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SOME UNCONVENTIONAL PROBLEMS
IN NUMBER THEORY

By

P. ERDOS (Budapest), member of the Academy

Dedicated to the 80th birthday of my friend George Alexits

In the paper, we will mostly deal with arithmetic functions, primes, divisors,
sieve processes and consecutive integers .

1. Letf be an arithmetic function . The integer n is called a barrier for f if

(1)

	

in + f(m) < n

for every m < n .
Perhaps I should explain why I considered (1) . In the early 1950's, van Wijn-

gaarden told me the following conjecture. Put a1(n) = u(n), the sum of divisors of n,
and ok(n) = 0'1(0'k_1(n)) . Is it true that there is essentially only one sequence uk(n)
(k = 1, 2, 3, . . .)? In other words, if m and n are distinct integers, are there integers
k and l such that 6k(m) = u,(n)? Such a conjecture is usually hopeless to prove or
disprove . Selfridge and others made some computer experiments and believe that
the conjecture is false . I tried to find an airthmetic function for which an analogous
conjecture is true and can be proved. Put f1(n) = n + v(ii), where v(n) is the number
of distinct prime factors of n, and .fk(n) = f,(fk_,(n)) . Is it true that for any two
integers m and n there are integers k and I for which fk(m) = ft(n) ? . This would
follow immediately if we could prove that v(n) has infinitely many barriers . This
problem seems more interesting than my original question . It is easy to find with
a pocket computer and a little patience (I do not have either of these) a large number
of integers which are barriers for v(n), but I am afraid that the question of the existence
of infinitely many barriers is hopeless at present . I could not even prove that ev(n)
has infinitely many barriers for some s > 0. Sieve methods seem the right method of
attack, but there are great technical difficulties which I could not overcome .

The following theorem gives a result of this type which can actually be proved .

THEOREM 1 . For n = Hp"' set d„(n) = Hi,. Then d,(n) has infinitely many barriers,
that is there are infinitely many n such thaf 4

(2)

	

m + do(m)] <_ n for every m < n .

In fact, the density of integers satisfying (2) is positive .
I will outline the simple (but slightly messy) proof of Theorem 1 at the end of

the paper.
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7 2 P . ERD6S

Let me now state a few other difficult problems. Let 0(n) denote the total number
of prime factors of n, that is 52(n) _ Loci when n = Hp". Probably 0(n) has infinitely
marry barriers, but this is clearly hopeless at present, since a barrier n would have
to satisfy n - 1 = p and n - 2 = 2q for primes p and q and we are not likely to
be able to prove the existence of infinitely many such n in the near future . Selfridge
found that 99840 is the largest barrier for Q(n) below 10 5. Selfridge and I then inves-
tigated whether d(n), the number of divisors of n, has any barriers . Here one has to
redefine the barrier a little bit : n is a barrier for d(n) if

m+d(m)Sn+2

t or every m < n . This is satisfied by n = 24 and we convinced ourselves that if
there is any other solution then it is enormously large, far beyond our tables and
computers .

Define
14, (n) = max (m + f(m) - n) .

in <n

It is quite possible that Hd (n) --). oc as n -~ co,but these questions are clearly hopeless
at the present "state of the art" . On the other hand, it would not be very difficult
to prove that, for almost all n, H,,(n)llog log n(log log log n)í12 -+ c(> 0) as n -> oo .
(I have not carried out the details .) The strongest possible conjecture which has a
chance of being true is as follows : for every s > 0, there are infinitely many values
of n so that

(3) 5 v(n - k) < (1 + E) log k/log log k and S2(n - k) < (1 + s) log k1log 2

for every k satisfying ko (e) < k < n . In may opinion, this has some chance of being
true, but there is no chance at all of proving it in the forseeable future . At the present
moment, I cannot disprove the following strengthening of (3) : there are infinitely
many values of n so that

(4)

	

v(n - k) <
log k

log log k + C
and 92(n - k) <

log
log 2

k
+ Cg g

	

g

for every k satisfying kt,(C) < k < n . I am convinced that (4) is false for every C
and n > no(C) ; perhaps (4) and (3) can be disproved . It seems certain that for every
k there are infinitely many values of n for which

max (m+d(m))5n+2,
n-k<m<n

though this is hopeless with our present methods. It would easily follow from hypo-
thesis H of Schinzel .

Let)f(n) be a non-negative additive or multiplicative function which has a bounded
average, that is Y f(n) < cx . Then lim inf H (n) < oo . (We suppress the proof since

15 n5x

	

n-+ o
it is very similar to that of Theorem 1 .) For n = Hpi' define dr(n) = H(r + ai) .
It is not hard to show that if (3) holds then lün inf Hdr(n) < oo .

n co
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To conclude this section, we observe that o(n) and 0(n) increase too fast to
have barriers. In fact, it is easy to prove that max (m + 0(m)) = 2n + o(n) and if

m<n
we make plausible (but at present inaccessible) assumptions on the difference of
consecutive primes, then it is easy to see that max (m + 0(m)) = 2Qn - 1 for all

m <'
n > n o, where Qn is the largest prime not exceeding n . Finally a little elementary
manipulation with the primes gives max (m + u(m)) = max o(m) + n - o(n) .

m<n

	

m<n

2. Now we discuss some unconventional problems on primes . Denote by p(m)
the least and by P(m) the largest of the prime factors of m. Put F(n) = max {m +
+ p(m) : 1 < m < n, m composite} . Is it true that F(n) <_ n for infinitely many n?
Many related questions occur in a forth-coming triple paper of Eggleton, Selfridge
and myself. We conclude that plausible conjectures on primes imply that F(n) <_ n
has only a finite number of solutions. Trivially, F(n) > n +,-n, but it is quite possible
that F(n) > n + (1 - e).Jn for n > no (e) .

Further questions can be posed if we do not want to ignore the primes, as in
the definition of F(n), but perhaps it is more natural in this case to consider the
numbers n + i instead of n - i. Thus, let g be a non-decreasing arithmetic function
and let B(n, g) be the smallest i for which p(n + i) > g(i) . If such an i does not exist,
put B(n, g) = oo . First, take g(i) = i + 1. It is easy to see that B(n, i + 1) is just
the smallest prime not dividing n - I and, by the prime number theorem, B(n, i + 1) _<
<- (1 + 0(1)) log n. I could not get such a simple estimate for B(n, g) ifg(i) = i + c,
or say 2i + 1 . It follows from plausible assumptions on the distribution of primes
that B(n, ik + 1) < oo for n > no(k) . I wonder if one can prove without any assump-
tions on the primes that, for every n > n o , there is an i with p(n + i) > i 2 + L It
follows from Huxley's well-known result on gaps between consecutive primes that,
for every n > n o(a), there is an i with p(n + i) > ü2/7 +E . It easily follows from well-
known results on large gaps between consecutive primes that p(n + i) < e" + c(e)
(i = 1, 2, 3, . . .), that is B(n, e" + c(e)) = oo holds for infinitely many n . The
additive constant c(e) is needed to take care of the very small values of i . In fact, e"
can, be replaced by exp {ci(log log i) 2/log i log log log i} . A well-known conjecture
of Cramer states that

(5)

	

lim Sup (pk+i - Pk)/(log k) 2 = 1
k-o

where pI < p 2 < p3 < . . . is the sequence of consecutive primes . Let us assume
that (5) holds . Then we obtain B(n, e(")'") < oo for every n > n&) . But I cannot
conclude from (5) that B(n, e(l + E)

" + c(s)) = oo for infinitely many n because, of
course, p(n + i) can be very large even if n + i is not a prime. There is clearly not
much hope to settle these questions in the near future . Let us therefore be more
modest for the moment and try to determine when the integers n satisfying p(n + i) <
< g(i) (i = 1, 2, 3 . . . . ) have positive density . A more or less routine sieve process

Acta Mathematica Academiae Seiemiarum Hungaricae 33, 1979



7 4

shows that a necessary and sufficient condition for the non-decreasing function g to
have this property is that

Now let us investigate what can be said about the large values of p(n + i) for
n + i composite . First, is it true that for n > no , there is always an i for which n + i
is composite and p(n + i) > P 9 This is closely related to questions which we consi-
dered with Eggleton and Selfridge. Perhaps it is true that for every k and n > no (k),
there is an i for which n + i is composite and p(n + i) >ik . Clearly it is hopeless to
prove this at present. I thought that for k > ko , there is always an m satisfying
p k < m < p,+i and p(m) >_ pk+i - Pk, with equality say for prime twins . I am now
sure that this is not true and I "almost" have a counterexample . Pillai and Szekeres
observed that for every t <_ 16, a set of t consecutive integers always contains one
which is relatively prime to the others . This is false for t = 17, the smallest counter-
example being 2184, 2185, . . ., 2200 . Consider now the two arithmetic progressions
2183 + d•2 -3 . 5-7 . 11 . 13 and 2201 + d-2 . 3 . 5 .7 . 11 . 13. There certainly will be infinitely
many values of d for which the progressions simultaneously represent primes ; this
follows at once from hypothesis H of Schinzel, but cannot at present be proved .
These primes are consecutive and give the required counterexample . I expect that
this situation is rather exceptional and that the integers k for which there is no m
satisfying p k < m < p,+i and p(m) > pk+i - pk have density 0 .

Things become much easier if we study P(m) . A well-known theorem of Sylvester

and Schur states that P l 9 k
Jn1

> k if k _<
2

n . In other words, for every k and n with

k _<_ n, there is an m satisfying n + 1 < m <_ n + k and P(m) > k . This is certainly
not true for p(m) . There are many extensions and sharpenings of the Sylvester-Schur
theorem. Although we are very far from being able to prove it, there is no doubt
that

(6)

P. ERDŐS

1~l-

	

~

< 00 .

1

i=1 p<g(i)

	

p

P
(r

) ~
> min {n - k + 1, ki+`}I

l
l

for some absolute constant c . Ramachandra, Shorey and Tijdeman have many results
in this direction. It seems certain that (6) actually holds for every c with a finite
number of exceptions (depending on c) . Cramer's conjecture (5) suggests that perhaps

I( 32l

p l~.k)
> min {n - k + 1, e(i-e)k"% i

holds if we disregard a finite number of values of k and n . Let

(7)
(n)

= uk" ) vk") where P(

	

-z k
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In a forthcoming paper, Ecklund, Eggleton, Selfridge and I prove that, for n > 2k,
8

	

9

	

+10

	

12

	

211

	

21
we have vk") > uk°) except for 12 cases, namely

3, ' ( 4,

	

5 , ' 5

	

7 J ' 8 '{
(30l

	

33l

	

331

	

361 {36
17

	

(56
7 113 ~ 14

, ~
13, ' 17

and ( 13
1

. If in (7) we modify the definition to

P(uk")) 5 k, p(vk' )) > k, we can still prove that v (n) > uk") for n >_ 2k for all but a finite
number of pairs n and k, but we cannot prove that we have all the exceptional
cases. (The unresolved cases correspond to k = 3, 5 and 7 .) We now give a further
result of this type .

THEOREM 2. Write
n
k ) = uk") Ivk" ) Irk") where the prime factors p of irk ,

,,,(n

	

(n)k ) and k satisfy the respective inequalities 2 <_ p < k, k < p < n - k +- 1 and
n-k+1<_p<_n.

(i) Except for a finite number of cases, wk' ) > 1 if 4 <= k < Q, where Q is the

largest prime not exceeding 2 n .

(ü) For sufficiently large C and n > Ck, wk(n) > max {ukn) , ~k )} .

The proof is fairly easy since we make no attempt (which would be hopeless in
any case) to give all the exceptional k and it . Before we give the proof, let us inves-
tigate some of the exceptional cases in (i) . For k = 2, we have w (") = 1 if and only
if a - 1 is a Mersenne prime or n is a Fermat prime . There are probably infinitely
many cases with k = 3 and wk(') _= 1 arising when n = 2'3Q + 1 and 2"3a - 1 are

a prim° twin .
~ 3)

	

3
9 I and

t
18 ~ are not of this form and give wk') = 1, but it is easy to

se,: that there are only a finite number of such exceptional cases and it would be
easy to tabulate all of them. Finally, if k _> Q, then It ," = 1 clearly holds .

PROOF OF THFORr :M 2 . We distinguish several cases .

(a) Assume first that 17 <= k < O <
2

It easily follows from elementary re-
20

sults on primes that 2Q > n -- k + 1 for n > no , as Q Í

l k

	

that is wkn)

(b) Assume next that e 14 < k < 20 . It is well-known that if p" (k

	

then

p' <_ n . If wk") = 1, we therefore have

I 17 ) < nn(k)+n(n)-n(n-k) < n7kl2logk

k

using Montgomery's result 7r(n) - 7r(n - k) < 2k/log k and the estimate 7r(k) <
< 3k/2 log k . On the other hand, trivially

n
> il ke'-/k'+'.

k
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On combining the last two inequalities and taking a k-th root, we obtain

kkek

	

(k)k+1 <

2n

	

en

	

7/2 log k	 k <
k" k < n

and this leads to a contradiction for e1 ' < k < 20 and n > no . This part of the

argument could easily be made effective and the n and k with k < e" and wkn) = I
could be enumerated. (In fact, I am sure that there are no such values of n and k .)
The cases k <_ e 14 considered below cannot at present be made effective, but k <- e"
could be greatly reduced by more careful computations .

(c) Finally assume 4 <_ k <_ e" . Write

kfl (n + i) = IllH2 where P(77,) s 1, p(H 2) > 1 .
i=i

A classical theorem of Mahler states that to every s > 0 there is an no (e, k, l) so
that H, < ni+ E whenever n > nJe, k, l) . Mahler's theorem is not effective and it
is a very important open problem to obtain effective bounds. From Mahler's theorem,
we obtain

n Qa
k
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n (" ) < wkn)n2 +tc(n)-n(n-k) < Wkn)n k 2

for n > n,(k), since 7r(n) - 7r(n - k) <_ k - 2 for k >= 4. Thus wk(' ) > 1 for n > no .
This completes the proof of (i) . We suppress the proof of (ü) since it is similar to
that of (i) .

We observe that ukn) > 71k(n) and 7,(n) > ukn) both hold for infinitely many n for
every k. In fact, it is easy to see that for every k, 7r(k) = 1 for almost all n . If ;n(n) -
- 7r(n - k) >--_ 2, then by Mahler's theorem, 7rkn> > ukn~ for n > n,(k) ; perhaps this
holds always, or at least with very few exceptions . The reason for this bold and
somewhat unmotivated conjecture is that it is not hard to prove 7rkn) > ukn) for all
n > kl+c and k > k o, and I hoped that the first failure of 7rkn> > ukn) occurs when
7r(n) = 7r(n - k) for the first time . This is certainly false for k = 4, since the first
failure occurs for n = 9. Perhaps it fails for all k. There is not much hope to decide
any of these questions in the foreseeable future . It follows easily by elementary
methods and a little computation that Irkk) > uk2k> for all k except k = 5 and 6 .
It is also easy to see that if 7r(n) - 7r(n - k) >_ 1, then 7rkn) > Ukn) for all but o(n(x))
values of n < x . Presumably there are infinitely many values of n with 7r(n) -
- 7r(n - k) >= 1 and 7rkn) < ukn) , but if true, this will surely be very hard to prove .

It is not difficult to prove that the density f(c) of integers n for which (nkn))llk > c
exists and is a continuous strictly decreasing function of c with f(1) = 1, f(oo) = 0 .
However, the two questions which follow cannot be answered at present because
Mahler's theorem is not effective . Denote by A(n) the smallest k for which uk

(n) > nz

By Mahler's theorem, A(n) --+ oo as n --> oo, but we do not know how fast . Perhaps



(9)
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11

	

p a > n"n .
p' 1 Kk), p S B(n, k)

Estimate B(n, k) as well as possible .

I investigated if there is a prime p > k so that p2 (
n )

. Ordinarily, this does not

happen. A simple averaging process shows that, for every s > 0, there is a ko(s)

so that when k > k o(e) the density of integers n for which p2 (k) for some p > k

is less than e . Also, for every k, there are infinitely many n for which (k) is square-

free, but the density of these n tends to 0 as k -), oo . The questions connected with

p2 nk l , p > k, lead to the following problem which is of independent interest. Is it

true that for every n > n o there is a prime p for which

(8)

	

n=up2 +v, u>_ 1, 0<=v<p?

77

Baker's results will yield a crude estimate for A(n) . Denote by B(n, k) the smallest
integer for which

It easily follows from the sieve of Eratosthenes that (8) is satisfied for almost all n,
but it seems likely that (8) has no solution for infinitely many n . More generally, for

every p <_ n, write n = up' + v with 0 <_ v < p2 and define en = min
a

. Almost
PS In p

certainly lim sup sn = oo (but En -> 0 as n -• oo for almost all n) . Probably en < nE
n -w

for n > n0(e) and every e > 0 .
In a previous paper, I studied the number of prime factors of (

n
) . Trivially,

v
l(k)l

> log
(k) I

log n .

It is easy to see that if k > nl-a(1) , then (9) becomes an asymptotic equality and we
have

v
((kn)j _

(1 + 0(1)) log (k)
~
logn

	

(k > ni- ° (1))

I conjecture that, for "large" k,

v ((n)) = (I + o(l))k Y, 1
k<p<n p

I obtained this conjecture by a simple averaging process . I cannot even prove it if
k > n`, but perhaps it is true for every k >_ (log n)" .
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3. I discuss a few miscellaneous problems mostly about consecutive integers .
Pomerance and I considered the following i~roblem . Put A(n, k) _

	

(n + i) and
1<i<k

denote by q(n, k) the least prime which does not divide A(n, k) . Clearly,

(10)

	

q(n, .k) < (1 + 0(1)) k log n .

This is clearly very crude . For bounded k and, more generally, for k = o(log n), the
factor k log n in (10) can perhaps be replaced by log n . An interesting special case
is k = [log n] . By choosing n so that it is the product of the primes between log n
and (2 + 0(1)) logn, we see that q(n, [logn]) can be as large as (2 + 0(1)) log n. Is
it true that q(n, [log n]) < (2 + E) log n for n > nJe) ? We could not even prove that
q(n, [log n]) < (1 - E) (log n)' . It seems certain that, to every s > 0, there is a k(a)
so that the density of integers n for which P(A(n, k(E))) < n'-E is less than a . On pro-
babilistic grounds, one would expect that the density of these integers is asymptotic to

exp ~- k Y_ I I = exp (-(I + 0(1)) kr)
n1 - É<P<n p ,

as n --> co and e 0, but no sieve method at present applies here . Let f(c) denote
the density of integers n for which there is an m with b < in _< n + k and p(m) > e`k.
Using elementary sieve methods, we can prove that f(c) is continuous and strictly
decreasing with f(0) = I, f(oo) = 0 . This f(c) could, of course, be determined expli-
citly. Several times during my long life, I was led to questions of the following type .
Estimate, as well as you can, the size of the smallest integer mn >_ n for which
11 (m„ + i) has no prime factor p satisfying n < p < 2n . I would expect that

15i<n
nz n > nk for every k if n > n o (k), but that znn < eE" for every e > 0 if n > n,(E) .
However, I could prove nothing non-trivial .

To end this section, I state some older problems . I conjectured more than a year
agothatifm_n+k, then [n+1,n+2, . . .,n+k] [m+1,m+2, . . .,nz+k]
where the square brackets denote least common multiple . Is it true that fl (n + i)

15i~k
and ]J (nz + i) cannot have the same prime factors for k > 2 and m z n + k,

,-=i<k
except for a finite number of values of n, m and k? Put

k

	

k
.(m, n, k) _ 11 (til + i) 11 (n + i)

i=l i=1

and assume k >_ 2 and nz >_ n + k . Is it true that a(m, n, k) = I is solvable for every
integer I > 1 ? Now let n and k be fixed . Can one say anything about the integers
of the form a(nz, n, k) ?

Let me restate an old and very attractive conjecture of Turán and myself en
the differences do = pn+ , - pn between consecutive primes . We easily proved that
d,., , > d„ and

	

< do both have infinitely many solutions . Presumably, do = d„+ ,
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also holds for infinitely many n but this is well-known to be very difficult . We conjec-
tured that all the k! inequalities of the form do+i, > do+i, > . . . > dn,ik have infini-
tely many solutions, where ü, i 2 , . . ., ik is an arbitrary permutation of 1, 2, . . ., k .
We certainly could not prove this even for k = 3 . We could not even prove that there
is no n o so that do+i - do changes sign when n is replaced by n + 1 for every n > n,, .
Perhaps we overlooked a trivial argument ; in any case, I offer a hundred dollars for
a proof or disproof .

Finally let B(n) (where B stands for Brun) be the smallest integer so that there is
a residue ap for every prime p with 2 <_ p < B(n), and every positive integer x < n
satisfies at least one of the congruences x - ap(mod p). The exact determination of
B(n) is probably hopeless, but a good estimate for B(n) would be of the greatest
importance for the application of Brun's method . As far as I know, Iwaniec's result

B(n) > c Jn is the best lower bound known at present. It would be very nice if one
could prove that B(n) > 02" for every C and n > n„(C) . It is likely that B(n) > ni --`
for every s > 0 and n > n,(E) . The method of Rankin (used to give a lower bound
on the difference of consecutive primes) gives

B(n) < cn (log log log n)2 / log n , log log n • log log log log n .

Recently, I considered the following modification of the above problem . Denote by
e, the smallest number so that there is a residue by for every prime p with nIn < p <_ n,
and every positive integer x < n satisfies at least one of the congruences x - by(mod p) .
Is it true that E n -" 0 as n -~ oc ? I can prove that e n > c log log log n/log log n . Are
there residues cp for every prime p with 2 <_ p <_ n so that every positive integer
x <- n satisfies at least 2 (or at least r) of the congruences x - cp (mod p)?

4 . PROOF OF THEOREM 1 . The proof will use a simple averaging process, some of
the details of which will be left to the reader . Let E > 0, k be a sufficiently large integer
and A be a multiple of p1, p 2, . . ., p k . We shall show that the density of integers n
which are barriers for do is greater than (1 - E)/Ak by considering the integers n _< x
with n = 0(mod A k) . First, we observe that the density of integers t for which

(11)

	

da(tAk - i) > i,

for some i with 1 <_ i <_ k, is less than 2 E . Indeed, (11) can only hold if tA k - i

__ 0(mod p 2 ) for some p > pk and this easily implies our assertion for k > ko(E) .
Next, by a simple computation, we obtain

x
do(tA" - i)2 > cdo(i) x ,

t=1

and from this, the density of integers t satisfying (11) is less than cdo(i)li 2 < c/i 3y 2
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Hence, for k > ko(a), the density -of integers t for which (11) holds for some i > k
is less than

Thus the density of integers t for which tA k is not a barrier for d o is less than a. This
proves Theorem 1 .

With a little more trouble, I can prove that the density of integers n for which n
is a barrier for Qn) exists. More generally let ai be the density of integers n for which
max (m + do(m)) = n + i. Then ai exists for every i and E ai = 1. To end the paper,
m < n

	

i_ o
I state a somewhat special problem . Denote by Si the set of integers m for which the
number of solutions of n + do(n) = m is i. I believe that it can be proved that the
set Si has a density fli >_ 0 and

	

1 . (1 have not carried out the details and
i>o

perhaps it is more difficult than I think it is) . I am not sure that /3i > 0 always holds,
but fl, > 0 seems to hold . I certainly cannot settle the analogous questions for
n + v(n), n + d(n), n + 0(n), or n + 6(n) .
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