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COMBINATORIAL PROBLEMS IN GEOMETRY AND NUMBER THEORY

Paul Erdds

In a previous paper (given at the International Congress of Mathemati-
cians at Nice 1970) entitled "On the application of combinatorial analysis to
number theory geometry and analysis", I discussed many combinatorial results
and their applications. I will refer to this paper as I (as much as possible
I will try to avoid overlap with this paper).

First I discuss those problems mentioned in I where significant progress
has been made.

1. Let f(n) be the smallest integer so that if there are £(n) points
in the plane no thres on a line, then there are always n of them which
form the vertices of a convex n-gon. This problem of E. Klein (Mrs Szekeres)
was discussed in 1. Szekeres and I proved that

2n-4
(L) 2*% 414 f(n) < ( ) .
n-2

Probably £(n) = 2':’-2 + 1 , but this has only been proved for n = 4 and
y

n =35 . No progress has been made here but recently I asked the following
related question: Let g(n) be the smallest integer so that if there are
g(n) points in the plane, no three on a line, then there are always n of them
which form the vertices of a convex polygon which has none of the other points
in its interior. Trivially g(4) =5 , but I could not prove the existence

of gz(n) for mn =z 5 . Ehrenfeucht a few days ago found a simple proof for
the existence of g(5), unfortunately his proof does not seem to work for
n>5 and the general problem is still open. By the way, T just heard that
independently and simultaneously Harborth proved g(5) = 10.
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Now I outline the ingenious proof of Ehrenfeucht. By the result of
Szekeres and myself we can assume that if the number of points is =2 (if)
there is a convex 8-gon. If the number of points in the interior is =< 1
we clearly get an empty convex pentagon. Thus we can assume that the number
of points in the interior is =2 2 . ILet (xl,xz) be a side of the least
convex polygon of the points in the interior. The line (xl,xz) divides
the convex 8-gon into two parts, one of them has no point in its interior.
If this part contains three or more vertices of our 8-gon, we have our con-
vex pentagon. If it cuts off one or two vertices, then omitting these and
replacing them by Xy0X, we obtain a convex 8-gon or 9-gon which has fewer
points in its interior. Repeating this proves we clearly obtain an empty
convex pentagon.

Ehrenfeucht then asked: Let LS EREREE. N be n points in the plane no
three on a line. Denote by k(n) the largest integer so that for every
choice of n such points there are at least k(n) triangles with no point
in their interior. Determine or estimate k(n) . I proved (1 + 0(1))n2
< kin) < cnzlog n . I cannot decide whether k(n) < cn2 is true. Further
problem: How many empty convex t-gons (t 2 4) must we have?

Delsarte, Goethals, Seidel and Larman, Rogers, Seidel nearly completely
solved the problem of two distance sets in n-dimensional space. Every set
of %(n + 1)(n+ 4) + 1 points in n-dimensional space determines at least
three distinct distances, but there always is a set of BLEEi-ll points
which determine only two distances. On the other hand, if k3(n) is the
smallest integer so that ka(n) points in n-dimensional space always con-
tains a non-isoseles triangle, then we have no good upper bound for ka(n).
Probably k3(n) <n® and perhaps even kj(n) = (% + 0(1))n2 . We only have
an exponential upper bound for k3(n) .

The 2" vertices of the n-dimensional cube determine n distinct

distances. Perhaps any i points in n-dimensional space determine more

than c¢n distinet distances.
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Seidel just informed me that if S is a set of n elements on the
sphere in Euclidean d-space which has < s distances, then S contains at
most (d : f i 1) + (d : f ; 2) points.

D.G, Larman, C,A, Rogers and J,J. Seidel, On two distance sets in
Euclidean space, Bull. London Math. Sec. 9 (1977), 261-277; P. Delsarte,
J.M. Goethals and J.J. Seidel, Spherical codes and designs, to appear in
Geometriae Dedicata.

For further problems and literature, see Paul Erdds, On some problems

of elementary and combinatorial geometry, Annali di Math. 103 (1975), 99-108.

2. The conjecture of Graham and Rothschild has been proved first by
Hindman and then by Baumgartner and finally by Glazer.

The conjecture stated: Divide the integers into two classes. Then
there always is an infinite sequence of integers a, <a, < ... so that all

%0 & =0 or 1 belong to the same class.

the sums Z ¢

Various modifications and extensions are open: Let S be a sequence of
integers of positive density (upper density?) 1Is there always an infinite
sequence a, <a, ... and an integer t so that all the integers

{ai > 8y + aj + t} belong to the same class?
There is a problem due to J. Owings: Divide the integers into two
classes. Then there always is an infinite sequence a; <a, ... so that

all the sums a; =} aj (i = j permitted) are in the same class. It is
surprising that this harmelsss looking problem causes so much difficulty.
Though Hindman has some partial results, his paper will soon appear in the
Journal of Combinatorial Theory.

I conjectured that if S is any infinite set, then its subsets can
always be divided into two classes so that if {An} , n=1,2,... is any
infinite family of disjoint subsets of § there are two sets S1 and 52
in different classes both of which are unions of infinitely many A's. On
the other hand, I conjecture that if m is any cardinal number, then if

the power of S is sufficiently large and we divide the countable subsets

of 8 into two classes there are always m disjoint sets {Au] » @ <0
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so that all finite unions of the Aa's belong to the same class.
A few years ago I had the following fascinating conjecture: Divide
the integers into two classes. Then there is an infinite sequence

a, <a so that all the multilinear expressions formed from the a's

1 D)
are in the same class. I (and others) first tried to find a counterexample

but so far no success. A weaker conjecture which alsc seems inaccessible at

present states that if we divide the integers into two classes there always

e .
is an infinite a, < a, . where all the a1 ¥ a1 aj i ai aj belong

to the same class. It is not even known that there are three a's ,
31,32,33 with this property.
R.L. Graham proved that if one divides the integers 1< ts< 252 into
+
two classes there are always aj,ay,a; *a, , aIaz (a1 # az) all in the

1
proved that if 1 < t £ 969 then we can assume a; > 1, 969 is best

same class, and this is false for 251. a_, = 1 camnot be excluded. Hindman

possible. As far as I know this is all that is known at present.
The proof of Glazer is given in a survey paper by W.W. Comfort, Ultra-
filters: some old and new results, Bull. Amer. Math. Soc. 83 (1977), 417-

455; references to Hindman and Baumgartner can be found in this paper.

3, In I, I state that Kleitman proved the following conjecture of mine:

Iet E2.5se52 be n vectors in a linear vector space satisfyin z =1.
1 n P 8 i
n

Consider the v i sums L €524 0 By =4+ 1 which are in the interior of
i=1 %
a sphere of radius 1 . The number of these sums is = [n . Kleitman's
3

proof appeared in the meantime.

On a lemma of Littlewood and Offord on the distribution of linear
combinations of vectors, Advances of Math., 5(1970), 1-3. For further pro-
blems, see Lee Jones, On the distribution of sums of vectors, SIAM J. Applied
Math. 39 (1978), 1-6.

4. An old problem of Rado and myself states: Let a>1,b>1 be

integers. f(a,b) is the smallest integer so that if we have f(a,b) + 1

sets each having at most b elements, there are always a + 1 of them
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which have pairwise the same intersection. Rado and I conjectured that for

some absolute constant c

(1) tla by 7 M3

(1) was stated in I. Little progress has been made. Abbott proved that

£(3,3) = 20 and Spencer proved that for fixed a and b > bo(g)
b
f(a,b) < (L+e) bl .

I offer 500 dollors for a proof or disproof of (1).

P. Erdos, and R. Rado, Intersection theorems for systems of sets 1
and II, J. London Math. Soc. 35 (1960), 85-90 and 44 (1969), 467-479. For
further reference, see P, Erdds, E. Milner and R. Rado, Intersection theorems

for systems of sets III, J. Australian Math. Soc. 18 (1969), 22-41.

5. Denote by rk(n) the smallest integer {4 so that if
1= a; N aL S, f = rk(n) is any sequence of integers, then the a's
contain an arithmetic progression of k terms. Turdn and I conjectured 45
years ago that r, (n) = o(n) . This was finally proved by E. Szemerédi in
1973. His proof is a masterpiece of combinatorial reasoning. One of his
lemmas is a purely combinatorial theorem on decomposition of graphs which
already had several applications to various problems and there is no doubt
that it will have further applications in the future. Since this "lemma"
(or rather theorem) is not sufficiently well known, I restate it here. First
we need a few definitions: Let G(n;4) be a graph of n vertices and 4
edges. A and B are two disjoint sets of vertices of G and e(A,B) denotes

the number of edges onme endpoint of which is in A and the other in B .

Define

d(A,B) is the "density" of the edges between A and B . The pair (A,B)

is called ¢ - regular if
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XcA,YcB, |x|= Al
imply
[d(X,Y) - d(A,B)| < ¢ ,
otherwise the pair is called e - irregular. By an equitable partition of a
set V , we shall mean a partition of V into pairwise disjoint sets

CO’cl""’ck such that all the Ci's with 1 < i< k have the same

cardinality. The set CO may be empty. It is called the exceptional set.
Let G(n ;L) be a graph. An equitable partition of the vertex set into
sets CD,Cl,...,Ck will be called g - regular if the cardinality of the

exceptional set C0 does not exceed en and if at most ekz of the pairs
(Cs’ct) with 1<s<ts=<k are ¢-irregular.

Szemerédi's theorem states as follows: for every & > 0 there is an
integer M so that if n > nO(M ,e) , then every G(n ;{) admits an
£ - regular partition into k classes with k < M (In fact, we may also
prescribe a lower bound m on the number of classes; then of course, M
becomes a function of ¢ and m).

Using this '"Lemma', Ruzsa and Szemerédi partially settled a problem of
W. Brown, V.T. Sés and myself. Denote by £(n;k) the smallest integer so
that 1f [s| =n and A, c G, [A] =3, 1=1=f(n;k) then there is an

s.cs , [sl| = k which is the union of k - 3 (k > 3) of the A's. We

1

conjectured that
2
f(n3k) = o(n”)

holds for every k . The conjecture is trivial for k < 6 and Ruzsa and

Szemerddi proved it for k =6 . They also showed

f(n;6) > can(n) > n2 —&

which is, in my opinion, a very surprising and deep result. The conjecture
is still open for k > 6
Szemeréddi's proof uses Van der Waerden's theorem and thus gets a very

poor upper bound for rk(n) . About two years ago Furstenberg proved
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Szemeréddi's theorem by methods of ergodic theory. Furstenberg does not use
Van der Waerden's theorem but his proof of rk(n)fn -+ 0 is an existence
proof and does not give any explicit bound for rk(n) . Very recently,
Katz Nelson and Ornstein simplified Furstenberg's proof.

1 offered 1000 dollars for rk(n) = o(n) , which Szemerédi collected.
I offer 3000 dollars for the proof or disproof of

(2) r, (n) = o(——“—-)
k (log n)*

for every 4 1if n > nOLL) . (2) would imply that for every k there are
k primes in an arithmetic progression. An attractive but slightly weaker

1
conjecture states: Let Z};— = ® , Then for every k there are k a's
i

in an arithmetic progression. I offer 3000 dollars for the proof or disproof
of this conjecture. I do not even have a guess what the true order of magni-
tude of rk(n) is. It is not even known that r3(n)fr4(n) -0 .

E. Szemerédi, On sets of integers containing no k elements in arith-
metic progression, Acta Arithmetica 27 (1975), 199-245.

H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of
Szemerédi, J. Analyse Math. 31 (1977), 204-

For further problems, see P. Erdds, Problems and results on combinatorial
number theory III, Number theory day, Proc. Conference Rockefeller Univ.

1976, 43-73, Lectures Notes in Math 626, Springer-Verlag.

6. Let S ERRRELN be n distinct points in k dimensional space.
Denote by dk(n) the maximum number of pairs (xi,xj) whose distance is 1 .

This problem was discussed in I. The most important progress is that Szemerddi

f2) . The proof is surprisingly complicated

especially if one compares it with the simple proof of dz(n) < cnsfz s

and Jézsa proved that dz(n) = o(n3

am sure that dz(n) < n1+£ for every ¢ >0 and n > no(e) and offer 100
dollars for a proof or disproof. (I suspect this will be a very difficult
method to earn 100 dollars.) The right order of magnitude of dz(n) is

probably nl+cflog 103!1.
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A possible approach to these problems is perhaps the problem of forbidden
subgraphs; this method is often applied successfully. A graph G(m) of
m vertices is forbidden if there is no set of m distinct points in the
plane so that G(xl,...,xm) contains G(m) as a subgraph. It is called
minimal if the omission of any edge of G{m) ensures the existence of such

a set of m points. K(3,2) is such a minimal forbidden graph. It would
certainly be interesting to give a complete list of minimal forbidden
graphs. Hopefully a graph of n vertices which does not contain any of the

+
forbidden graphs has fewer than nl -

edges for every £ >0 if n > no(e).

Hadwiger and independently Nelson raised the following problem: Join
two points in the plane if their distance is 1 . Determine the chromatic
number of this graph. It seems likely that the chromatic number is greater
than four. By a theorem of de Bruijn and myself this would imply that there
are n points XyseenrXy in the plane so that if we join any two of them
whose distance is 1 , then the resulting graph G(xl,...,xn) has chromatic
number > 4 ., I believe such an n exists but its value may be very large.
The chromatic number of the plane is known to be at most 7 .

Let our n points be such that they do not contain an equilateral
triangle of side 1 . Then their chromatic number is probably at most 3 ,
but I do not see how to prove this. If the conjecture would unexpectedly turn
out to be false, the situation can perhaps be saved by the following new con-
jecture: There is a k so that if the girth of G(xl,...,xn) is greater
than k , then its chromatic number is at most three -- in fact, it will
probably suffice to assume that G(xl,...,xn) has no odd clrcult of length
<k .

Larman and Rogers investigated the chromatic number k(n) of n-dimen-
sional space. Probably the chromatic number tends to infinity exponentially.
V.T. Sés and I observed that if |S| =n , and Ajes,lsisntl,

’Ai[ =3, then for some 1si,<i,sntl, [Ai na, | =1 . This easily

1 1
implies that k(n) 2= cn2 . We conjectured that if n = no(k) and |Ai| =Lk ,

1<ixs (E§)+l, then for some 1<i, <i, < ($§)+1, Mi ﬂAi[=L

1 2
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Katona proved this for k = 4 and Frankl for all k , from his results one
can deduce that k(n) > n® for every ¢ if n > no(c) .

Let f(n,r) be the smallest integer for which if [s| =n, A, ©5 ,

1<1i=< f(n,r) there are two A's say A, and A with [A na [
4 i h 4

Trivially £(n,0) = 2n-1 + 1 . It would be of interest to determine

f(n,r) for r >0 at least for n > no(r) . 1 conjectured that for every

Mm<r< f% - Tn
fm,r)< 2-e)",e=e@ .

(1), if true, easily implies k(n) > (1 + 6)“ for some fixed 6§ > 0 .

The following question just occurred to me: Let @ysennsy be k
positive numbers. ILet X 5...9%, be the n points in the plane. Join x, and
xj if d(xi,xj) =a for some 1l=<1is<k. (d(xi,xj) is the distance of
X and xj). Denote the resulting graph by Gal,...,ak(xl""’xn) . Let

f(k) be the maximum of the chromatic numbers of these graphs. Estimate or
determine f£(k); at the moment I do not know how fast £(k) tends to in-
finity, but perhaps I overlook a simple argument.

Finally, I wish to state the classical conjecture of Borsuk: Is it
true that a set S of diameter 1 in n-dimensional space is the union of
n+l sets of diameter less than 1 . This conjecture is trivial for n =1 ,
easy for n = 2 , difficult for n = 3 and unsolved for n 2 4 .

§. Jbzsa and E. Szemerédi, The number of unit distance on the plane,
Infinite and finite sets, Coll. Math. Soc. J. Bolyai 1973, North Holland,
939-950.

D.E. Larman and C.A. Rogers, The realisation of distances within sets
in Euclidean space, Mathematika 19 (1972), 1-24.

B. Grunbaum, Borsuk's problem and related questions, Convexity, Proc.
Symp. Pure Math Vol. 7 (1963), Amer. Math. Soc. 271-284. This book contains
many other articles of great combinatorial interest.

7. George Purdy and I plan to write a book on some of the problems and

their higher dimensional analogues - which we considered in 6. Here T just
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give a short and not very systematic outline of some of our results. Denote

by gir)(n) the largest integer for which there are n points KpsenorXy

in k-dimensional space for which there are gir)(n) sets {xi v X 3
1 Tl

which have the same non zero r-dimensional volume. We first of all proved
(1) cln2 loglogn < géz)(n) < 4n5/2 .

We believe that in (1) the lower bound is closer to the "Truth" - in fact,
perhaps it gives the right order of magnitude. Purdy proved that for some

e=>0

(2) ggz)(n) <t

In the proof of (2) Purdy used the following purely combinatorial

(r)

theorem of mine on hypergraphs. Let G (n ;m) be a hypergraph of n

vertices and m edges (i.e., m r-tuples). Then if m > nr-—e(&,r) our

¢"Xn ;m) contains a K_(4,...,L), where Kr(nl""’nr) is the hypergraph

2: n, vertices and
i=1

disjoint sets |Ail_= n. o, i =1,...,r and the edges are all the r-sets

n, edges, where the vertices are divided into =»

-1::1“ H

which meet each A, in exactly one point.

i

An example of Lenz gives gél)(Zn) 2 nz and I proved gil) < n2(1+0(1)).
Oppenheim observed that the idea of Lenz gives gétlz((k+1)n) = nk+1 and

(k)
2k+2

present difficulties even for k =2 .

we conjectured g ((k+1)n) < (1 + o(I))nk+1 but the proof seems to

We also investigate the maximum number of isosceles or equilateral
triangles one can obtain from n points in r-dimensional space. We almost
never succeed in getting asymptotic formulas but have to be satisfied with
more or less crude upper and lower bounds. A typical problem states as
follows: Let there be given n distinct points in the plane. Let A(n) be
the largest number of four-tuples one can form so that not all the six dis-

tances should be distinct. We proved



COMBINATORIAL PROBLEMS IN GEOMETRY AND NUMBER THEORY 159

c2n3log n < A(n) < clnz/z 5

We are fairly sure that A(n) < 113+E holds but have not been able to prove it.

Many further related questions could be discussed, but not to make this

chapter too long, I only state some results of Bollobas, Purdy and myself.

Let T be a triangle. £(n;T) is the largest integer so that for every
£ > 0 there are n distinct points in the plane which determine £(n ;T)
triangles which are congruent to T with a possible error of less than ¢
(or more precisely the sides of the triangles differ from the corresponding
sides of T by less than ¢). Clearly £(3n,T) 2 n3 for every triangle
T and we prove that if T is equilateral, then there is equality. For
which T is f(n;T) maximal? We outlined a proof that T must be isosceles
with a right angle. Here f£(4n;T) = 4n3 . We did not complete all the
details which were quite messy. Many further questions could be raised here
and if we live we hope to return to them.

P. Erdds and G. Purdy, Some extremal problems in geometry, J.
Combinatorial Theory, 10 (1969), 246-252.

G. Purdy, Some extremal problems in geometry, Discrete Math. 7 (1974),
305-314.

P. Erdds and G. Purdy, Some extremal problems in geometry III, IV and
V, Proc. Sixth Conference on Combinatories Graph Theory and Computing, Florida
Atlantic Univ. 1975, 291-308 (1976), 307-322 and (1977).

P. Erdds, On extremal problems of graphs and generalised graphs, Israel
J. Math., 2 (1964), 183-190.

For further (I hope) interesting problems and results, see P Erdds
and G. Purdy, Some combinatorial problems in the plane, will appear in J.

Combinatorial Theory.

8. Graham, Montgomery, Rothschild, Spencer, Straus and I in several
papers investigated the following problems: A well-known theorem of Gallai

states as follows: Let S be any finite set in r-dimensional Euclidean
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space. Color the points of the space by k colors in an arbitrary way.
Then there always is a monochromatic set which is similar to S . This
theorem is a generalisation of the well known theorem of van der Waerden on
arithmetic progressions. What happens if we require a monochromatic set

congruent to 87 . One of the first non-trivial results which we proved with
the help of S. Burr states: There is a set of 15 points in 6-dimensional
space so that if we color the points by two colors, there always is a
monochromatic unit square. It is quite probable that the dimension of the
space can be reduced to three (at the expense of perhaps increasing the
number of points). More generally a set S 1in a Euclidean space is called
Ramsey if for every k there is an n, so that if we color the points of
nk-dimensional space by k colors there always is a monochromatic set
congruent ot S . We proved that every brick (i.e., rectangular parallelepid)
is Ramsey and that every Ramsey set must be spherical, i.e., it must be
situated on the surface of a sphere. We do not know any set which is Ramsey

and is not a brick and we do not know if there is a spherical finite set which

is not Ramsey. The simplest open problem states: Is it true that every

I
2

since the triangle can be imbedded into a brick. I offer 100 dollars for

non-degenerate triangle is Ramsey? If all angles are = this is obvious
a clarification of these questions.

Color the plane by two colors. {x,y,z} is any triangle. Then, with
the possible exception of a single equilateral triangle - there always is a
monochromatic triangle congruent to {x,y,z} . Many special cases have
been proved by us and others but the general case is still open and 1 offer
100 dollars for the proof or disproof.

let S be a set of the plane no two points of which are at distance

1 . We proved that § contains four points on a line so that

X
* Rty
the distance between two consecutive points is 1 . We conjectured that 3§
contains the vertices of a unit square. Ms. R. Juhasz proved this - in

fact, she proved that § contains a congruent copy of any four points.,

(5 1is the complement of 8). It would be of great interest to characterize
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the set of points which always can be imbedded into § . The paper of R.
Juhasz will be published soon.

Several further problems for finite and infinite sets are stated in
our papers.

P. Erdos, R,L, Graham, P. Montgomery, B.L. Rothschild, J. Spencer,
E.G. Straus, Euclidean Ramsey theorems I, II, and III, Journal of Combina-
torial Theory Ser. A 14(1973), 341-363, Infinite and finite sets, Coll. Math.
Soc. J. Bolyai, 1973 North Holland, 529-557 and 559-583.

L.E., Shader, All right triangles are Ramsey in E2 , J. Combinatorial

Theory, Ser. A. 20 (1976), 385-389.

9. Concluding remarks. Here I state a few problems of a combinatorial
nature which do not seem hopeless to me and which perhaps have been unduly
neglected.

1. et 1= a; < ... be an infinite sequence of integers and denote by

f(n) the number of solutions of =n = ay + a Is there a sequence for

i &
which

(1) 1im f(nl/log n=1 7

If logn is replaced by g(n)log n where g(n) is a monotonic function
tending to infinity the answer is easily seen to be affirmative. The
probability method does not seem to apply to (1). For further details, see

the well known book of Halberstam and Roth, "Sequences'.

2. Let there be given n points in the plane at most n-k on a line.
Join every two of them and prove that these points determine at least ckn
lines where ¢ 1is an absolute constant independent of k and n . If

kz < cn then L.M. Kelly and W.0.J. Moser proved a stronger result.

3. Conjecture of Szemerddi: Let there be given n points in the plane,

5 n s gz ;
no three on a line. Then they determine at least [5] distinct distances.

Szemerédi proved only [%] . I conjectured and Altman proved [—g] if

the n points form a convex polygon.
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For references to 2. and 3. and also for other problems in geometry,
see my paper in Annali di Math. referenced in 1; for combinatorial problems
in number theory, see P. Erdds, Problems and results in combinatorial number
theory III, Number Theory Day, meeting held at Rockefeller Univ., March, 1976,

Lecture Notes in Math 626, Springer Verlag.
For many interesting problems in combinatorial geometry, see Hadwiger,

Delrunner, Klee, Combinatorial geometry in the plane, Holt, Rinehart, and
Winston. For problems in combinatorial geometry of a different kind, see
B. Griinbaum, Arrangements and spreads, Amer. Math. Soc., 1972, also the well
known books and papers of Fejes Toth on discrete geometry.

I neglected to discuss the various applications of Ramsey's theorem to the
distance distribution of point sets in a complete metric space and its appli-
cations to geometry, potential theory and other subjects.

P. Erd8s, A. Meir, V.T. S6s and P. Turna, On some applications of graph
theory I, II, and III, Discrete Math. 2 (1972), 207-228; Studies in pure math.
Papers presented to Richard Rado, Acad. Press, London, 1971, pp. 89-99;

Canad. Math. Bull 15 (1972), 27-32.
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