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1

Let there be given n points in the plane. Denote by t i the number of lines
which contain exactly i of the points (2 < i < n) . The properties of the set
{ti } have been studied a great deal. For example, there is the classical result
of Gallai and Sylvester: Assume to = 0 (i .e ., the points are not all on one
line) ; then t2 > 0. For the history of this problem see, e.g ., Motzkin [6] and
Erdős [3, 4] . 1n this note we prove that some new and perhaps unexpected
properties of the family {ti } hold .

Let there be given n distinct points in the plane, not all on a line . We con-
jectured that for n > no there always is an i such that t i > n - 1 . Krier and
Straus pointed out that for n = 6 and 9 there are counterexamples. For
n = 9, take the vertices of a square and its center and the four points of
infinity determined by the sides and diagonals of the square . For n = 13
we also get a counterexample from the vertices of a regular hexagon and its
center and the six points of infinity determined by the sides and diagonals
of the hexagon . Nevertheless, the conjecture is true for n , 25. In fact we
show in Theorem 1 that we can always choose i = 2 or 3, and that

max ti = max(t2 , t 3) .i
Assume now that no line has more than (1 - e)q points on it. Then we are

convinced that there is an 7) = 7)(e) such that
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t, + 3t 3 > ~1 (2) . (1)
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Since L_ 2 (z) t i = (2) we can rewrite (1) as

[~t2 + 3t 3 > 1
	 'q 	i

t~ 2) ti .

	

(2)

A result of Sylvester and Burr et al . [2] shows that there are examples with
t2 < n - 3. Hence (1) is definitely false if t 2 + 3t3 is replaced by t2 . What we
are able to show (see Theorem 1) is that t 3 > en 2 whenever t2 < n - 1 . We
determine c explicitly, but we probably do not have the best value of c .
If t2 = n --- 1 we can of course have t i = 0, 3 < i < n - 1, t„_ 1 = 1, i .e .,
n - I points on a line .

We also conjecture that t > cn whenever t 3 > t2 l where t is the total
number of lines, i .e ., t = _ 2 t i . Perhaps this conjecture is too optimistic .
It has been conjectured that t2 > n/2 always holds, and an example of Motzkin
shows that if true it is best possible . It gives a set of 2n points with t2 = n,
t 3 = (2) and to = 1 . We think that if t„ > I for some m, (n/2)(1 + e) <
m < (1 - E)n, then t2> c,n 2 .

We start with a lemma .

LEMMA 1 . If r points lie on a line 1 and s points do not lie on I then t 2
rs - s(s - 1) .

Proof. The result is true if s = 0 or s =- 1 . We shall suppose s > 1 and
use induction on s. Let P be a point not on 1. If we remove P, then t2 >
r(s - 1) - (s - 1)(s - 2). The addition of P will spoil at most s - 1 of
these lines and will introduce r new lines at most s - 1 of which will contain
three or more points . Hence 12 > r(s - 1) - (s - 1)(s - 2) - (s - 1) +
rs - (s - 1) -- rs -- s(s - 1), and the result follows by induction .

COROLLARY . Given n points in the plane, not all on a line, if a line contains
exactly (n/2)(1 -- E) points, then t 2 > (1 - E) En2/2 .

Proof. Put r -_ (n/2)(1 + E) and s = (n/2)(I - E) in the lemma, and we
have t2 > rs - s(s - 1) _ [(I - E)E/2] n2 + (n/2)(I - E) .

THEOREM l . Given n points in the plane, not all on a line, if n > 25 then
max(t2 , t3) > n --- 1 . For all n, if t2 < n - 1, then t 3 > cn 2 where c is a
positive constant. Also, we always have maxi t i = max(t 2 , t3) .

Proof. We shall suppose that t 2 < n - 1 . We start by showing that t i = 0
for i > 4n. To see this, let I be a line with at least 3n of the points on it . If 1
has n - 1 points, then t2 n - 1 . Hence we may suppose that there are
two points P and Q not on l. If we restrict our attention to the points on 1,
to P and Q, then we get, by Lemma 1, t 2 > 2n - 2. Each of the n/4 - 2
points not in l v {P, Q} lies on at most two of these lines . Hence n - 2 >



t 2 > 2n -- 2 - 2(n/4 - 2) = n + 1, which is absurd . Hence ti

	

0 for
i > 3n .

From [5] we have

and clearly
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(n - 2) > t2 > 3

	

Y, (i - 3) ti,

	

(3)
i>4

at2 + 3t 3 +

	

2) ti
i yA

We consider now how large S = Y_i ~> A (z) ti can be if (3) holds . If we choose
t i = 0, 4 < i < k, k - 3n and choose tk as large as possible, we will get an
upper bound on S which is valid even if k is not an integer. We then have
n - 2 = 3 + (k - 3) tk , tk = (n - 5)/(k - 3) < 4/3 and S = (2) tk
2(4n -- 1)(án - 2) á < 8(n - 1)(n - 2) .
To show that max(t2 , t 3 ) > n - 1 it is enough to obtain a contradiction

from the assumption that t 3 < n - 2. From (4) we obtain

n - 2 + 3(n - 2) + S > (2),

4(n - 2) + $(n - I»- 2) 2n(n - 2),

which reduces to n 2 - 27n + 58

	

0, which is false for n > 25 .
To show that t3> cn 2 , we procede as follows :
We have S < $n 2 , and from (4)

n-2+3t3+3n2> (2) ,

3t 3 >2n 2 -2n-gn 2 -n+2=8n 2 -Zn+2,

t > 1 n2 _ n_ 2

	

23
' 24

	

2 3 en

(
2)'

for n > n o ,

(4)

where c is any constant less than A and n„ depends only on c .
Finally, we remark that the assertion max i t i = max(t2 , t 3) follows from

the second inequality in (3) .
We conclude this section be stating an old conjecture of one of the authors :

Assume ti = 0 for all 1 > k > 5. Then tk = o(n 2) . This is certainly false for
k = 3 (Sylvester and Burr et al., see [2]) . Croft and Erdös observed that it is
false if the assumption t l -= 0 is not made. (This is in fact shown by the
lattice points in the plane .)

Kártezi proved that tk > cn log n is possible and Grünbaum showed
recently that tk > cnl+ilk is possible .
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2

Let there be given n distinct Xl , . . ., X,, in the plane not all on a line,
let Ll , . . ., Lm be the lines determined by the points, and let ; Li ; denote the
number of points on the line Li . Assume Ll ! > ! L2

The result of Sylvestor and Gallai states that L,,, = 2, and that m , n .
It would be interesting to determine or estimate the number A(n) of

families of sets {I L l I,, . . ., I Lm '} determined by n points in the plane . The
difficulty is that it is not at all clear to us (and as far as we know to anybody
else) what conditions a sequence a l , «2 , . . ., a,,, must satisfy in order that
there should be a set of points Xl , . . ., X„ with I L i í = (x2, 1 ` i m .

These problems can be restated in a more combinatorial form . Let .5~ be
aset, Is!---nandletA i CY,2<IAi I<nforl<i<mbeafamily
of subsets of Y so that every pair x, y c .9' is contained in one and only one
of the A i . A theorem of de Bruijn and Erdös [1] states that m n . Now let
F(n) be the smallest integer for which there is a system {A i} with the above
properties so that for every r (2 < r < n - 1) the number of indices i with

i A i ; - r is at most F(n) . It would be interesting to determine or estimate
F(n) . We conjecture

F(n) = cnli 2

	

o(nl/2)

	

(5)

It is a simple consequence of the theorem of de Bruijn and Erdös that
F(n) > c l nl11 2 , but we could not prove F(n) < c,nl/ 2 . Perhaps this will not be
so very difficult, but we were only able to prove F(n) < cn3 ' 4, which is our
Theorem 2 .

It would be interesting to determine or estimate the number B(n) of
sequences

{(Xl . . , am},

	

al i i . . . i ! IX~ i 2

	

(6)
for which there is a system Ai C Y, ! A i I, = ai , so that every pair (x, y) of

is contained in one and only one A i . As in the geometric case we do not
have any necessary and sufficient conditions for a sequence (6) which would
ensure the existence of a corresponding system {A,}. We are convinced that
B(n) is very much larger than A(n) .

THEOREM 2 . Rn) < cn 3 i 4

?roof. We use the probability method and only outline the proof . Let p
be the largest prime for which p2 + p -- 1 < 2n, and put m = p 2 -r p 1 .
Consider a finite geometry of m points and m (p + 1)-tuples . Choose at
random n of the points . One can do this in (n) ways. It is not hard to show
that all but o((,)) choices have the property that there are fewer than cn3 14
lines with the same number of points . The computations are somewhat
laboríus and we suppress them, since this method cannot give any better
result than F(n) < cn 3 i 4 and we are certain that F(n) < cnl/ 2 is true .



We show here

THEOREM 4 . g(n) > f(n) .

Proof. Let n points, not all collinear, be given in the affine plane . Each
collection of parallel lines intersects the line at infinity in a single point .
If there are m directions, then m points at infinity suffice to represent all the
points, and these points are distinct from the original points . Hence g(n)

f (n) •
We may alter the definition of,f (n) by insisting that no three points of the

original configuration lie on line, obtaining h(n) . Clearly f (n) h(n) .
Grünbaum pointed out that the regular n-gon and the regular n-gon with
center shows that h(n) < 2[n/2] . We also conjecture that h(n) en, and
this might be easier to prove than f (n)

	

cn.

Note added in proof. G. R . Burton and G . Purdy have recently proved that g(n) _> Ln12] .
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Let there be given n points in the plane, not all on a line, and form all
the connecting lines . We ask how many points are needed to represent all
the lines, if a point represents a line by being on it, and if none of the original
n points can be used for representation . Let f(n) be the minimum of the
representation numbers taken over all configurations of n points not all on
a line. The example of n - 1 points on a line and one other point shows that
f (n) n . We conjecture that f (n) cn for some c 0, but we can only
prove

THEOREM 3 . f (n) i n1/2

Proof. If there are n 1 ' 2 points on a line, then take a point P not on the
line and at least n 1 / 1 points are needed to represent the lines through P . If there
are not n 1 % 2 points on a line, then pick any point Q . Then Q has at least n 1 /2
lines going through it, and at least n 1 /2 points are needed to represent all of
these lines . This concludes the proof .

Let g(n) denote the minimum number of different directions determined by
n points in the affine plane not all on a line . Scott has shown [7] that

2 { 1 -{- (8n - 7)1i2} < g(n)

	

2
[
2
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