P

del X
(3.1) My =— #{m éE
If §(m)—A’=—B, then

g(P,m) = Y (p)+E(m) = Y (p)+A'—B
S50 for P,(m—1)=n<P,m we get

(3.2) Fp ()= E(Ppm)_A{m+1]P, = '}r’{Pp}'i‘ijr,,-A{mH.]Pg""{p,_B'

Let now x—=. For m=}x we have
T 1s
Agir,— Amep =+ [E F] (Z EEEE]'] -0 (x--=),
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 267

where the summation is over the primes in [[m+ 1P, Pi] By choosing

. 14
B, = 3=[ B _g_ﬁ]
p=p, P
we obtain (1.26) immediately for k=F,.
Let now P,<k=P,,,. To prove (1.26) it is enough to observe that F(m)=
=Fp (), and that A,,,—A4, =0 (k--==).

ow we assume that {I.Zﬁ'}, (1.28) hold. If P,=k=P, ., then. ¥(logk)=

= (p)(1+0())=¥(p.:1)(1 +0(1)) and Fp, (M=F,(n)=Fp (n), and so it is
enough to prove (1.29) for k=F,. From ﬁ.iﬂ} we have

x 2 ¥
My = .5 *(p)(loglogp,).
From the monotonicity of ¢ we have

t*(p,)
— Wl s
so by choosing B=A4(p,). 0=1,<1, we have
x  (loglog )
B I ;

Let x=P}. In the interval n£[l, x] we drop the »’s for which n=x'" Ob-
serving that A, =o(¥(p,), and that 4,—A4.=0(1) (0=a=<1), from (3.2) we
get that

Fp (n) = (1-24(p,)
of n=x, if 1, tends 1o zero sufficiently slowly. Let x—=Pj.

My =

for all but m::;&]?

Then, for every n=x,

Fp,(m) = max (g(n+j)=Ani)) =¥(p)=Assr,-
Since = " i
1 *(p)

F= Py

< 1(p,) (toglog p,)" (log p,*" ﬂ:ﬂjﬂ (loglog p," (log p,)™* = o((p,),
therefore
Fa, () = (1= 24)¥ ()

holds for every n if u is large. Applying this argument for the sequence x=2", we
get the relation:

Va=0: lim sup— & {n = |3k = ks, Fy(0) < (1 -8y (og ) = 0.
t--hln xEl X
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268 P. ERDOS AND L KATAI

To prove the second half of (1.29) we choose loglog ty=pj, where 0=d=y
(see (1.2T), (1.28)), and define g(fy, m), g, (m to be strongly additive satisfying

g, I pE=EL
gp), if p=t,

g,(n) = g(m)—g(ty; m).
Let A*=A.—A,. For every u=0 we have

gty p) = {

def’ = emilry |
Dx, u)y=— 2' eﬂtu{!.-ﬂ ALY = xl {];=[] +T] e~ i),
n=x o=

whence it follows that

_#{n—xig{:}. ny= ﬂ}"—-e;l{p( Auti® 3 g (P}]

p=-Tg
1
T L N ' , 57
if u_zf{m. Let A=n.¥(py). n,~0 slowly. Then, from (1.27)
A0
Au = L ™ 4D
if p is large. Furthermore, from (1.28)
1 g*(p)

¥ <= (loglog ;) = P2 = o)
41*(1y) p=t; P ¢
since dy-=1. Consequently

3.3) # {n= xlgles m) = 0 (p)} =< x/PL.

Let C,(x) be the number of those m=x, that have at least r prime factors in
[1, ;). We have by Stirling’s formula,

1 I r
C{x)= .‘t'ﬁ{ EF] = X exp [—rlﬁgm+ﬂ{iogr}).

P=%
Let r=[(144g)u], ¢ being a small positive constant. Then,
¥
————— = (1 +dg) (1 -2 =(1420)p,.»
"1°ge{p:+0{1)) (1+40)(1—-28)p, =(1+20)p,
if § is small enough. Consequently

Colx) = 5y p;+:r

Let nn be a such number that has s(=g) prime factors in [1, £,). From the mo-
notonicity of ¢ y) we get

gi,(n) = glpy... p) = W (p)+s—pit(p) = [ﬁ- 1] W (p,)-
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 369
So, if g (m=(1+4g)(p,), then s=r. Consequently

3.4) # (1= 3lgg () > (1400 ()} < 57y
From (3.3) and (3.4) we get immediately that .
# {n=x| max g(n+j) = (1+50)¥(p,) *ﬁ%=

if P,=x.
For P,=x we have

Fp ()= max g(n)=y(p,a) = W(p)+o(l)

Applying this estimation for x=2" (v=1,2,...) and summing up for u=j,,
we have

1 1
— == ——
e {n=x[3p =), Fp,(n) = (1 + 5000 (p)) =55

Ay
By this we proved (1.29).
4. Proof of Theorem 1° and Theorem 2. To prove Theorem 1° we suppose that
(1.11) holds. From the existence of the distribution function F(x),
5 min (1, 2(p)) s
] P
Let d=0 be fixed, &, be the set of those primes p, for which

(1+8)£i(0) = g(p) = (1 +0) [ (0)

holds: Then
2’ Il,l'_;_'l--l::a:-|I
pPEPy
if (=0, Let b()=(n-+1)...(n+k); R= [] p
#y
From (1.11), i
2 l={1—gx,
(b, Ryy=1

if k=ky(5,8). Since 1—F(f(0)=1/k for every k, from (1.11) it follows that
Fu0) = (1+2)f(0)
for every fixed v, if k is large. So fi{0)=0(%") and for pc#, we have plk—-

(k- =2). Consequently
k]
l——=| =1-¢8,
p-lg.[ P a 5

and

if & is sufficiently large.
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270 P. ERDOS AND L KATAL

So we have
sGY _ 5 d0+FO 52
sn=iranm P vk 2 2
and Theorem 1" has been proved.

The proof of Theorem 2 is almost the same. We need to observe only that
from (1.13)

(4.1) fi(0) = ollog k)
follows. Since for fixed v
vk(1=F(f,,(0) = 1,

vik(1 —F['fk{l]}+ A) =0 (k—==),
therefore [, (0)<fi(0)+A if & is large, that implies (4.1).

5. Proof of Theorem 3. Let L{k) 7= be piven. We can give L, (k) /==, 50
that L,(Ky=L(k), L (k+k*=2L,(k), L,(k) has integer values with jump 1. It is
enough to prove our theorem for L,(k) instead of L(k).

Let #={g,<=g,=...} be a rare sequence of primes. We shall define g{n) so
that g(g;),” ==, and g(p)=0 for p¢ 2.

Let B; be a sequence tending to infinity monotonically, # be so rare and the
increase of g(g,) so slow that

and

: glg) B
0 i';:-Z; q; i f ;
. 1
(ii) g [q‘:[!’L q) = 5 L0

hold for every k=1.
So j;;{'D}E—;-Li{kj for every k=1. Let gy(n), g:(n) be strongly additive de-

fined for primes as
0, p=kK

&lp)= {g(p), p=k

g =@ -alp), [ = max g(n+i).
It is obvious that

A0 =g ( [T 9) = 5 (0.

Furthermore

i
Z/Om=k I pm=k 3 g(q,:r"—;—,
" =

nzx =x+k

and so for x=k,

1 1 k glg) 2By,
= = | éaé;ﬂ“{n} = EF“;;;T = '-E:(— @)

LT
F¥ =G,
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ON THE MAXIMAL VALUE OF ADDITIVE FUNCTIONS IN SHORT INTERVALS 271

Let Cksiéquk), B,;:%-}“L;{l’}- Then g,=(VLi (k)"

Since, for k=x, n=x,
fe{ﬂ}’——-ﬂufﬂ}ﬁ—hfﬂ-l} 5—131{2-"2} =— L, (k).

Since A (M= (n)+f"* (n), therefore

1 1
sup — #{w = xfi(n) }-fh(k}} = g,
x=1 X
Let now k, be fixed, the sequence &;=Fky=... be defined by

ko= Ly ‘“gﬂh ) w
- il =1
It is clear that

a (kp} =5 =5 N = { ]
Mid = Z on. = ==
Alkg) =0 (ky— =2).
Applying this argument for x=2* (u=0,1,2,...) we deduce that
sup L 4 {n = 3v: 1, 00 = 3 L, (o) = 20k,

x=1 X

Let now n be such a number for which _ﬁ'{n}-:—; L%y (v=0, 1,2, ...) holds.
Then for every ke(k,_y, k,),

filn) = fi (m) = %&(h} = Ly(k,-1) = Ly (k).

This finishes the proof of Theorem 3.

6. Proof of Theorem 5. Let £=0 and ¢ be given, 2, #,, #; be the set of
primes in the intervals [1, (1—e)¢], ((1—e)t, 1] (1 (14+2)e,] P; be the product of
the elements &, i.e.

P= [T p
pe®,
Let r, 5 be natural numbers. In this section b,, 85, j=1, 2, ..., denote a number

that is a product of r distinct elements of @,. Similarily ¢,, ¢, ¢, ... denote such
numbers that are the product of s distinct primes from . Let H and K be the
number of elements in #y, and in @, respectively.

Then the number of b5 is [‘:‘r]. and the nomber of cs is [E}
From the prime number theorem

&t t & !
(6.1) o= log ¢ +G[{l¢3f}’]' = logr +D[{|°g'}g].
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Let &f be the set of those integers that have the form n=% m, where
L3

{m, P,)=1, and that contains at least 5 prime factors from &;. Let

Fin) = .:%.- 1;

if ncsd, and F{n)=0 otherwise.

Let O=d=<1, r=[t%], s=[er], ¢=1 being a constant.

To prove our theorem we shall deduce a Turin—Kubilins’ type inequality
for the sum

(6.1) J{y}gng é' F(n+f]=—~Al,
where s
(6.2) A=(3b)(3 1e,).

For the sake of simplicity we shall assume that r, s f are large but tem-
porarily fixed numbers, y—==.

Let
(6.3) Sy, i) = é Fin) Fin+i).
Squaring out (6.1) we get easily that
(6.4) &y} = 2 2(Py—D) Sy, D+ Py “.iZ'y Fi{n)—24P, 2 F(n)+
+ A2y +0(PHy'") =

= 304 P, 3D 24P, 3O+ A1y +O(PIy).
We shall use Eratosthenian sieve for some primes in 2. We note that

ng[t-‘%ﬂ]:uo( -

logs

] =

if y(p) is bounded by an absolute constant.

Then
H(zy= Z 1=2:z [T (1—-1/p+0(2").
RIEz PE®y
{rl,!"=}=l
Consequently
bi bey)_
(6.5) Zm_gﬂam;_bgﬁ[m] Pﬂ[|+o[l ]]A_}*+U(I},
e '

where ¢ in the order term denotes that the constant involved may depend on ¢
We shall give an upper estimate for X'}, We have

(6.6) =3 T 153-—%{2 B.),
A Y nE-—-—-ﬁﬁ—Pglc. .,’l.'il:'_:l
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where
I
(6.7) B=3 ooy
Let &, be a fixed product of p prime factors from #,. The equation g,=

=(cV, ef¥) has
Zﬁ-—i}] [2 ES:##)]

solutions. For all of them [¢fY, ¢/®]=r*—* holds. £, can be chosen [‘:‘:] times
Consequently

&b 22 %[ el (5
Furthermore it is obvious that
2=t [f] =
So by the Stirling formula
b= Ui{}r = exp(2rlogt—rélogr+0(r)) = exp ((2—d)rlog 1 +0(»)).

Similarly, from (6.8),

8 Km—u " 1
B= 2 G-pr ~ A ue—pp ~ P (-sles +0()
Consequently
(6.9) o = ml;’-j- exp ([(2—8)r— dsllog 1+ 0(r)).
']

Now we estimate 4. Counting the &,'s and ¢'s we have

)= e ()

{H—r_]“_: H] H

Since

? ]
from the Stirling formula we deduce easily that
&
logd =(r—s)logt+rlog H+0 [%] +slog K40 [%]— rlogr—slogs+G(r),

and so by (6.1) that
(6.10) log A = [Zr—(r+5d]logt+0(rloglog t).
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We choose ¢ (s=[cr]) so that

(6.11) w=2=(l+c)c=0.

This puarantees that A-=1.
Let now consider the sum

(6.12) Z‘ - 2 br‘”b{'&!
’ BT 5, cielr®
where
_Pylel el

The condition 4=P; implies that (g/V, e®)=[bV, b¥].
Let &, &, be fixed, where the index denotes the number of its prime divisors,
and consider those HfY, 5, iV, ¥ for which &, =(B!Y,5®), 2, =(ciV, c*). If

A=PF,, then
: {(1+e)t) = {(1—g)r)=—,
LE
1 = {14e)" S

(1 _31"21-—“1'4” i “_E}:h-—l e ¥

whence
| = [{] -'E} r]b—{IHLJ’

e, 14 u=2r.

0o tlf;::nr I}!Jied land p the number of 5V, b2, eV, ¢! that satisfy a((6tV, Bi2))=1,
w(let, e =u is

([ vt [ [ P i B = =

) B pi2)
Since ﬁ"r“""" and H=t, K=t therefore
ﬁ 13 r—ak "'4-‘-1_“ r=it+l
@:42) D 1 o= T e A
Consider now

1
(6.14) 2c= (2 (b, b)) [Z WI]

Arguing as before, we have
L 5 G5 ) gy
.Z-’.'"{ ,‘_Z; f[{r_;}[:}{ﬂam}_zu .2{ '

By Stirling’s formula

ﬁ =exp(—g()+0dogn),

where
g(l) = logl+2(r—=Dlog(r—1)—2r+ 1L
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By differentiating, we sce that the smallest value is achieved at =1, where I, is
the solution of fL=(r—I,)* We have easily that

g(ly) = rlog l—r+0()r) = rélog t—r+0()7).
Since HT(t/H) =1,
Z® < exp(r(l —d)log r—r+0(yr)).
We have similarly that

' < exp (—sblog t+O(s log log 1)).
Consgequently

(6.15) Ze=-exp([r—d(r+s)]logr+0(sloglog 1)).

Let now consider the sum S(y, f). This is equal to the number of solutions
of the equation

(6.16)

P
@y A ) S8 )y
B P pm R = by .f.-'” el

(uv, Py)=1; in variable 5%, b3 cldr o8y p Let BUY, el (j=1,2) be fixed;
G=(b{", by, e=(cfV, ¢f); &V, UL A (j=1,2) be defined by

P
T, by (4 7)

clid = Fltg SN =piN: A=
If (6.16) has & solution, then 4|i, Let i=4{;. Dividing by 4 we reduce (6.16) to
(6.17) R My 20Ny = § . (up, P =1.
It has & solution if and only ift (f,, & & =1. The solutions w, v are of the forms
=ty IR O, o=+ B S (1=0,1,2,..).

To enumerate the I's for which (ww, Pu)=1, we sieve for primes pc #,. Since the
number y{p) of the solution of wv=0{modp) is 1 or 2, we get

-2 -r+0(2).

On the previous assumptions (6.16) has

Y. b)
Pyleft, ¥

a[l—%;]]w,m

solutions. O, denotes that the constant involved by the order term may depend on 1.
Henee we have

, &t eIy , )
©18 3 zsur, i) [1+o lngl]]z Al h%f 14+0,(1).
iy, §4) a0y
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Since

—5-[1+o[1]]+a{1). if A4=p,,
s 1-14 ‘
g 0, if 4= P,

”11 {11} :hﬁ)nl

r &
and —=—— as -2, we have
r logt

= =-§5[1+o[ )| a2z 40 (% 2 +oun.

logr
i.e.

(6.19) > = -j{':[uo[my]] A*+o[}%’(2;+2=ﬂ]+ﬂlﬂ}-

Similarly, for the sum

Py
(6.20) s = 121 iS(y, 1)
we have

o Loy (b0, b®)
2 "'F’"{”G[logr]]z . o 4

i,-:P'g.ld
,“ {{ﬂ {h:}-l

2, =g (+oF))+o5)

(s §117 258 =1

Since

for A=P,, we have, as earlier

3 = [1vo(i)) o0zt zrom.
Consequently for 3™ defined in (6.4) we have
621) ZO=2(P, 2" 3"") = .v[1+0[1 g ]] A0y (Zu+Ze))+0:(1).
So, by (6.21) and (6.5) we have
8(y) = Bl_"" Ay +Byy(Z ot Ze)+0(Py Za)+0,(1),

where B,, B, are absolute constants. Now by (6.10), (6.13), (6.15) we get
chr_!'m-‘{. Ea‘ﬁlq
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From (6.9) P, 3, = Ae”", and so from (6.10), (6.11),

AEDH _CB:_E_ AL
log ¢
Consequently
(6.22) =8

£
logt

Ay +0,(1).

Let M(¥) be the number of a=y, for which no one of n+1,...,n+ P, is
belonging to &/, Then, from (6,22)

(6.23) M(y)=B

Since

&
loge

y+0,(1).

{Pl{”+1}t Bl PI{H'I'PZ}} g {'Pln'l'l! Loyt PI"+P1PIL
we have immediately the following assertion.
Taeorem 8. Let e=0, 0<d=<1, ¢ be fixed so that
=2 (14+e)6=0,

t a large constant; r=[t*], s=[c1®]. Let @ be the set of those integers n for which
there exist b, and ¢, so that
n= {}[mod il c.] )

b,
Let
Nx) = #{n=xl{n+1,..,n+ P PYB= @}
Then
Timi i = "
x x log ¢

where B is an absolure constant.

Hence we deduce easily Theorem 5. Indeed, if n=0 [PI Fy c,], then

b,

gln) = g(P, P)+z(c)—g(b).
Let g{p)=p~" By choosing r=[t"], s=[ct’], =1,

i ke - B il o I fomes, gl o8 U = g g8
8(¢) gm"}_[‘{l+£_‘l|!]l [U—El”]"_ﬂ {H‘E I_E} £

(e, = 0 constant)
if & is sufficiently small.

Let PiPy=p,..p,=k=P Pyp,.,. Then fi(0)=g(PyFyg). If we put r=p,,
we get immediately Theorem 3,
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A CORRECTION TO OUR PAFER

“ON THE MAXIMAL VALUE OF
ADDITIVE FUNCTIONS...”

By
P. ERDOS, member of the Academy and T, KATAIL
corresponding member of the Acadamy (Budapest)

In our paper [1] we stated erroncously that Theorem 1-is a consequence of
Theorem 1. In fact, the converse implication is true: Theorem 1 implies Theorem 17,
Now we prove Theorem 1. From (1.9) it follows that

M 5 min(l,e() __,
P P

Indeed, if (1) does not hold, then g(n)-~== (n--==) for the set of # having asymptotic
density |, that contradicts (19). Let &"=0, v a fixed integer. We shall prove that

(2} = g B A ()]
holds for all k=k,{v, &"). Observing that
L5f0) = faln) = max { filn), fln+8) .o il (= DE)},

we have (2) from (1.9) immediately, From (2) we get that fi.(0)=0Q(K"), & being an
arbitrary positive number.
The further part of the proof is the same as that of Theorem 17 in [1].
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