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Introduction, A get A of nonnegative integers is said to be an (asymp-
totic) basis of order r if every sufficiently large integer can be expressed
a8 o sum of at most » integers taken from 4 (where repetition is allowed)
and r is the least integer with this property. In this case we write ord(4) = r.
A basis A ig said to have swact order s if evary sufficiently large integer
ia the sum of ewactly & clements taken from 4 (again, allowing repetition)
where g is the least integer with this property. We indicate this by writing
ord®(4) = s.

It is easy to find examiples of bases A4 which do not have an exact
order, e.g., the set of positive odd integers. Of course, if 0 .4 and ord(4)
= ¢ then ord®(4) = r as well. However, it is not difficult to construct
examples of bases 4 for which

ord"(4) > ord(4).

For example, the set B defined by

B=U1k

k=g
where
I, = {w: 2541 < o g 2M4T)

ord(B) =2 and ord*(B) = 3.

~ In this note we characterize those bases 4 which have an exaet order..
It turns out that the only bases which do not have an exact order are
those whose elements fail to satisfy a simple modular condition. We also
estimate to within o constant factor the largest value ord*(A) ean attain
given that ord(4) = r. (The reader may consuilt [1] for a survey of results.
on bases.)
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Bases with an exact order

THEOREM 1. A basis A = {a,, @y, ...} has an evact order if and only
if : ;
{*) ged oy —a: kB =1,2,..} =1.

Proof. (Neeessity). Buppose for some & that ord*(4) = s and assume
(#) does not hold, i.e., '

g!ﬂl'ﬂ.- {ml_ﬂ‘{ k = I.-’. 21. -ti} = d.} 11-
Thus, for all k,
Ay = ty(modd).

Therefore, the sum of any & integers taken from A is always congruent
to sa;, modolo & which eontradicts the assnmption that u:‘rl"‘{d.} =48

(Sufficiency). Denote ord(4) by r and assume () holds. Let mA
denote the set

{01+t oo +0t @, € A},

Facr. For some i,
ndnn+1)4 #@.

Proof of Fact., It follows from (+) that for some 1,
god. fo,—o 1<E<it} =1.
Thus, for suitable integers ¢, we have

#
{1) D tiltp—a) =1,
Rl
Define p, and g by
P = d'ku—l-l if ﬂk?’ﬂ, i ﬂi if ﬂ*;tn’
% . it <0, Bepr I <0,

Then (1) can be rewritten as

i
N ol (ma—ay) =1,
=1

ie.,
i

i
(2) Niewlps =14+ ) lonlax.

=] o=l

Now consider the integer

M=g‘{'lw.ﬂa-
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Sinee
[
3 M = € o
(3) hiéﬂk (g[kpk]"i
and algo
_ i loplde [}
(4) M= pee( ) leday) 4,
haal foul k=1

the Fact follows from (2) by taking

¢
"= ; b s -
=1

1t follows immediately from (2), (3) and (4) that
ZM =M+-Me2nAn(2n+1)4An(2n+2)4
and, more generally, that for any w =1,
w
) wM & () (wn+E)4.

Fomil
However, by hypothesis, every sufficiently large integer @ belongs to |_) i4.
Thus, from (5) with w = »—1, we have ek
{6) @+ (r—1)M & ((r—1)n+r| A
for all sufficiently large @. This shows that 4 has an exaet order and
in faet, that
ord*(4) < (r—1)n+r.

This proves Theorem 1. m

Comparing ord(4) and ord*(A). Define the function g: 2" 2"
as followe:

g(r) =max {ord®(4): ord(4) =+ and A satisties (=)].

‘A crude analysis of the proof of Theorem 1 shows that g(r) exists and,
for example, g(r) < er' for a suitable constant e. The following raau.lt
.shm'p-ans this estimate considerably.

TaRoREM 2. For all v,
() Hito(1)rr < g(r) <31 40(1))r.

Proof. We first prove the upper bound. Assume ord(4) = r. Thus,
il sufficiently large « salisty

mE__[,:JM.
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From (8) it follows that for any t,

r
(9) twe | tkd I
k=1
for @ suificiently lavge. A
It also follows from (8) that for some m and gome ¢, 1 < o<,
(10} meadn(r+1)4d.
Thus, letling
d=rtl—e¢
we have

2m & Z2od N (2o +d)An(2e 4 2d) A
and, more generally,

(11} ﬂmsﬁ (we+-id) A,
=il
a special cage being
il
(12) wdm ED{mia+ifﬂd.
]

Setting ¢ = d in (9), we obtain

(13) dne| ) akd

for all sufficiently large . Therefore,

(14) dw -+ udm & (dr+ ude) A
for all sufficiently large @ provided

(15) yd = r—1

since for each dw e dkd, 1 < k<7, we also have udm € (ude+(r—k)d) A.
In other words, if (15) holds then all sufficiently large multiples of @
belong to (r4 we)dA. ,

Our next task is to find a number w = o(r*) so that wd containg
a complete residue system modd. Let 4 = {I,,...,1} denote the set
of distinet residues modulo d which ocenr in 4. Since A satisfies («) by
hypothesis, we can assume that e, and I; are labelled so that a, =1, (mod d)
and, for some f,

{1&} GI}G’}¢||}G‘=1
where

Gy =g {la—Tyy ly—Tay - ooy Ly — 1}
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8ince @,,, divides G; for oll i, it follows at once that

logs _logd _ logr

log2 = log2  log2’

Thus, for any 2 (mod d) there exist integers o, = a,(2) with 0o, <d
g0 that

' '
(18) Zf’t{hu —1) = E op (@ —ay) =3 (mod d).
E=l

(17) t<

= =

It follows from (18) that all residue classes modulo d are in (f+1)dA.
Finally, using this together with (14), we see that (provided (15)
holds) all sufficiently large integers belong to d(r -+ ue 4-4+1).4. To satisfy
{15) it is enough to takew = % :
An easy calenlation (using (17)) shows that the maximum value the

coefficient d|r+e ["'1] +1+1) achieves is (1+0(1))r%, Thus,

d
gr) < i{1+0(1))r
which is the upper bound of (7).
- To obtain the lower bound of (7), consider the following set A, (m)
defined by
A (m) ={z>0: » =i(modn) for some i, rm < i< (r4+2)m}
where n = rm(r/2+2) and we assume r i even, Reduced modulo n»,

A (m) is simply the interval of residues {rm,rm--1,...,rm-+2m}.
On one hand, sinee

%{m-i-ﬂ!u} = -—T~+m - (% +1)m
r{rm+2m) = n+ r({rm)
n all residues modulo # belong to
drd, (m)u(r/2+1) A (m)u ... ©rd,(m)
consequently
ord (4, (m)) <r.
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On the other hand, for any &, kA, (m) reduced modulo » forms an interval
of length 2mk-+1. Therefore,
n—1l rt 1

(20) ord* (A,(m)| = = Pt

Taking m large, it follows from (19) and (20) that
g{r) = (L +o(1))r*
which is the lower bound of (7). This completes the proof of Theorem 2. m

Concluding remarks. We mention here several questions related to
the preceding results which we were unable to gefile.

1. Bhow that limgg—]- exists, and, if possible, determine its wvalue.

Predeiny

To obtain the exact value of g(r) seems very difficult. Tt can be shown
that g(2) = 4. However, at present we do not even know the value of
g(3). (It iz at least T7.)

2. For a set A, let A, (z) denote jmdAdn{l,...,o}|. If 4 is a basis
sl k() = ola) de 5 brue fhat dm o8O g

s Ay (@)

3. By the resiricted order of A, denoted by ordg(4), we mean the
least integer ¢ (if it exists) such that every sufficiently large integer is the
sum of at most { distinet summands taken from A. As pointed out by
Bateman, for A>3 the set 4, = {x > 0: @ =1 (mod h)} has ord(4) =k
but has no restricted order. However, Kelly [2] has shown that ord(4) = 2
implies ordgp(Ad) <4 and conjectures that, in fact, ordgy(4) < 3 is troe.

(i) What are necessary and sufficient conditions on a bagis 4 to
have a restricted order?

(ii) Is there a function f(r) such that if ord(A) = » and ordgy(d)
existe then ordg{d) < f(r)?

(iti) What are necessary and sufficient conditions that ord(4d)
= ordgp(4)? Even for sequences of polynomial valnes, the gituation is
not clear. For example, for the set 8, = {n®, n =1}, ord(8,) =4 (by
Lagrange’s theorem): and ordg(8,) = 5 (by Pall [3]), whereas for the set
8, = {(n*+n)/2: n=1},

ord(8,) = ordg(8;) = 3.

(iv) Is it true that if for some », ord (4 —F) = r for all finite gets ¥,
then ordgp(d) exists? What if we just assume ord(d — F) exisgts for all
finite F'?

4. Let n XA denofe the set {a, + ... +a, : a; are distinet elements of
A}. Is it true that if ord(4) = then r x4 has positive (lower) density?
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If 24 has positive upper density then s x4 must also have positive upper
density ¥

b. Given k and m, when does thereexistaset 4 = Z_ sothat 4,24, ...
vy kA form a disjoint cover of Z,,¥ For example, for k = 2, m = 3f—1,.
the set 4 = {t, 141, ..., 2t—1} works.

Of course, many of the preceding questions counld be formulated for
ordz(4) (defined in the obvious way). However, we leave these for a later

paper (IWL).

References

[11 H. Halberstam and K. Roth, Sagwences, Vol. 1, Clarendon Press, Oxford
1866,

[2] Johm B. Kelly, Restricted bases, Amer, Journ, Math. 79 (1957), pp. 258-204.

[3] G. Pall, On sums of squares, Amer. Math. Monthly 40 (1833), pp. 10-18.

MATHEMATICS INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES
BELL LABORATORIES
Murray Hill, New Jersey, [LE.A.

Keecived on 11. 8. 1877 (a7e)



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

