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In this note,first of all, I state a few older

problems whose solution or partial solution is long

overdue and which in some cases were neglected .

	

I

also state a few more recent questions .

	

I prove in
detail a recent theorem of Selfridge and myself and

of Ulam and myself .

	

I try to give as exact references

as possible but I am willing (and eager) to correct

any mistakes which are pointed out to me .

1 .	Conjecture of Faber, Lovász and myself :
In September 1972 at Boulder at a party held for

Lovász we conjectured :

	

Let

	

JAkl = n,

	

1 < k < n,

JA
k1

() A
k2

	

< 1,

	

1 < k I < k 2 < n .

	

Is it then true
n

that we can color the elements of U A

	

by n
k=l

	

k
colors so that each A contains an element of each

color? We immediately realised that the conjecture

fails for n + 1

	

sets, but did not immediately

realise the difficulties of proving the conjecture .

Greenwell and Lovász proved that the conjecture is

true if the number of sets is < n 2 l . No further

results are known,and I offer 300 dollars for a

proof or disproof of our original conjecture .

The following modification of our conjecture is

of interest .

	

Let A 1 , . . .,A )I be a family of sets .

The graph

	

G(A,, . . .,A91)

	

is defined as follows :

	

The
k

vertices of our graph are the elements of U AiA
i=1

Two vertices are joined if they belong to the same A i .

PROC . 9TH S-E CONF . COMBINATORICS, GRAPH
THEORY, AND COMPUTING, pp . 29-40 .



Put

	

max IA .~ = n,

	

max

	

IA . f A .

	

= u .

	

f(n ;Q,u)
1<i<R

	

'

	

1<i<j<Q

denotes the maximal chromatic number of G(A l	AR ) .

Our conjecture is equivalent to

	

f(n ;n,l) = n .

	

It

easily follows from a theorem of de Bruijn and myself

that no graph with the parameters n,n,l

	

can contain

a

	

K(n + 1) .

	

Perhaps it would be of interest to de-

termine the smallest mk for which f(n ;mk ,l) > n + k .

At the moment I do not even have a plausible conjec-

ture, but perhaps this will not be hard to find .

	

Is

it true that the graphs for which the chromatic number
of G(A1, . . .,Amk )

	

is

	

> n + k

	

always must contain a

K(n + k) 2 ?

N . G . de Bruijn and P . Erdős, A colour problem
for infinite graphs and a problem in the theory of
relations, Nederl . Akad . Wetonnh .

	

Proc . Ser . A . 54
(1951), 371-373 .

2 .	Some old extremal problems .

Denote by G(n ;k) a graph of n vertices and k

edges .

	

V. T . S6s and I conjectured 15 years ago that

every

	

G(n ;['-Z(k - 1)n + 1])

	

contains every tree with

k edges .

	

This is trivial for a star and Gallai and

I proved it for a path .

	

It is surprising that no

progress has been made with this simple and useful

conjecture .

	

I offer 100 dollars for a proof or

disproof .

Let G be a bipartite graph . f(n ;G) is the

smallest integer for which every G(n ;f(n ;G)) con-

tains G as a subgraph . Simonovits and I conjec-

tured that for every rational a, 1 < a < 2 there

is a G for which

(1)

	

lim f(n ;G)/n
l+a

-

	

ca(G), 0 < ca(G) < ~ .
n=°

Conversely for every G there is a rational a

which satisfies (1) . 1 offer 300 dollars for a proof

or disproof .



We have no guess for the possible values of c a(G) .
My reason for offering so much more for the second

conjecture is that I am not entirely sure that a trivial

counterexample can not be found to the first conjecture .

Finally I mention a problem of Sauer and myself .

Denote by f3 (n)

	

the smallest integer for which every

G(n ;f 3 (n))

	

contains a regular subgraph of valency

three .

	

Almost nothing is known about

	

f 3 (n) ;

	

almost

certainly f3 (n) < n l+e .

	

We do not even know if

f3 (n) < Cn

	

is true or false .

	

I offer 100 dollars for

an answer .

For further problems and results see P . Erdős,

Extremal problems on graphs and hypergraphs, Hypergraph

Seminar, Lecture Notes in Math ., Springer Verlag no . 411,

p . 75-84 and Some recent progress on extremal problems

in graph theory, Cong . Num . XIV, Proc . Sixth South-

eastern Conf . on Combinatorics, Graph Theory and Com-

puting, Florida Atlantic University, 1974, 3-14 .

A comprehensive book on extremal graph problems

by B . Bollobás will soon appear .

3 .	Some problems on probabilistic graph theory .

Let G(n)

	

be a graph of n vertices .

	

It easily

follows by probabilistic graph theory that for every

0 < a <

	

there is a graph G(n ;[an 2 ])

	

so that if

m1 log n

	

then every spanned subgraph of m vertices

has

	

(1 + 0(1)) a m 2

	

edges .

	

It is easy to see that

this result is best possible in the following strong

sense :

	

Every G(n ;[an 2])

	

has two subgraphs G,

	

and

G2

	

of [C log n]

	

vertices each,so that

	

(e(G)

	

is the

number of edges of G)

e(Gl)
	 2 ' a +

(C log n)

e(G2)

(C log n) 2 < a

h l (C) + o(1)

	

and

h 2 (C) + 0(1) .



The best values of hl (C)

	

and

	

h 2 (C)

	

are,of course,
not known ("of course",since their determination con-
nects with Ramsey theory) ; h l (C) > 0,

	

h 2(C) > 0

	

holds

for every C ;

	

also h l (C) + 0, h 2 (C) - 0 as

	

C } - .

By probabilistic methods it is not hard to show

that for every 0 < c < ; there is a graph G(n ;[nl+c])

which has no triangle and every spanned subgraph of an

vertices, 0 < a < 1, has

	

(1 + o(1))a l+c n l+c

	

edges .

I do not know if this result remains true for h< c< 1 .
The uniform distribution of edges becomes impos-

sible if further conditions are imposed on the graph ;

e .g ., it is easy to see that there is no G(n ;[cn 2 ])

which contains no triangle,and for which every spanned

subgraph of

	

[n]

	

vertices has

	

(1 + o(1))cn 2 / 4 edges .

In fact this uniform distribution probably implies that

our graph must contain

	

(for n

	

~)

	

arbitrarily large

complete graphs .

It is true that almost all graphs

	

G(n ;[Cn])

	

con-

tain a path of length > cn 2 .

	

("Almost all" here means

all but

	

of the graphs

	

G(n ;[Cn]) .

	

I con-

jectured this and in fact believed that c tends to 1

as C tends to infinity . Szemerédi disagrees ; he be-

lieves that for every C the longest path is almost

surely o(n) .

	

At present we can not decide who is
right .

P . Erdős and J . Spencer, Probabilistic methods in
combinatorial, Academic Press and Hungarian Academy of
Sciences, 1974 .

P . Erdős, Some problems in graph theory, Hypergraph
Seminar, Lecture Notes in Math 411, Springer Verlag
187-190 .

P . Erdős, Some new applications of probability
methods, to combinatorial analysis and graph theory,
Cong . Num . X, Proc . Fifth Southeastern Conference on
Combinatorics, Graph Theory and Computing, Florida
Atlantic University, 1974, 39-51 .
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Further problems .

Now I state a few (of the many) problems which

arose in our
n(G l ,G 2 )

	

is

graph G of

edges of G

I contains

problem is to

P n is a path

that

and

(2)

	

1 i m
n=-

work with Faudree, Rousseau and Schelp .

the smallest integer for which there is a

n(G1 ,G 2 )

	

edges so that if we color the

with two colors

	

I

	

and

	

II, either, color

G 1 , or color I, G 2 .

	

The most annoying

determine or estimate n(P n ,P n ), where

of length n .

	

We could not even prove

n(P n ,P n )/n =

(3)

	

lim n(Pn ,P n )/n 2 = 0 .

I give 25 dollars for a proof or disproof of

either (2) or (3) (i .e . 50 for both) and 100 dollars

for an asymptotic formula for n(P n' P0 '

Denote by f(n) the largest integer for which

there is a

	

G(n,f(n))

	

so that

n(K3 ;G(n ;f(n)) < 2n - 1 .

f(n) > cn log n/loglog n .

	

f(n) < n 5/3+e

	

follows

easily by the probability method . We have no idea of

the true order of magnitude of f(n) .

	

(n(G l ,G2 )

	

is

the smallest integer so that if we color the edges of

K(n(G l ,G 2 ))

	

(i .e . the edges of the complete graph of

n(G l ,G2 )

	

vertices) by two colors, either color

	

I

contains

	

G1

	

or color

	

I, G 2 ) .

Let F(n)

	

be the largest integer so that for

every 2 < F(n) and every G(n ;R)

n(K3 ;G(n ;Q)) < 2n - 1 .



Clearly f(n) > F(n) .

	

It seems certain that
f(n)/F(n) ; -,

	

F(n)/n + - .

	

We have no idea of the
true order of magnitude of F(n) and f(n) .

Denote by C k the circuit of k edges . Graver,
Yackel and I proved that

(4)

	

c 1 n 2 /(log n) 2 < %(C 31 Kn )< c 2 n 2 loglog n/log n .

It would be interesting to obtain an asymptotic

formula for n(C 3 ,Kn ), but this will probably be very
difficult .

	

It seems certain that for n > n 0 (e)

(5)

	

,L(C 4 ,Kn )

	

< n 2-s

for some e > 0 independent of n .

	

I give 100 dollars

for a proof or disproof of (5) .

So far only one of our quadruple papers has ap-

peared :

	

P . Erdős, R . J . Faudree, C . C . Rousseau and
R . H . Schelp, Generalized Ramsey theory for multiple

colors, J . Comb . Theory, ser . B 20(1976), 250-264 .

Several more papers will soon appear, some jointly
with S . Burr .

The reader can find lots of information in the

excellent review article by S . A . Burr, Generalized

Ramsey theory for graphs, A survey,in "Graphs and

combinatorics 1973" (R . Bari and F . Harary, Editors)
Springer Verlag, Berlin, 1974 .

	

A new survey by Burr,

a survey of noncomplete Ramsey theory for graphs, will

soon appear .

For the results of Graver, Yakel and myself,see

e .g ., my book with Spencer quoted in the previous

chapter .

n(C m ,Kn ) < {(m - 2)(n l / k+2) - 1}n - l ;k = [ ]

is proved in our quadruple paper "On cycle-complete

graph Ramsey theorems" which will soon appear in the

Journal of Graph Theory .



5 . Erdős-Rado conjecture on A-systems .

Let f3 (n) be the largest integer with the prop-

erty that

	

JAil = n, 1 < i < f 3 (n),

	

and no three A's

have pairwise the same intersection .

	

Rado and I con-

jectured more than twenty years ago that there is an

absolute constant C so that

(6)

	

f3(n) < C n .

I offer 500 dollars for a proof or disproof of
(6) . The best upper bound is due to Joel Spencer ; he

proved that for n > n 0 (e)

f3 (n) < (1 +

	

)n n!

Abbott, Hanson and others obtained lower bounds,

Abbott in particular proved that f 3 (3) = 20 .

P . Erdős and R . Rado, Intersection theorems for
systems of sets I and II, J . London Math . Soc . 35
(1960), 85-90 and 44(1969), 13-17 .

P . Erdős, E . Milner and R . Rado, Intersection
theorems for systems of sets III, J . Australian Math .
Soc . 18(1974), 22-41 .

See also a forthcoming paper of Szemerédi and
myself where several further related problems will be
stated .

	

Our paper will soon appear in the Journal of
Combinatorial Theory .

6 .	Work with Ulam and Selfridge .

Now I give full details of some work which I did

with Ulam on a combinatorial problem and with Selfridge

on a problem in combinatorial number theory . Both re-

sults are very far from being complete--but if we live
we hope at least partially to remedy this situation .

First I discuss my joint work with Selfridge
which is closer to being complete : Let PO'P1 " " , Pu
be a set of u + 1

	

primes . An interval of length x
u

	

X
can expect to contain roughly speaking

	

I
i=0 Pi



multiples of the p's ; if the interval is short it

may happen that all or most of the multiples of the

p's may coincide Thus to avoid trivial cases we

henceforth assume x > 2p u, We prove the following

Theorem 1 .

	

Let u = k 2 - 1 . To every e > 0
there is a sequence of primes p 0 < . . . < p u and an

interval I of length

	

(3 - e)p u , which contains
exactly 2k distinct multiples of the p's .

	

In other

words the number of distinct integers a
i

in I for

which a
i

	

0 (mod p n) for some n, 0 < n < u is 2k .

We further show that this result is best possible

in the following strong sense :

	

Every interval of

length > 2p u contains at least 2k distinct mul-

tiples of the

	

p's .

This result is complete and best possible as it

stands . Unfortunately we know next to nothing for

intervals longer than 3p u .

	

In particular,is it true

that for every C and a there are primes p 0 < . . .<p u

and an interval of length > Cp u which contains fewer

than cu distinct multiples of the p's? At present

we can not answer this question .

First we prove that our Theorem is best possible .

In other words we prove that if I has length > 2p u

then it contains at least 2k distinct multiples of

the

	

p's .

	

Let

	

(a,b)

	

be the interval I,

	

b - a > 2p
U*

Denote by

	

I l

	

the interval

	

(a, a + II)

	

and by

	

I 2

the interval

	

(a + ~I~, b) . Both of these intervals

U

contain at least

	

X

	

> k2 multiples of the
i=0 2 pi,

p's (counted by multiplicity) . If no m in I is a

multiple of more than k p's then clearly there are

at least 2k distinct multiples of the p's • in I .

Thus assume that, say in I l l there is an integer m

which is divisible by n p's, n is maximal and n> k.



2
Then in I 1

	

there are at least 121 distinct multi-
ples of the p's

	

(where

	

{x}

	

is the least integer not
less than

	

X) .

Let

		

p	p •

	

be the p's which divide

	

m .
~1

	

~n
s .

Consider the smallest s j > 0 for which m + 2 3 pi i

is in

	

1 2 - such an

	

s j

	

clearly exists .

	

The numbers
s .

m + 2 J p i

	

are clearly all distinct ; thus

	

I

	

contains
~

	

2 .
at least

	

n + {

	

} > 2k distinct multiples of the

P's,

	

as stated .
Now we prove the main part of our Theorem .

First we need a Lemma which is of some independent

interest :

Lemma .

	

Put u = k 2 - 1 .

	

For every k and arbi-
trarily large N there are k 2 primes

N < p0 < < p
u

<

Pi

	

p0

	

pi+tk

	

ptk°

N + (log N) k+3

satisfying for every 1 < i < k - l ;l < t < k - 1

In other words there are k sets of k primes

whose internal structure is the same .

Probably very much more is true : there is an f(k)

and infinitely many primes p so that all the numbers

p + tf(k), 0 < t < k 2 are primes--in fact consecutive
primes . Needless to say it is quite hopeless at present
to prove this conjecture and fortunately we do not need

it .

The proof of the Lemma is by a simple counting

argument .

	

It follows from the prime number theorem

(or a more elementary theorem) that for every L there

is an interval

	

(x, x + L) which contains more than



log x primes .

	

Denote these primes by

x < ql < '

	

< qw < x + L, w > 2 1o9 x

Consider the k differences quk+l

	

q(u-1)k+1'

We only retain those differences which are less than

4k log x ; clearly,there are at least	 L	4k log x

such differences . The number of patterns for these k
primes

	

{q(u-1)R+1'" ''quk}

	

is clearly less than

(4k log x)
k+1 .

	

Thus if L > (4k log x)
k+2

	

there are

at least k k-tuples

	

of primes giving the same pat-

tern, which completes the proof of our Lemma .
Now using the Chinese remainder theorem we are

ready to complete the proof of our Theorem . Put

k-1

	

k-1

a i =

	

pik+j' ~i

	

Ó PQk+i' 0 < i < k - 1 .

k-1

	

k-1

	

u
Clearly TT a • = Tr g • = 7f p j . Now we determine

i=0

	

i=0

	

j=0

x (mod Tfpj )

	

as follows :

x + p i = 0 (mod S 0, x + pik - p0 (mod ai ),

0 < i < k - 1 .

A simple argument shows that the interval

(x - p 0 + 1, x + 2p 0 - 1)

	

of length

	

(3 - e)p u

	

con-

tains only 2k multiples of the p's ; namely,the

unique multiples of a l " " ' a k ;S 1 " .. '~k'
Unfortunately if the interval has length

	

(3+ c)p u

so to speak "all hell breaks loose" and we lose con-

trol of the set of multiples of the p's .

	

We hope to

return to this subject at a later occasion .

	

The fol-

lowing related problem is also interesting :

	

Determine

the smallest

	

h(u)

	

so that if

	

p l < . . . < p u

	

is a

sequence of u primes, every interval of length

f(u)p u contains an integer divisible by precisely one

p .

	

Many related questions can be asked .



Ulam and I considered the following combinatorial

problem :

	

Let

	

ISI = n

	

be a set .

	

Split the 2 n

	

sub-

sets of S into two classes .

	

Determine the largest

integer f(n) so that there always is a family of
f(n)

	

sets in the same class which is closed with re-

spect to taking unions and intersections .

	

Here we

only could make the trivial observation that f(n)> n21

(since there is a sequence of length n + 1

	

of nested

subsets) .

	

We have no plausible conjecture for the true

order of magnitude of f(n) .

	

Denote by F(n)

	

the

largest integer for which there is a family of F(n)

sets of the same class which is closed with respect to

taking unions .

	

Here we conjecture that F(n) > n c

for every c if n > n 0 (c) .

	

From above we conjecture

F(n) < (1 + c) n for every c > 0 if n > n 0 (c) . We

have no good guess about the true order of magnitude

of

	

F(n) .

An older result substantially due to R . Rado and

J . Sanders stated that for every k there is an n k so

that if n > n k and we divide the subsets of

	

ISO = n

into two classes there are always k disjoint subsets

so that all the 2 k - 1

	

unions are in the same class .

Unfortunately the proof gives for n k an exorbitantly

fast rate of growth which probably (?) does not de-

scribe the true state of affairs . We can show that

n k tends to infinity exponentially and in faQt we

prove the following more general

Theorem 2 .

	

Let

	

ISI = n .

	

There is a division of

the subsets of S into two classes so that if A i e S ,

1 < i < k are such that all the 2 k - 1

	

unions

A .

	

. AA

	

are distinct and belong to the same class
~1

	

~r
then

	

k < (1 + o(1))log n/log 2 .

To prove Theorem 2 observe that the subsets of S

(not counting the empty set) can be divided into two
n_

classes in 2 2 I ways . Now we estimate the number

of those divisions into two classes for which there



are

	

k

	

sets

	

A l , . . .,A k

	

in the same class so that all

the 2 k - l

	

unions formed from them are distinct and

are in the same class .
The

		

k sets A,, . . .,A k can be chosen in at most

2

	

< 2 k n
k

ways .

	

Once the sets

	

A,, . . .,A k

	

have been chosen, since

the 2 k - l

	

unions are assumed to be all distinct and

in the same class there are

2-22 n -1

ways of splitting the subsets into two classes so that

all the unions of the sets A,,---,Ak should be in the

same class .

	

Now

2 kn 2 2 n -2 k+, < 2 2 n -1

if

(2)

	

2 2 k-2 >

	

2kn

2-(2k-1) = 2 2n-2k+,

A simple calculation gives that (2) holds if

k > (1 + 0(1)) loog	 2 .

	

Thus there is a splitting of

the subsets into two classes so that there should be

no k subsets all whose 2 k - 1 unions are distinct

and in the same class if k > (1 + e) log n
log 2'

We can not get at present a better upper bound

even if we assume that the A's are disjoint, and in
neither case has it been possible to obtain an accept-

able lower bound .

Assume that we split the subsets into two classes

in such a way that subsets of the same size belong to

the same class .

	

In this case Howorka proved that for

cevery c and n > n 0 (c),

	

F(n) > n .
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