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COMBINATORIAL PROBLEMS IN GEOMETRY AND NUMBER THEORY

Paul Erdós

In a previous paper (given at the International Congress of Mathemati-

cians at Nice 1970) entitled "On the application of combinatorial analysis to

number theory geometry and analysis", I discussed many combinatorial results

and their applications . I will refer to this paper as I (as much as possible

I will try to avoid overlap with this paper) .

First I discuss those problems mentioned in I where significant progress

has been made .

1 . Let f(n) be the smallest integer so that if there are f(n) points

in the plane no three on a line, then there are always n of them which

form the vertices of a convex n-gon .

was discussed in I . Szekeres and I proved that

2n-4
(1)

	

2n-2 + 1 s f(n) 5
n-2

This problem of E . Klein (Mrs Szekeres)

Probably f(n) = 2 n-2 + 1 , but this has only been proved for n = 4 and

n = 5 . No progress has been made here but recently I asked the following

related question : Let g(n) be the smallest integer so that if there are

g(n) points in the plane, no three on a line, then there are always n of them

which form the vertices of a convex polygon which has none of the other points

in its interior . Trivially g(4) = 5 , but I could not prove the existence

of 1(n) for n z 5 . Ehrenfeucht a few days ago found a simple proof for

the existence of g(5), unfortunately his proof does not seem to work for

n > 5 and the general problem is still open . By the way, I just heard that

independently and simultaneously Harborth proved g(5) = 10 .
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Now I outline the ingenious proof of Ehrenfeucht . By the result of

2 ( 12 )
6Szekeres and myself we can assume that if the number of points is

there is a convex 8-gon . If the number of points in the interior is 5 1

we clearly get an empty convex pentagon . Thus we can assume that the number

of points in the interior is 2 2 . Let (xl ,x2) be a side of the least

convex polygon of the points in the interior . The line (xl ,x2 ) divides

the convex 8-gon into two parts, one of them has no point in its interior .

If this part contains three or more vertices of our 8-gon, we have our con-

vex pentagon . If it cuts off one or two vertices, then omitting these and

replacing them by x l ,x2 we obtain a convex 8-gon or 9-gon which has fewer

points in its interior . Repeating this proves we clearly obtain an empty

convex pentagon .

Ehrenfeucht then asked : Let xl , . . .,xn be n points in the plane no

three on a line . Denote by k(n) the largest integer so that for every

choice of n such points there are at least k(n) triangles with no point

in their interior . Determine or estimate k(n) . I proved (1 + o(1))n2

< k(n) < cn2 log n . I cannot decide whether k(n) < cn2 is true . Further

problem: How many empty convex t-gons (t k 4) must we have?

Delsarte, Goethals, Seidel and Larman, Rogers, Seidel nearly completely

solved the problem of two distance sets in n-dimensional space . Every set

of Z(n + 1)(n + 4) + 1 points in n-dimensional space determines at least

three distinct distances, but there always is a set of points

which determine only two distances . On the other hand, if k 3 (n) is the

smallest integer so that k 3 (n) points in n-dimensional space always con-

tains a non-ísoseles triangle, then we have no good upper bound for k3 (n) .

Probably k3 (n) < n° and perhaps even k3 (n) _ (2 + o(1))n2

	

We only have

an exponential upper bound for k 3 (n) .

The 2n vertices of the n-dimensional cube determine n distinct

distances . Perhaps any 2n points in n-dimensional space determine more

than cn distinct distances .
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Seídel just informed me that if S is a set of n elements on the

sphere in Euclidean d-space which has s s distances, then S contains at

most d á s 1 I + d +d s 1 2) points .

D .G. larman, C .A. Rogers and J .J . Seidel, On two distance sets in

Euclidean space, Bull . London Math . Soc . 9 (1977), 261-277 ; P . Delsarte,

J .M . Goethals and J .J . Seidel, Spherical codes and designs, to appear in

Geometriae Dedicata .

For further problems and literature, see Paul Erdös, On some problems

of elementary and combinatorial geometry, Annali di Math . 103 (1975), 99-108 .

2 . The conjecture of Graham and Rothschild has been proved first by

Hindman and then by Baumgartner and finally by Glazer .

The conjecture stated : Divide the integers into two classes . Then

there always is an infinite sequence of integers a l <a2 < . . . so that all

the sums E E iai , E i = 0 or 1 belong to the same class .
i

Various modifications and extensions are open : Let S be a sequence of

integers of positive density (upper density?) Is there always an infinite

sequence a l < a2 . .-
and an integer t so that all the integers

(a . , a . + a . + Q belong to the same class?

There is a problem due to J . Owings : Divide the integers into two

classes . Then there always is an infinite sequence a I < a2 . .* so that

all the sums ai + aj (i = j permitted) are in the same class . It is

surprising that this harmelsss looking problem causes so much difficulty .

Though Hindman has some partial results, his paper will soon appear in the

Journal of Combinatorial Theory .

I conjectured that if S is any infinite set, then its subsets can

always be divided into two classes so that if (A n} , n = 1,2, . . . is any

infinite family of disjoint subsets of S there are two sets S 1 and S2

in different classes both of which are unions of infinitely many A's . On

the other hand, I conjecture that if m is any cardinal number, then if

the power of S is sufficiently large and we divide the countable subsets

of S into two classes there are always m disjoint sets (Aa} , a < nm
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so that all finite unions of the Aa 's belong to the same class .

A few years ago I had the following fascinating conjecture : Divide

the integers into two classes . Then there is an infinite sequence

a I < a2

	

so that all the multilinear expressions formed from the a's

are in the same class . I (and others) first tried to find a counterexample

but so far no success . A weaker conjecture which also seems inaccessible at

present states that if we divide the integers into two classes there always

is an infinite a l < a2 .
.-

where all the a í , ai + aj , ai aj belong

to the same class . It is not even known that there are three a's ,

a l ,a2' a3 with this property .

R .L. Graham proved that if one divides the integers

	

1 5 t 5 252 into

two classes there are always a l ,a2'a I + a2 ala2 (a 1 ~ a2 ) all in the

same class, and this is false for 251 . al = 1 cannot be excluded . Hindman

proved that if 1 s t 5 969 then we can assume a I > 1 , 969 is best

possible . As far as I know this is all that is known at present .

The proof of Glazer is given in a survey paper by W .W . Comfort, Ultra-

filters : some old and new results, Bull . Amer . Math . Soc . 83 (1977), 417-

455 ; references to Hindman and Baumgartner can be found in this paper .

3 . In I, I state that Kleitman proved the following conjecture of mine :

Let z l , . . .,zn be n vectors in a linear vector space satisfying Ilzilj > 1 .
n

Consider the 2n sums E

	

e izi e i = f 1 which are in the interior of
i=1 n

a sphere of radius 1 . The number of these sums is s

		

Kleitman's

[2]

proof appeared in the meantime .

On a lemma of Littlewood and Offord on the distribution of linear

combinations of vectors, Advances of Math . 5(1970), 1-3 . For further pro-

blems, see Lee Jones, On the distribution of sums of vectors, SLAM J . Applied

Math . 39 (1978), 1-6 .

4 . An old problem of Rado and myself states : Let a > 1 , b > 1 be

integers . f(a,b) is the smallest integer so that if we have f(a,b) + 1

sets each having at most b elements, there are always a + 1 of them
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which have pairwise the same intersection. Rado and I conjectured that for

some absolute constant c

(1)

	

f(a,b) < cb+l ab+l

(1) was stated in I . Little progress has been made . Abbott proved that

f(3,3) = 20 and Spencer proved that for fixed a and b > bOW

f(a,b) < (1 + E)b b!

I offer 500 dollars for a proof or disproof of (1) .

P . Erdős, and R . Rado, Intersection theorems for systems of sets I

and II, J . London Math . Soc . 35 (1960), 85-90 and 44 (1969), 467-479 . For

further reference, see P . Erdős, E . Milner and R . Rado, Intersection theorems

for systems of sets III, J . Australian Math . Soc . 18 (1969), 22-41 .

5 . Denote by rk (n) the smallest integer t, so that if

1 s a1 < . . . < a to s n , L = rk(n) is any sequence of integers, then the a`s

contain an arithmetic progression of k terms . Turán and I conjectured 45

years ago that rk (n) = o(n) . This was finally proved by E . Szemerédi in

1973 . His proof is a masterpiece of combinatorial reasoning . One of his

lenunas is a purely combinatorial theorem on decomposition of graphs which

already had several applications to various problems and there is no doubt

that it wí11 have further applications in the future . Since this "lemma"

(or rather theorem) is not sufficiently well known, I restate it here . First

we need a few definitions : Let G(n ;~,) be a graph of n vertices and t

edges . A and B are two disjoint sets of vertices of G and e(A,B) denotes

the number of edges one endpoint of which is in A and the other in B .

Define

d(A,B) = i (i,B)
A I IB

d(A,B) is the "density" of the edges between A and B . The pair (A,B)

is called E -regular if
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imply

X e A , Y C: B , I X 1 2 eJAI,

Id(X,Y) - d(A,B)I < e ,

otherwise the pair is called a -irregular . By an equitable partition of a

set V , we shall mean a partition of V into pairwise disjoint

CO,C1, . . .,Ck such that all the C i 's with 1 5 i s k have the same

cardinality . The set CO may be empty . It is called the exceptional set .

Let G(n ;ti) be a graph . An equitable partition of the vertex set into

sets CO,C,, . . .,Ck will be called e - regular if the cardinality of the

exceptional set CO does not exceed en and if at most ek 2 of the pairs

(CS ,C t ) with 1 5 s< t s k are a-irregular .

Szemerődi's theorem states as follows : for every e > 0 there is an

integer M so that if n > n0 (M e) , then every G(n ;4) admits an

e - regular partition into k classes with k < M (In fact, we may also

prescribe a lower bound m on the number of classes ; then of course, M

becomes a function of e and m) .

Using this "Lemma", Ruzsa and Szemerődi partially settled a problem of

W . Brown, V .T . Sós and myself . Denote by f(n ;k) the smallest integer so

that if JSI = n and Ai e G , IA,I = 3 , 1 5 i S f(n ;k) then there is an

S 1 C S ,
IS1I

= k which is the union of k - 3 (k > 3) of the A's . We

conjectured that

f(n ;k) = o(n2 )

holds for every k . The conjecture is trivial for k < 6 and Ruzsa and

Szemerődi proved it for k = 6 . They also showed

f (n ;6) > cnr3 (n) > n2 - e

sets

which is, in my opinion, a very surprising and deep result . The conjecture

is still open for k > 6 .

Szemerődi's proof uses Van der Waerden's theorem and thus gets a very

poor upper bound for rk (n) . About two years ago Furstenberg proved
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Szemerédi's theorem by methods of ergodic theory . Furstenberg does not use

Van der Waerden's theorem but his proof of r k (n)/n + 0 is an existence

for rk(n) . Very recently,proof and does not give any explicit bound

Katz Nelson and Ornstein simplified Furstenberg's proof .

I offered 1000 dollars for rk (n) = o(n) , which Szemerédi collected .

I offer 3000 dollars for the proof or disproof of

(2)

	

rk(n) = o

	

n
(log n)

for every 4 if n > n 0 (t) . (2) would imply that for every k there are

k primes in an arithmetic progression . An attractive but slightly weaker

conjecture states : Let E a =

	

Then for every k there are k a's
i

in an arithmetic progression . I offer 3000 dollars for the proof or disproof

of this conjecture . I do not even have a guess what the true order of magni-

tude of rk (n) is . It is not even known that r 3(n)/r4 (n) -4 0 .

E . Szemerédi, On sets of integers containing no k elements in arith-

metic progression, Acta Arithmetica 27 (1975), 199-245 .

H . Furstenberg, Ergodic behaviour of diagonal measures and a theorem of

Szemerédi, J . Analyse Math . 31 (1977), 204-

For further problems, see P . Erdős, Problems and results on combinatorial

number theory III, Number theory day, Proc . Conference Rockefeller Univ .

1976, 43-73, Lectures Notes in Math 626, Springer-Verlag .

6 . Let x l , . . .,xn be n distinct points in k dimensional space .

Denote by dk(n) the maximum number of pairs (xi ,xj ) whose distance is 1 .

This problem was discussed in I . The most important progress is that Szemerédi

and Jbzsa proved that d2 (n) = o(n3/2 ) The proof is surprisingly complicated

especially if one compares it with the simple proof of d 2 (n) < cn3/2

	

I

am sure that d2 (n) < nI+E for every e > 0 and n > n0 (e) and offer 100

dollars for a proof or disproof . (I suspect this will be a very difficult

method to earn 100 dollars .) The right order of magnitude of d 2 (n) is

probably n
l+c/log log n
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A possible approach to these problems is perhaps the problem of forbidden

subgraphs ; this method is often applied successfully . A graph G(m) of

m vertices is forbidden if there is no set of m distinct points in the

plane so that G(x l , . . .,m) contains G(m) as a subgraph . It is called

minimal if the omission of any edge of G(m) ensures the existence of such

a set of m points . K(3,2) is such a minimal forbidden graph . It would

certainly be interesting to give a complete list of minimal forbidden

graphs . Hopefully a graph of n vertices which does not contain any of the

forbidden graphs has fewer than n
l+e

edges for every e > 0 if n > n 0 (e) .

Hadwiger and independently Nelson raised the following problem : Join

two points in the plane if their distance is 1 . Determine the chromatic

number of this graph . It seems likely that the chromatic number is greater

than four . By a theorem of de Bruijn and myself this would imply that there

are n points xl, . . . . xn in the plane so that if we join any two of them

whose distance is 1 , then the resulting graph G(xl, . . .,xn) has chromatic

number > 4 . I believe such an n exists but its

The chromatic number of the plane is known to be at most 7 .

Let our n points be such that they do not contain an equilateral

triangle of side 1 . Then their chromatic number is probably at most 3 ,

but I do not see how to prove this . If the conjecture would unexpectedly turn

out to be false, the situation can perhaps be saved by the following new con-

jecture : There is a k so that if the girth of G(xl, . . .,xn) is greater

than k , then its chromatic number is at most three -- in fact, it will

probably suffice to assume that G(x1, . . .,xn) has no odd circuit of length

5 k .

value may be very large .

Larman and Rogers investigated the chromatic number k(n) of n-dimen-

sional space . Probably the chromatic number tends to infinity exponentially .

V.T. S6s and I observed that if ISI = n , and Ai C S , 1 5 i s n+l ,

IAiI = 3 , then for some 1 5 i t < i2 5 n+l , JAi n Ai I = 1 . This easily
1

	

2

implies that k(n) z cn2 . We conjectured that if n > n 0 (k)

lsis k-2 +1 , then for some lsi1<i25 k-2 +1 ,

and IAi I = k ,

IAi n A
i,2

I =1 .l
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Katona proved this for k = 4 and Franks for all k , from his results one

can deduce that k(n) > nc for every c if n > n0 (c) .

Let f(n,r) be the smallest integer for which if ISI = n

	

Ai C S ,

1 s i s f(n,r) there are two A's say A
i

and Ai with IAA n A, I =r .
t

	

2

	

1 1

	

i2

Trivially f(n,0) = 2n-1 + 1

	

It would be of interest to determine

f(n,r) for r > 0 at least for n > n 0 (r)

	

I conjectured that for every

Tn<r< (2-T)n

f(n,r) < (2 - e)n , e = e(~) .

(1), if true, easily implies k(n) > (1 + Ő) n for some fixed Ő > 0 .

The following question just occurred to me : Let a,, . . .,ak be k

positive numbers . Let xl ,, .,,xn be the n points in the plane . Join xi and

xj if d(xi ,xj ) = ai for some 1 s i s k . (d(xi)xj ) is the distance of

xí and xj ) . Denote the resulting graph by Ga
V-3

a (x1, . . .,xn) . Let
k

f(k) be the maximum of the chromatic numbers of these graphs . Estimate or

determine f(k) ; at the moment I do not know how fast f(k) tends to in-

finity, but perhaps I overlook a simple argument .

Finally, I wish to state the classical conjecture of Borsuk : Is it

true that a set S of diameter 1 in n-dimensional space is the union of

n+l sets of diameter less than 1

	

This conjecture is trivial for n = 1 ,

easy for n = 2 , difficult for n = 3 and unsolved for n a 4 .

S . Józna and E . Szemeredi, The number of unit distance on the plane,

Infinite and finite sets, Coll . Math . Soc . J . Bolyai 1973, North Holland,

939-950 .

D .E . Larman and C .A . Rogers, The realisation of distances within sets

in Euclidean space, Mathematika 19 (1972), 1-24 .

B . Grunbaum, Borsuk's problem and related questions, Convexity, Proc .

Symp . Pure Math Vol . 7 (1963), Amer . Math . Soc . 271-284 . This book contains

many other articles of great combinatorial interest .

7 . George Purdy and I plan to write a book on some of the problems and

their higher dimensional analogues - which we considered in 6 . Here I just
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give a short and not very systematic outline of some of our results . Denote

(r)by gk (n) the largest integer for which there are n points xl , . . .,xn

in k-dimensional space for which there are g (r) (n) sets {x

	

. .,x,k

	

i 1

	

l r+l

which have the same non zero r-dimensional volume . We first of all proved

(1)

We believe that in (1) the lower bound is closer to the "Truth" - in fact,

perhaps it gives the right order of magnitude . Purdy proved that for some

e > 0

(2)

	

(2) (n) < n3-e

c ln2 log log n < g (2) (n) < 4n5/2

In the proof of (2) Purdy used the following purely combinatorial

theorem of mine on hypergraphs . Let G(r) (n ;m) be a hypergraph of n

vertices and m edges (i .e ., m r-tuples) . Then if m > n r- s(L,r) our

G (n)(n

r r
ni vertices and

	

ni edges, where the vertices are divided into r
i = 1

	

i=1

disjoint sets IA,I

	

ni , i = 1, . . .,r and the edges are all the r-sets

M) contains a Kr where Kr(nl, . . .,nr) is the hypergraph

which meet each A i in exactly one point .

An example of Lenz gives g4 1) (2n) 2 n2

Oppenheim observed that the idea of Lenz gives

we conjectured g2k+2 ((k+l)n) < (1 + o(1))n k+l but the proof seems to

and I proved g4 1) < n2 (1+o(1)) .

g2k+2 ((k+l)n) Z nk+l and

present difficulties even for k = 2 .

We also investigate the maximum number of isosceles or equilateral

triangles one can obtain from n points in r-dimensional space . We almost

never succeed in getting asymptotic formulas but have to be satisfied with

more or less crude upper and lower bounds . A typical problem states as

follows : Let there be given n distinct points in the plane . Let A(n) be

the largest number of four-tuples one can form so that not all the six dis-

tances should be distinct . We proved
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c2n3 log n < A(n) < c1n7~2

We are fairly sure that A(n) < n3+E holds but have not been able to prove it .

Many further related questions could be discussed, but not to make this

chapter too long, I only state some results of Bollobas, Purdy and myself .

Let T be a triangle . f(n ;T) is the largest integer so that for every

e > 0 there are n distinct points in the plane which determine f(n ;T)

triangles which are congruent to T with a possible error of less than E

(or more precisely the sides of the triangles differ from the corresponding

sides of T by less than e) . Clearly f(3n T) 2 n3 for every triangle

T and we prove that if T is equilateral, then there is equality . For

which T is f(n ;T) maximal? We outlined a proof that T must be isosceles

with a right angle . Here f(4n ;T) = 4n3 . We did not complete all the

details which were quite messy . Many further questions could be raised here

and if we live we hope to return to them .

P . Erdős and G . Purdy, Some extremal problems in geometry, J .

Combinatorial Theory, 10 (1969), 246-252 .

G. Purdy, Some extremal problems in geometry, Discrete Math . 7 (1974),

305-314 .

P . Erdős and G . Purdy, Some extremal problems in geometry III, IV and

V, Proc . Sixth Conference on Combinatorics Graph Theory and Computing, Florida

Atlantic Univ . 1975, 291-308 (1976), 307-322 and (1977) .

P . Erdős, On extremal problems of graphs and generalised graphs, Israel

J . Math . 2 (1964), 183-190 .

For further (I hope) interesting problems and results, see P Erdős

and G. Purdy, Some combinatorial problems in the plane, will appear in J .

Combinatorial Theory .

8 . Graham, Montgomery, Rothschild, Spencer, Straus and I in several

papers investigated the following problems : A well-known theorem of Gallai

states as follows : Let S be any finite set in r-dimensional Euclidean
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space . Color the points of the space by k colors in an arbitrary way .

Then there always is a monochromatic set which is similar to S . This

theorem is a generalisation of the well known theorem of van der Waerden on

arithmetic progressions . What happens if we require a monochromatic set

congruent to S? . One of the first non-trivial results which we proved with

the help of S . Burr states : There is a set of 15 points in 6-dimensional

space so that if we color the points by two colors, there always is a

monochromatic unit square . It is quite probable that the dimension of the

space can be reduced to three (at the expense of perhaps increasing the

number of points) . More generally a set S in a Euclidean space is called

Ramsey if for every k there is an

nk -dimensional space by k colors there always is a monochromatic set

congruent of S . We proved

nk so that if we color the points of

that every brick (i .e ., rectangular parallelepid)

is Ramsey and that every Ramsey set must be spherical, i .e ., it must be

situated on the surface of a sphere . We do not know any set which is Ramsey

and is not a brick and we do not know if there is a spherical finite set which

is not Ramsey . The simplest open problem states : Is it true that every

non-degenerate triangle is Ramsey? If all angles are s 2 this is obvious

since the triangle can be imbedded into a brick . I offer 100 dollars for

a clarification of these questions .

Color the plane by two colors . (x,y,z3 is any triangle . Then, with

the possible exception of a single equilateral triangle - there always is a

monochromatic triangle congruent to [x,y,z] . Many special cases have

been proved by us and others but the general case is still open and I offer

100 dollars for the proof or disproof .

Let S be a set of the plane no two points of which are at distance

1 . We proved that S contains four points x l ,x2' x3 ,x4 on a line so that

the distance between two consecutive points is 1 . We conjectured that S

contains the vertices of a unit square . Ms . R. Juhasz proved this - in

fact, she proved that S contains a congruent copy of any four points .

(S is the complement of S) . It would be of great interest to characterize



the set of points which always can be imbedded into S . The paper of R .

Juhasz will be published soon .

Several further problems for finite and infinite sets are stated in

our papers .

P . Erdős, R .L. Graham, P . Montgomery, B .L . Rothschild, J. Spencer,

E .G. Straus, Euclidean Ramsey theorems I, II, and III, Journal of Combina-

torial Theory Ser . A 14(1973), 341-363, Infinite and finite sets, Coll . Math .

Soc . J . Bolyai, 1973 North Holland, 529-557 and 559-583 .

L .E . Shader, All right triangles are Ramsey in E 2 , J . Combinatorial

Theory, Ser . A . 20 (1976), 385-389 .

9 . Concluding remarks . Here I state a few problems of a combinatorial

nature which do not seem hopeless to me and which perhaps have been unduly

neglected .

1 . Let 1 5 a l < . . . be an infinite sequence of integers and denote by

f(n) the number of solutions of n = a i + aj . Is there a sequence for

which

(1)

COMBINATORIAL PROBLEMS IN GEOMETRY AND NUMBER THEORY

lim f(n)/log n = 1 ?

If log n is replaced by g(n)log n where g(n) is a monotonic function

tending to infinity the answer is easily seen to be affirmative . The

probability method does not seem to apply to (1) . For further details, see

the well known book of Halberstam and Roth, "Sequences" .

2 . Let there be given n points in the plane at most n - k on a line .

Join every two of them and prove that these points determine at least c k n

lines where c is an absolute constant independent of k and n . If

k2 < c 1n then L .M . Kelly and W .O .J . Moser proved a stronger result .

3 . Conjecture of Szemer4di : Let there be given n points in the plane,

no three on a line . Then they determine at least
l2

distinct distances .

Szemerédi proved only
L3J

	

I conjectured and Altman proved LZ if

the n points form a convex polygon .

161
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For references to 2 . and 3 . and also for other problems in geometry,

see my paper in Annali di Math . referenced in l;for combinatorial problems

in number theory, see P . Erdős, Problems and results in combinatorial number

theory III, Number Theory Day, meeting held at Rockefeller Univ ., March, 1976,

Lecture Notes in Math 626, Sprínger Verlag .

For many interesting problems in combinatorial geometry, see Hadwiger,

Delrunner, Klee, Combinatorial geometry in the plane, Holt, Rínehart, and

Winston. For problems in combinatorial geometry of a different kind, see

B . Grünbaum, Arrangements and spreads, Amer . Math . Soc ., 1972, also the well

known books and papers of Fejes Toth on discrete geometry .

I neglected to discuss the various applications of Ramsey's theorem to the

distance distribution of point sets in a complete metric space and its appli-

cations to geometry, potential theory and other subjects .

P . Erdős, A . Meir, V.T . Sós and P. Turns, On some applications of graph

theory I, II, and III, Discrete Math . 2 (1972), 207-228 ; Studies in pure math .

Papers presented to Richard Rado, Acad . Press, London, 1971, pp. 89-99 ;

Canad . Math . Bull 15 (1972), 27-32 .
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