MATHEMATICS

8. A. BURR, P. ERD{}8, R, J. FAUDRERE, €. ¢. ROUSSEAU AND R. H. SCHELP

Ramsey-minimal graphs for multiple copies

Dedicated to N. G. de Bruijn on the occasion of his 60th birthday

Communicated at the meesting of December 17, 1877

I, AT, & T. Long Lines, 2. Hungarian Accdemy of Sefences,
4, Memphis State University

INTRODTOTION

Let F, 0 and H be finite, undirected praphs without loops or multiple
edges, Write F' — (¢, H) to mean that if the sdges of F are colored with
two colors, say red and blue, then either the red subgraph of F contains
o copy of & or the blue subgraph econtains a copy of H. The class of all
graphs F such that F' — (G, H) will be denoted by (G, H). A classical
theorem of F. P. Ramsey guarantees that (¢, H) ia non-empty.

The class (¢, H) has been studied extensively, particularly various
minimal elements of the class. The generalized Ramsey nuwmber v(G, H),
which is the minimum number of vertices of a graph in (G, H), has
received the most attention. Burveys of recent results can be found in
[1] and [7]. The size Ramsey nuwmber #(G, H), which is the minimum number
of edges of a graph in (G, H), was introdueed in [4]. In the first section
of this paper the size Ramsey number flm, g, 2k ;) will De caleulated,
where s/ ; denotes # disjoint copies of the atar K, ;. Moreover all graphs
F with #lmKiz, nK1) edges for which F — (mK i, Ky ) will be de-
termined. In the second section the following question will be considered.
If F — (m@, nH), how many disjoint eopies of @ (or H) must F contain?
In general, upper and lower bounds on the number of copies of & will be
given, and in some special cases, exact resultz will be obtained.

Notation not specifically mentioned will follow that of Harary [6]. For
a graph &, V() is the vertex set and E{f) is the edge set. The degree
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of a vertex v of & will be written de{v). The maximum degree of a vertex

of G will be denoted by A() and the minimum degree by 8(G). The

notation for the independence number and the line independence number
will be fo(@) and Hi(GF) respectively, The graph consisting of » disjoint
copies of & will be written nf. The graph ¢!—uv is the graph obtained from
@ by deleting a vertex v of . Also as usual, [ ] is the greatest integer
function and |§] ia the cardinality of the set S.

SIZE RAMBSEY NUMEERS FOR STARSB
For positive integers k and [, it is easily seen that Ky g — (K e, K1)
and Ks — (K3 K ) It follows immediately that

(m+n— 1)Ky g1 = (mKyp, nKy )
and
Ky U (m+n—t—1}Ky 8 — (mKyg, nky )

for positive integers m and n and for 1<t<m-+n—1. This implies
FlmKy e, nEKy 1) < (m+n—1)Ek+1—1),
which is one of two inequalities needed to prove the following theorem.

THEOREM 1: For positive integers k, I, m and =,
HmEy g, 0Ky )= (mtn—1)k+1-1).

Moreover if ' — (mK; g, nKy,) and has (n+m—1)(k+1—1) edges, then
G=(m+n— 1)K z10rk=l=2and G=tK; U (m+n—t—1)K; 3 for some
lstam+n—1.

If the theorem is not true, then for some k and ! there exists a counter-
example, and henee a minimal counterexample (no proper subgraph is a
counterexample). Let C,; denote the class of all such minimal eounter-
examples. If & is in C,; then there exist positive integers m and n such
that

1} G- (mK; e, nKy))

2) |E(G) <(m+a—1)(k+I-1)

3) G {mt+n—1)Ey gy and G+=1K O (m+n—1— NK; g for k=1=2 and
any ¢ I<t<m+n-—1,

The minimality of & implies that no proper subgraph H of 6 satisfies
1}, 2) and 8) for any m and n. Of course any graph 7 in Oy ; has parameters
m and n sssociated with it. If such graphs are dencted by € (m, u),
then C'y; is the union of the classes O ilm, n)

To prove Theorem 1, it is sufficient to prove that O ;= for all kand {.
The purpose of the next two lemmas is to describe properties of Oy
which will lead to showing it is empty. For convenience it will be assumed
throughout the remainder of this section that &=l
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LeMMa 2: If e O, then
i) B =k+1-1 and
i) A(F)<k41-2

PROOF: 1) Assume |E(()|<k+1—1. Then certainly G — (Ky, K1),
G%K;,HJ:_]_, and ¢=K; if k=1=2. If {E[:G:I|i:k+£~2, the ﬂdgﬁﬂ of
can be colored such that there exist no more than k—1 red edges and
{—1 blue edges. If E(6G)=k+1—1, then the coloring of any -1 edges
of (¢ blue must leave the remaining edges forming a K, . This eannot
coeur if ¢f has two edges which are not incident. All pairs of edges of G
being incident implies that =K; g or G@=Ks This contradiction
completes the proof.

ii) Let & be a graph in Ty (m, n) and assume v is a vertex of & of
degree at least k41— 1. 1t will be shown that this leads to a contradiction.
Either m> 2 or #=2 by the first part of this lemma. The case m= 2 will
be considered. A symmetric argument for n =2 can be given.

If @—v > ((m—1)K;x nKy,), then the edges of G —» can be colored
guch that there exists no red (m— 1)K & and no blue #K; ;. This coloring
can be extended to & by coloring red the edges incident to ». In this
coloring G contains no red m&, ; or blue nky g, a contradiction. Therefore
G—v — ((m— 1)Ky e, nky,1).

The minimality of & implies that G—v=(m+n—2)K g1 or that
ke=l=2 and ¢ —v=IK3y U (m+n—i—2)K, 3 Since

| B | < (1o — 1) {k+T=1),

the vertex v has degree precisely k+1—1. This is of course true not for
just a fixed vertex but for each vertex v of & of degree at least k+1—1.
Using the fact that v is an arbitrary vertex of degree at least b+71—1,
it iz easily checked that this implies that 6f!=Kgz gy or k=1=2 and
+= K. Sinee Eg,ml—l e {2.!(1.1-, Kll;}l and K £ {E'K]_.'B: Ky 2}, this giV&E
a contradiction.

The following lemma will be needed to deseribe some ecolorings of
graphs used in the proof of Theorem 1.

LEMma 3: I 6 is an element of Cg i(m, n), then there exists a sequence
of vertices vy, vy, ..., ¥nim-1 Of & such that dg, () =k where Gy=0G and
=G ——vp... —1y

PROOF: Belect #; to be a vertex of maximal degree in & and inductively
select vy to be a vertex of maximal degree in G —w—we ... —w1 =G,
If the vertices vy, vs, ..., ¥nem-1 do not satisfy the conclusion of the lemma,
then A{Gy) <k for some r<n+m—2. Assume such an r exists, Color the
edges of & incident to ¥ blue for each i <n— 1. Color the remaining edges
ot f red. Clearly ! contains no blue n& ;. Also & containg no red m&, ;
since A(G:) <k and every red K;; must contain a vertex of the set
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{®ms ..s ¥} (which might be empty). This contradiction completes the
proof.

Let ¢ be an element of Oy j(m, n). Two colorings of the edges of G will
be described. Both colorings will be used to give lower bounds on the
number of edges in .

x-COLORING

Select arbitrary vertices v, ve, ..., 5 of @, and let r; be the degree
of ¢ in f—wi—...— 1. Denote F—t1—1a— ... —ty—1 by H. Color the
edges incident to any ®; blue. Let #1<ex< ... be an arbitrary ordering
of the edges of H and color them sequentially using the following rule.
An edge g is colored blue unless it is inecident to a vertex that has [—1
edges of H incident to it that have already been colored blue. Then it
iz colored red.

In the a-eoloring of ¢, every blue K; ; must contain one of the vertices
1, 5, ..oy Uyo1. Thus & contains no blue nK; ;. Therefore &, and hence H,
must contain a red mA; e Fach edge of ared K, 3 was colored red because
one of its endvertices was incident to 1 — 1 blue edges. Since A(H) <& +1-2,
the center of a red K & can be incident to no more than {—2 blue edges.
Thus every vertex of a red K,; except the center is incident to -1
blue edges in H. Therefore the sum of the degress in H of vertices of a
red K;; iz at least B+ &l This implies that & has at least

n—1
¥ n+mik+ k)2 edges.
=1

B-COLORING

This coloring is the same as the x-coloring except the roles of red and
blue, & and I, and m and » are interchanged. The #-coloring implies that
@ has at least

mil ri+n{l+1k)/2 edges.

i=1

reo0F oF rHEoREM 1: To prove the theorem it is sufficient to show
that Cy ;= ¢ for all positive integers k= [. This will be done by an analysis
of various eases of k and I, Let & be an element of Cylm, n) for some
i and m,

=1
Lemma 2 implies A(G) =k Thiz contradiction proves that ;=

I=4, or I=3 and k=5

Binee & is in O (m, n), |B(G)| < (m+n—1){k+1—1). The x-coloring in
conjunction with Lemma 3 gives the following inequality

(8) (n—1E+m{k+E) 2<(m+n—1)k+T—1).
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Likewise the f-coloring and Lemma 3 imply

(b) (m—Lk+a(l+1k)2<(m4n—1)(k+I-1).

These two inequalities can be rewritten in the following unseful forms

(8') mk—2)<2n—1)

(") nll—2)(k—1)<2(m— 1) 1)
It is straightforward to check that both inequalities (a’) and (b’) are
never satisfied when k={>4 or when =3 and k>5. In fact (a') implies
m-<=n while (b') implies m ==, Thiz contradiction completes the proof
of this case.

=38, k=4

Select vertices vy, 2, ..., ¥min-1 88 in Lemma 3. Lemma 3 guarantees
that dgy_y(m)>4 for all 4, but in this case it can be assumed that
dgp o) =56 for all ¢. To ses this is true, assuome A{G,)<4 for some
r<+m—2, Color the edges red which are incident to n, vs, ..., vy where
t= max {m—1,+}, and if m<r color the remaining edges incident to
Umy ...s ¥ blue. The graph @, can be embedded in a 4-regular graph H.
By Petersen's Theorem [8], the graph H is 2-factorable with say factors
H; and Hs. Color the edges of Hy N @, red and the edges of Hy N &, blue.
The coloring just described implies & £+ (mK; 4, nK;g); this contra-
diction implies that A{G) =5,

In this case the a-coloring and the f-coloring give the following in-
equalities.

{n— 1)+ Bm < B(m-+n—1)
G{m—1)4 18n/2 < 6(m+n—1).

Just ag in the previous case, both inequalities cannot be satisfied simul-
taneously. This contradietion completes the proof of this case.

f=k=3

Lemma 2 implies that A(G)<4. By Petersen’s Theorem [8] the graph
f is the edge-disjoint union of two subgraphs each with no vertex of
degree more than 2. Thus the edges of &' can be ecolored such that no
vertex is incident to more than two red edges or two blue edges. This
implies ag=d.

=2

Lemma 2 implies A{6&) < k. It can be shown that §(() = 2. To show this,
suppose the contrary. Then there exista a vertex v of degree 1. Let w
be the vertex of ¢ adjacent to v in &. Thus w has degree at most k—1
in #—wv, The minimality of & implies that the edges of —v can be
colored such that there exists no red mK; and no blue nk,;,; This
coloring can be extended to 6 by coloring the edge vw. Since w has degree
at most k—1 in G —v, the edge vw can be colored such that it is not in

191




a red Kyp or a blue K;p This implies @ £ (mK; 4y, nK;2), a contra-
diction. Hence 4§{G)>2.

Select vertices w1, ws, ..., tyina 88 In the proof of Lemma 3. Each
is of degree at least b in Gy Since A{G)<<k, the set F={u, ..., Vmin-1} 12
an independent set of vertices each of degree k in G. Consider the bipartite
graph B with parts I and V{(&)\[!, where the edges of B are the edges
of & between I and V(@)\[. Each vertex of I has degree k in B. Since
A(GF) <k, k is also an upper bound on the degree in B of vertices in V(G [,
Therefore & theorem of Philip Hall [5] implies that there exists a matching
M of B using all of the vertices of I. For each i, 1<i=m+n—1, let wy
be the vertex matched with . Let W={wy, wo, ..., Wmin-1}-

Select vertioss g, de, ..., e in F{@)(T w W) such that the sum of their
degrees is as large as possible and f is as large as possible but still no
more than n— 1. Color blue the edges of the matehing M and all edges
ineidemnt to any . Color the remaining edges of & red. Since f<n—1,
¢ does not contain a blue nK;e Thus ¢ contains a red mK; . Let
thy Untly ooy Ymen—1 be the centers of the m red graphs K; ;. This set of
centers is digjoint from I, W and {wy, wa, ..., ¢}, and each center has
degree k in &. Hence t=n—1 and dg{u)=£& for all 4, l<i<m+n— L
Let U= {'ui. U, -aup ﬂm-m--i}a

By assumption, |E(G)|<(k+1)(m+n—1). Since §{G)=2,

B = (R I+ 10+ 2| W))/2= (k+ 1)(m +n—1).

Therefore there must be equality: ViF)=1v W u U, de(w)=2 for all w
in W, and dg{z)=4%k for all 2 in UuU I,

If k= 3, then a vertex v of I is adjacent to a vertex u of [J. The vertex
w could have been chosen in the matching M. This would imply that
de(u)=2, which contradicts the fact that dg(u)=3. Therefore k=2 and
{7 is a 2-regular graph with 3{m+n—1) vertices. If the edges of a cycle
are eolored red and blue alternately, the cyecle will contain at most one
monochromatic K;». SBinee G — (mK1p, nKy ), @ must contain at least
m-+n—1 cycles. Henee = (m -+ n—1)Ks, a contradiction to 6 € Ca 5. This
contradiction completes the proof of this case and of the theorem.

MULTIPLE COFPIES

If F — (m@, nH), how many disjoint copies of & (or H) must F contain ?
Clearly £ must contain at least m disjoint copies of &. If F is a complete
graph then F contains [|F(F)|/|V(@)|] = [r(m@, nH){|V(@F)|] disjoint copies
of &. It is plausible that every F such that F — (m@, nH) containa at
least [r(mG, nH)/|V(F)|] disjoint copiez of . In some specific cases this
will be shown to be true. A smaller general lower bound will be proved.

The magnitude of r(mfd, alf) iz given by the following result which
can be found in [2].

TEEOREM 4: (Burr-Erdos-Spencer). If |V(@)| =&, |V(H)| =1, foG) =i
and fy(H)=3j, then for some constant e,
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km +In— min (mi, nj)— 1 <v(mG, nH) < km+In— min (mi, nj)+ ¢,
where ¢ depends only on & and H.

It will be establighed that if F — (mf, nf) and { is the left hand side
of the inequality in Theorem 4, then either F' contains at least {/k disjoint
copies of @ or at least ([l disjoint copies of #. In fact the following stronger
statement will be proved.

THEOREM 6: If F — (m@, H), then G C F where
t=[(m|V(G)| + | V{H)| - So(H) - 1)[| F(G)]].

PROOF: Assume to the contrary that F — (mG, H) but G’ ¢ F.
Without loss of generality one can assume (f — 1)G0 C F. Let G, Gy, ..., G
be a set of disjoint copies of & in F. Let & be the set of vertices contained
in Gy, ..., @ It is possible that 8 is empty.

Color all of the edges of F incident with vertices of 8 blue and color
all of the other edges red. In this coloring there exists no red m6 and no
blue H. There is no red m, since this would be disjoint from the blue
{t—m)& and would imply tG C F. On the other hand, assume that there
is a blue H. Such an H must have at least V(H)- fo(H) vertices in §
sinee any collection of its vertices outside of 8§ must be independent.
Hence |V{&)|(i—m)=|8| = |V(H)| —fo(f). Thiz inequality yields

t= (| V(H)| — BolH) +m| VGV (G,
Since ¢ is an integer,
b= [m| V(@) + | V(H)| = ol H) + | V(@) — )| F(@)]=1+1,

a contradiction. This completes the proof.
There are several corollaries that follow immediately from this theorem.

COROLLARY 6: Let |V(G) =k V(H)=1, f(G)=i and fo(H)=j. If
F — (mG, nH), then

{a) sGCF where s=[(mk+nl—nj—1)/k] and
(b) tHCF where t=[{mk+nl—mi—1)/].

cORDLLARY T: If |V(G)| =k, fo(G)=1 and if m=n, then F — (mG, nf)
implies that F econtains at least [(mk-+nk—ni—1)/k] copies of G,

Note that in the notation of Corollary 6, if
rimE, nH)=km+n— min (mi, nj)—1

and F — (mG, nH), then either F' contains a [r(mG, nH)/k]¢ or a
[rim@, nH)/T1H In [3] it was proved that r(mKqe, nks)=2m | n—1. These
two facts give the following.

coroLLARY 8: If F — (mK2, nKs) and m>n, then the line indepen-
dence number fi(F) = r(mKs, nK2)/2 and this bound is the best possible.
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The following is very similar to Corollary 8 but does require an additional
argument in one case,

cororLary §: If F— (mKj, nkKs), then the number of independent
triangles in F is at least [r(mKga, nhy)/3] and this bound is the best
possible.

PrROOF: The complete graph on r{imKg, nKs) vertices implies that the
bound given is the best possible. One can show directly that if ' — (K3, Ka),
then F must have at least two independent triangles. So assume m=n
and m=2 In [2] it iz shown that r(mKg, nK:)=3m+2n Hence the
corollary follows from Corollary 7 if [(3m+ 20— 1)/3]=[{3m+ 2r)/8]. Thus
only the case when [(3m+ 2n—1)/3] <[(3m+ 2r)/3], or equivalently, when
n is a multiple of 3 remains to be considered,

Let n=30 and assume F has at most [(Im+2n)/3]—1=m+2I—]
independent triangles. It will be shown that this leads to a contradiction.
Let {(h, Gq, ..., Gar} be 21 disjoint triangles in F. Color the edges of each
Gy blue as well az those edges with precisely one endvertex in a &,
1<i< 2l Also color blue the edges between a Gyand a G5 if 1 <4, j<21-1,
Color the remaining edges red. In this coloring of /" any blue triangle
must contain at least two vertices from the vertices of the G4 1 <4< 3L
Also the vertices of Gy are contained in only one blue triangle, namely
G'2;. Therefore there exists at most [(6]—1)/2]=3—1 independent blue
triangles. Any red triangle cannot use a vertex of any &y, 1 << 2{. Hence
if ¥ contains a red mKg, there would exist m + 2l independent triangles
in F. This implies F o {(m&z, nKy), a contradiotion.

QUESTIONS

There are two questions left unanswered in this paper. The first involves
Theorem 1 and whether this result can be extended to arbitrary star
forests. This leads to the following conjecture:

If

F1= U.Kl,:ﬂ with M=Ne ... =Ny
=1

i
Fa= | Ky e with mysme... 2my,
=1

then #(Fy, Fo)= 33+ Ik where ly= max {m+my—1:i+j=k}

If my=mn for all { and my=m for all j, then the conjectured value Z:f'i e
agrees with the number #(sK; ;, tK, ) proved in section 1. The major
question left open in section 2 of this paper ia the following:

If F— (n, nfd), must ¥ contain [r(n@, n@)/| V()] copies of G'%
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