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INTRODUCTION

Let F, 0 and H be finite, undirected graphs without loops or multiple
edges. Write F --> (G, H) to mean that if the edges of F are colored with
two colors, say red and blue, then either the red subgraph of F contains
a copy of G or the blue subgraph contains a copy of H. The class of all
graphs F such that F --~- (G, H) will be denoted by . ( G, H). A classical
theorem of F . P. Ramsey guarantees that W(G, H) is non-empty .

The class M(G, H) has been studied extensively, particularly various
minimal elements of the class . The generalized Ramsey number r(G, H),
which is the minimum number of vertices of a graph in M(G, H), has
received the most attention . Surveys of recent results can be found in
[1] and [7] . The size Ramsey number r(G, H), which is the minimum number
of edges of a graph in R(G, H), was introduced in [4] . In the first section
of this paper the size Ramsey number r(mKl,k, nK1,t) will be calculated,
where sK1, t denotes s disjoint copies of the star K1, t . Moreover all graphs
F with r(mK1,k, nK,,t) edges for which F -->- (mKI,k, nK1,t) will be de-
termined. In the second section the following question will be considered .
If F --> (mG, nH), how many disjoint copies of G (or H) must F contain?
In general, upper and lower bounds on the number of copies of G will be
given, and in some special cases, exact results will be obtained .

Notation not specifically mentioned will follow that of Harary [6] . For
a graph G, V(G) is the vertex set and E(G) is the edge set . The degree
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of a vertex v of G will be written do(v) . The maximum degree of a vertex
of G will be denoted by 4(G) and the minimum degree by 6(G) . The
notation for the independence number and the line independence number
will be (lo(G) and /l1(G) respectively. The graph consisting of n disjoint
copies of G will be written nG. The graph G - v is the graph obtained from
G by deleting a vertex v of G . Also as usual, [ ] is the greatest integer
function and ISI is the cardinality of the set S .

SIZE RAMSEY NUMBERS FOR STARS

For positive integers k and l, it is easily seen that K,,k+t-i

	

(K,,k, K1,a)
and K3 --~" (K,,2, K,,2) • It follows immediately that

(m+n-1)Kl,k+t-,

	

(MK1,k, nK1,1)
and

tK3 V (m+n-t-1)K,,3 -> (MK1,2, nK,,2)

for positive integers m and n and for 1 G t < m + n -1 . This implies

r(mKi,k, nK1,1) c (m+n-1) (k+l-1),

which is one of two inequalities needed to prove the following theorem .

THEOREM 1 : For positive integers k, l, m and n,

r(mKl,k, nK,,l)=(m+n-1)(k+l-1) .

Moreover if G (mK,,k, nK,,l) and has (n+m-1)(k+l-1) edges, then
G= (m+n-1)Kl,k+l-, or k=1=2 and G=tK3 V (m+n-t-1)K,,á for some
1 <tcm+n-1 .

If the theorem is not true, then for some k and l there exists a counter-
example, and hence a minimal counterexample (no proper subgraph is a
counterexample) . Let Ck,l denote the class of all such minimal counter-
examples. If G is in Ck,i then there exist positive integers m and n such
that

1) G ->- (mK,,k, nK1,a)
2) JE(G)Jc (m+n-1)(k+l-1)
3) G (m+n-1)Kl,k+a-, and G tK3 U (m+n-t-1)K1,á for k=1=2 and

any t, l<t<m+n-1 .

The minimality of G implies that no proper subgraph H of G satisfies
1), 2) and 3) for any m and n . Of course any graph G in Ck,l has parameters
m and n associated with it . If such graphs are denoted by Ck,i(m, n),
then Ck,l is the union of the classes Ck,l(m, n) .

To prove Theorem 1, it is sufficient to prove that Ck ,l=~ for all k and l .
The purpose of the next two lemmas is to describe properties of Ck,l
which will lead to showing it is empty . For convenience it will be assumed
throughout the remainder o f this section that k > l .
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LEMMA 2 : If G E Ck , l, then
i) ~E(G)J>k+l-1 and
ü) 4(G)<k+l-2 .

PROOF : 1) Assume JE(G) I < k d- l -1 . Then certainly G -> (KI,k, Ki.,1),
G * Kl,k+l-1, and G 7,=K3 if k = 1=2 . If JE(G) ~ < k + l - 2, the edges of a
can be colored such that there exist no more than k-1 red edges and
1-1 blue edges . If E(G)=k+1-1, then the coloring of any 1-1 edges
of G blue must leave the remaining edges forming a Ki,k . This cannot
occur if G has two edges which are not incident. All pairs of edges of G
being incident implies that G = Ki,k+l-1 or G = K3 . This contradiction
completes the proof.

ü) Let G be a graph in Ck,i(m, n) and assume v is a vertex of G of
degree at least k + l -1 . It will be shown that this leads to a contradiction .
Either m > 2 or n > 2 by the first part of this lemma. The case m > 2 will
be considered . A symmetric argument for n > 2 can be given .

If CT-v 7- > ((m-1)Kl,k, nK1,1), then the edges of G-v can be colored
such that there exists no red (m-1)Kl,k and. no blue nK,.,l . This coloring
can be extended to G by coloring red the edges incident to v . In this
coloring G contains no red mK,,k or blue nK,,l, a contradiction. Therefore
G-v -> ((m-1)Kl,k, nK,,1) .
The minimality of G implies that G - v = (m + n - 2)Kl,k+l-1 or that

k=1=2 and G-v=tK3 u (m+n-t-2)K1,á . Since

JE(G) I < (m+n-1)(k+l-1),

the vertex v has degree precisely k + l -1 . This is of course true not for
just a fixed vertex but for each vertex v of G of degree at least k+l-1.
Using the fact that v is an arbitrary vertex of degree at least k + l -1,
it is easily checked that this implies that G = K2,k+a-1 or k = l = 2 and
G=K4. Since K2,k+l-1 (2Kl,k, K1,a) and K4 / > (2K,,2 , K1 , 2 ), this gives
a contradiction .
The following lemma will be needed to describe some colorings of

graphs used in the proof of Theorem 1 .

LEMMA 3 : If G is an element of Ck,,(m, n), then there exists a sequence
of vertices vl, v2, . . ., vn+m.-1 of G such that dGi-1(vi) > k where Go = G and
Gi=G-vi-v2 . . . - Vi-

PROOF : Select vl to be a vertex of maximal degree in G and inductively
select vi to be a vertex of maximal degree in G - vl - v2 . . . - Vi-1 = Gi_l-
If the vertices v i , v2, . . ., vn+m-1 do not satisfy the conclusion of the lemma,
then 4 (G,-) < k for some r < n + m - 2 . Assume such an r exists. Color the
edges of G incident to vi blue for each i < n -1 . Color the remaining edges
of G red. Clearly G contains no blue nK,,t . Also G contains no red mK,,k
since 4 (G r ) < k and every red .K l , k must contain a vertex of the set
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{Vao . . ., v,-} (which might be empty) . This contradiction completes the
proof.

Let G be an element of Ck,l(m, n) . Two colorings of the edges of G will
be described. Both colorings will be used to give lower bounds on the
number of edges in G.

a-COLORING

Select arbitrary vertices v1, v2, . . ., vn _1 of G, and let ri be the degree
of vi in G - vl - . . . - vi-1 . Denote G - v1- v2 - . . . - vn_1 by H. Color the
edges incident to any vi blue. Let el5 e2 5 . . . be an arbitrary ordering
of the edges of H and color them sequentially using the following rule .
An edge ei is colored blue unless it is incident to a vertex that has l -1
edges of H incident to it that have already been colored blue . Then it
is colored red .

In the a-coloring of G, every blue K1,1 must contain one of the vertices
v1, v2, . . ., v n _l . Thus G contains no blue nK,,l . Therefore G, and hence H,
must contain a red mK,,k . Each edge of a red K1 ,k was colored red because
one of its endvertices was incident to l -1 blue edges. Since 4 (H) c k + l - 2,
the center of a red Kl ,k can be incident to no more than l-2 blue edges .
Thus every vertex of a red K1 ,k except the center is incident to l-1
blue edges in H. Therefore the sum of the degrees in H of vertices of a
red K1 ,k is at least k+kl. This implies that G has at least

n-i
ri+m(k+kl)/2 edges .

2=i

#-COLORING

This coloring is the same as the a-coloring except the roles of red and
blue, k and l, and m and n are interchanged. The #-coloring implies that
G has at least

m-1
ri+n(l+lk)/2 edges .

4=1

PROOF OF THEOREM 1 : To prove the theorem it is sufficient to show
that Ck,1= ~ for all positive integers k > l . This will be done by an analysis
of various cases of k and l . Let G be an element Of Ck,1(m, n) for some
m and n .

1=1
Lemma 2 implies J(G)>k . This contradiction proves that Ckj = ~

1>4, or 1= 3 and k>5
Since G is in Ck,1(m, n), ~E(G)J < (m+n-1)(k+l-1) . The a-coloring in

conjunction with Lemma 3 gives the following inequality
(a) (n-1)k+m(k+kl)/2<(m+n-1)(k+1-1) .
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Likewise the P-coloring and Lemma 3 imply
(b) (m-1)k+n(l+lk)/2 < (m+n-1)(k+1-1) .
These two inequalities can be rewritten in the following useful forms
(a') m(k-2)<2(n-1)
(b') n(1-2)(k-1)<2(m-1)(1-1)

It is straightforward to check that both inequalities (a') and (b') are
never satisfied when k > l > 4 or when l = 3 and k > 5 . In fact (a') implies
m < n while (b') implies m > n . This contradiction completes the proof
of this case .

1=3, k=4
Select vertices v1, v2, . . ., vm+n-1 as in Lemma 3 . Lemma 3 guarantees

that dGt_1 (vi) > 4 for all i, but in this case it can be assumed that
doi_ 1(v2) > 5 for all i . To see this is true, assume 4(G,)<4 for some
r<n+m-2. Color the edges red which are incident to vl, v2 i . . ., vt where
t = max {m -1, r}, and if m < r color the remaining edges incident to
VM, . . ., yr blue. The graph Or can be embedded in a 4-regular graph H.
By Petersen's Theorem [8], the graph H is 2-factorable with say factors
Hl and H2 . Color the edges of Hl r1 Or red and the edges of H2 0 Or blue .
The coloring just described implies G L, (mK1,4, nK,,3) ; this contra-
diction implies that 4 (Or) > 5 .

In this case the a-coloring and the #-coloring give the following in-
equalities .

5(n-1) -1 -8m<6(m+n-1)
5(m - 1) + 15n/2 < 6(m + n - 1) .

Just as in the previous case, both inequalities cannot be satisfied simul-
taneously. This contradiction completes the proof of this case .

1=k=3
Lemma 2 implies that 4 (G) < 4 . By Petersen's Theorem [8] the graph

G is the edge-disjoint union of two subgraphs each with no vertex of
degree more than 2 . Thus the edges of G can be colored such that no
vertex is incident to more than two red edges or two blue edges . This
implies C3,3=0-

1=2
Lemma 2 implies 4 (G) < k . It can be shown that S(G) > 2 . To show this,

suppose the contrary . Then there exists a vertex v of degree 1 . Let w
be the vertex of G adjacent to v in G. Thus w has degree at most k-1
in G - v . The minimality of G implies that the edges of G - v can be
colored such that there exists no red mK,,k and no blue nK,,t . This
coloring can be extended to G by coloring the edge vw . Since w has degree
at most k -1 in G - v, the edge vw can be colored such that it is not in
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a red K1 , k or a blue K1,2 . This implies G

	

(mK i , k, nK1,2), a contra-
diction. Hence 6(G)>2 .

Select vertices v1, v2, . . •, vm+n-I as in the proof of Lemma 3 . Each vi
is of degree at least k in Gi. Since 4 (G) c k, the set I = {vl, . • •, vm+n-I} is
an independent set of vertices each of degree k in G. Consider the bipartite
graph B with parts I and V(G)\I, where the edges of B are the edges
of G between I and V(G)\I . Each vertex of I has degree k in B. Since
4 (G) < k, k is also an upper bound on the degree in B of vertices in V(G) J .
Therefore a theorem of Philip Hall [5] implies that there exists a matching
M of B using all of the vertices of I . For each i, 1 < i < m + n -1, let wi
be the vertex matched with vi . Let W = {w1, w2, • • •, wm+n-I}-

Select vertices U1, u2, . . ., ut in V(G)\(I V W) such that the sum of their
degrees is as large as possible and t is as large as possible but still no
more than n-1 . Color blue the edges of the matching M and all edges
incident to any ui . Color the remaining edges of G red . Since t c n -1,
G does not contain a blue nK,,2 . Thus G contains a red mK,,k . Let
Un, Un+l, • • •, um+n-I be the centers of the m red graphs Ki , k . This set of
centers is disjoint from I, W and {Ul, u2, . . ., ut}, and each center has
degree k in G. Hence t=n-1 and dG(ui)=k for all i, l<i<m+n-1 .
Let U= {ul, u2, • • •, um+n-I} .
By assumption, IE(G)J<(k+1)(m+n-1). Since 6(G)>2,

IE(G)I>(k(III+IUI)+2IWI)/2=(k+l)(m+n-1) .
Therefore there must be equality : V(G)=I U W U U, dG(w)=2 for all w
in W, and dG(z) = k for all z in U V I .

If k> 3, then a vertex v of I is adjacent to a vertex u of U. The vertex
u could have been chosen in the matching M. This would imply that
dG(u) = 2, which contradicts the fact that dG(u) = 3 . Therefore k = 2 and
G is a 2-regular graph with 3(m + n -1) vertices . If the edges of a cycle
are colored red and blue alternately, the cycle will contain at most one
monochromatic K1,2 . Since G -~ (mK1,2, nK,,2), G must contain at least
m + n -1 cycles . Hence G = (m + n -1)K3 , a contradiction to G E C2,2 . This
contradiction completes the proof of this case and of the theorem .

MULTIPLE COPIES

If F --> (mG, nH), how many disjoint copies of G (or H) must F contain?
Clearly F must contain at least m disjoint copies of G . If F is a complete
graph then F contains [IV(F)11IV(G)I]>[r(mG,nH)/IV(G)I] disjoint copies
of G. It is plausible that every F such that F (mG, nH) contains at
least [r(mG, nH)11 V(G)11 disjoint copies of G. In some specific cases this
will be shown to be true. A smaller general lower bound will be proved .
The magnitude of r(mG, nH) is given by the following result which

can be found in [2] .

THEOREM 4 : (Burr-Erdös-Spencer) . If I V(G)I =k, I V(H) I =1, flo(G)=i
and Po (H) -j, then for some constant c,
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km + In - min (mi, nj) -1 c r(mG, nH) c km + In - min (mi, nj) + c,
where c depends only on G and H.

It will be established that if F (mG, nH) and t is the left hand side
of the inequality in Theorem 4, then either F contains at least t/k disjoint
copies of G or at least t/I disjoint copies of H. In fact the following stronger
statement will be proved .

THEOREM 5 : If F -> (mG, H), then tG C F where

t=[(ml V(O) I +I V(H)I -flo(H)-1)IIV(G)1] .

PROOF : Assume to the contrary that F (mG, H) but tG F.
Without loss of generality one can assume (t-1)G C F . Let 01, G2 , . . ., Gt_1
be a set of disjoint copies of G in F. Let S be the set of vertices contained
in Gm, . . ., Gt_l . It is possible that S is empty .

Color all of the edges of F incident with vertices of S blue and color
all of the other edges red . In this coloring there exists no red mG and no
blue H. There is no red mG, since this would be disjoint from the blue
(t-m)G and would imply tG C F . On the other hand, assume that there
is a blue H. Such an H must have at least V(H) -(lo(H) vertices in S
since any collection of its vertices outside of S must be independent .
Hence IV(G)I(t-m)=ISI IV(H)I-fio(H) . This inequality yields

t> (I V(H)I -ao(H)+ml V(G)I )II V(G)I

Since t is an integer,

t>[(mJV(G)I +I V(H)I -go(H)+I V(G)1-1)I1 V(G)1]=t+1,

a contradiction . This completes the proof.
There are several corollaries that follow immediately from this theorem .

COROLLARY 6 : Let I V(G)I =k, V(H)=I, /3 o(G)=i and (3o(H)=j . If
F (mG, nH), then

(a) sGCF where s=[(mk+nl-nj-1)/k] and
(b) tHCF where t=[(mk+nl-mi-1)/I] .

COROLLARY 7 : If I V(G) I = k, fio(G) =i and if m > n, then F --->- (mG, nG)
implies that F contains at least [(mk+nk-ni-1)/k] copies of G.

Note that in the notation of Corollary 6, if

r(mG, nH) = km + In - min (mi, nj) -1

and F -~ (mG, nH), then either F contains a [r(mG, nH)/k]G or a
[r(mG, nH)/I]H In [3] it was proved that r(mK2, nK2)=2m+n-1 . These
two facts give the following .

COROLLARY 8 : If F (mK2, nK2) and m > n, then the line indepen-
dence number fil(F) > r(mK2, nK2)/2 and this bound is the best possible .
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The following is very similar to Corollary 8 but does require an additional
argument in one case .

COROLLARY 9 : If F --> (mK3, nK3), then the number of independent
triangles in F is at least [r(mK3, nK3)/3] and this bound is the best
possible .

PROOF : The complete graph on r(mK3, nK3) vertices implies that the
bound given is the best possible . One can show directly that ifF (K3, K3),
then F must have at least two independent triangles. So assume m >- n
and m > 2 . In [2] it is shown that r(mK3, nK2) = 3m + 2n . Hence the
corollary follows from Corollary 7 if [(3m + 2n - 1)/3] = [(3m + 2n) /3] . Thus
only the case when [(3m+2n-1)/3]<[(3m+2n)/3], or equivalently, when
n is a multiple of 3 remains to be considered .

Let n = 31 and assume F has at most [(3m + 2n)/3] -1= m+21-1
independent triangles . It will be shown that this leads to a contradiction .
Let {G1, 02 , . . ., G21} be 21 disjoint triangles in F. Color the edges of each
Gi blue as well as those edges with precisely one endvertex in a Gi,
1c i < 21 . Also color blue the edges between a Gi and a Gi if 1 < i, j < 21-1 .
Color the remaining edges red . In this coloring of F any blue triangle
must contain at least two vertices from the vertices of the Gi, 1 c i C 21 .
Also the vertices of Gel are contained in only one blue triangle, namely
G21 . Therefore there exists at most [(61-1)/2]=31-1 independent blue
triangles . Any red triangle cannot use a vertex of any Gi, 1 c i c 21 . Hence
if F contains a red mK3, there would exist m + 21 independent triangles
in F. This implies F f, (mK3, nK3), a contradiction .

QUESTIONS

There are two questions left unanswered in this paper . The first involves
Theorem 1 and whether this result can be extended to arbitrary star
forests . This leads to the following conjecture :

If
8

and

then r(F1, F2) _ Ik±2 l k where lk = max {ni + mi -1 : i + j = k} .
If ni=n for all i and mi=m for all j, then the conjectured value lk±2 lk

agrees with the number r"(sK,,n , tK,,m ) proved in section 1 . The major
question left open in section 2 of this paper is the following

If F

	

(nG, nG), must F contain [r(nG, nG)/I V(G)J] copies of G?
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