Problems and Results in Combinatorial

Analysis and Combinatorial Number Theory

Paul Erdids

In this note, first of all, I state a few older
problems whose solution or partial solution is long
overdue and which in some cases were neglected. I
also state a few more recent questions. I prove in
detail a recent theorem of Selfridge and myself and
of Ulam and myself. I try to give as exact references
as possible but I am willing (and eager) to correct
any mistakes which are pointed out to me.

1. Conjecture of Faber, Lovdsz and myself:

In September 1972 at Boulder at a party held for
Lovdsz we conjectured: Let [A [ =n, 1<k <n,
|Ak]r} Ak2| <1, 1 <ky <k, <n. Isit then true

n
that we can color the elements of Efﬂ Ak by n

colors so that each A contains an element of each
color? We immediately realised that the conjecture
fails for n + 1 sets, but did not immediately
realise the difficulties of proving the conjecture.
Greenwell and Lovdsz proved that the conjecture is
true if the number of sets is < n ; L. No further

results are known,and I offer 300 dollars for a

proof or disproof of our original conjecture.

The following modification of our conjecture is
of interest. Let AI,...,A be a family of sets.
The graph G(A gargh

L
10+ g) is defined as follows: The
)
vertices of our graph are the elements of U Ai'
i=1

Two vertices are joined if they belong to the same A..
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Put  max [A;] = n, max [A; YA = u. f(n;e,u)
1<i<t T<i<j< J

denotes the maximal chromatic number of G(H],...,Ag).
Our conjecture is equivalent to f(n3n,1) = n. It
easily follows from a theorem of de Bruijn and myself
that no graph with the parameters n,n,1 <can contain

a K(n + 1). Perhaps it would be of interest to de-
termine the smallest my for which f(n;mk,1) >n + k.
At the moment I do not even have a plausible conjec-
ture, but perhaps this will not be hard to find. Is

it true that the graphs for which the chromatic number
of G(AT""’Amk) is > n + k always must contain a

K(n + k)22

N. G. de Bruijn and P. ErdGs, A colour problem
for infinite graphs and a problem in the theory of
relations, Nederl. Akad. Wetonnh. Proc. Ser. A. 54
(1951), 371-373.

2. Some old extremal problems.

Denote by G(n3;k) a graph of n vertices and k
edges. V. T. S6s and I conjectured 15 years ago that
every G(n;[%(k - 1)n + 1]) contains every tree with
k edges. This is trivial for a star and Gallai and
I proved it for a path. It is surprising that no
progress has been made with this simple and useful
conjecture. I offer 100 dollars for a proof or
disproof.

Let G be a bipartite graph. f(n;G) 1is the
smallest integer for which every G(n;f(n;G)) con-
tains G as a subgraph. Simonovits and I conjec-
tured that for every rational o, 1 < a < 2 there
is a G for which

(1) Tim £(n;6)/n'*® = ¢ (6), 0 < ¢ (6) < =.

n=e

Conversely for every G there is a rational o
which satisfies (1). I offer 300 dollars for a proof
or disproof.
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We have no gquess for the possible values of cu(GL

My reason for offering so much more for the second
conjecture is that I am not entirely sure that a trivial
counterexample can not be found to the first conjecture.

Finally I mention a problem of Sauer and myself.
Denote by f3(n) the smallest integer for which every
G(n;f3(n)) contains a regular subgraph of valency
three. Almost nothing is known about fs(n}; almost
certainly f3{n) < n1+c. We do not even know if
f3(n) < Cnh is true or false. 1 offer 100 dollars for
an answer.

For further problems and results see P. Erdds,
Extremal problems on graphs and hypergraphs, Hypergraph
Seminar, Lecture Notes in Math., Springer Verlag no. 411,
p. 75-84 and Some recent progress on extremal problems
in graph theory, Cong. Num. XIV, Proc. Sixth South-
eastern Conf. on Combinatorics, Graph Theory and Com-
puting, Florida Atlantic University, 1974, 3-14.

A comprehensive book on extremal graph problems
by B. Bollobds will soon appear.

3. Some problems on probabilistic graph theory.

Let G(n) be a graph of n vertices. It easily
follows by probabilistic graph theory that for every
0 <o <% there is a graph G{n;[unz]) so that if
mf]og g T then e;ery spanned subgraph of m vertices
has (1 + o(1)) @ m“ edges. It is easy to see that
this result is best possible in the following strong
sense: Every G(n;[unz]) has two subgraphs G, and

G, of [C 1og n] vertices each,so that (e(G) 1is the

number of edges of G)

e(G]}

m'}u*‘hi(ﬁ) + 0(1) and
i, h,(C) + o(1)

— & 24 - 0 ;

(C log n)2 2
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The best values of h1(C) and hz(C) are, of course,
not known ("of course", since their determination con-
nects with Ramsey theory); h,(C) > 0, h,(C) > 0 holds
for every C; also hl(C) -0, hz(c) +0 as C + o,

By probabilistic methods it is not hard to show
that for every 0 < c < % there is a graph G(n;[nlﬂﬁ}
which has no triangle and every spanned subgraph of an
vertices, 0 < a < 1, has (1 + 0(1))u]+cn]+c edges.

I do not know if this result remains true for ¥<c<1.

The uniform distribution of edges becomes impos-
sible if further conditions are imposed on the graph;
e.g., it is easy to see that there is no G(n;[cnzj}
which contains no triangle, and for which every spanned
subgraph of [%] vertices has (1 + o(]])cn2/4 edges.
In fact this uniform distribution probably implies that
our graph must contain (for n » «) arbitrarily large
complete graphs.

It is true that almost all graphs G(n;[Cn]) con-
tain a path of length > cn?. ("Almost all" here means
all but o (g) of the graphs G(n;[Cn]). I con-

Cn

jectured this and in fact believed that c¢ tends to 1
as C tends to infinity. Szemerédi disagrees; he be-
lieves that for every C the longest path is almost
surely o(n). At present we can not decide who is
right.

P. Erdds and J. Spencer, Probabilistic methods in

combinatorics, Academic Press and Hungarian Academy of
Sciences, 1974.

P. Erddos, Some problems in graph theory, Hypergraph
Seminar, Lecture Notes in Math 411, Springer Verlag
187-190.

P. Erdés, Some new applications of probability
methods, to combinatorial analysis and graph theory,
Cong. Num. X, Proc. Fifth Southeastern Conference on
Combinatorics, Graph Theory and Computing, Florida
Atlantic University, 1974, 39-51.
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4., Further problems.

Now I state a few (of the many) problems which
arose in our work with Faudree, Rousseau and Schelp.
3(51,62} is the smallest integer for which there is a
graph G of E(El,Gz) edges so that if we color the
edges of G with two colors I and II, either, color
I contains Gl’ or color I, GZ' The most annoying
problem is to determine or estimate E(Pn,Pn), where
P is a path of length n. We could not even prove

n
that

(2) Tim R(Pn.Pn)/n = ®
n:co

and

(3) 1im E(Pn,Pn]!nz = 0.

I give 25 dollars for a proof or disproof of
either (2) or (3) (i.e. 50 for both) and 100 dollars
for an asymptotic formula for Q(Pn,Pn).

Denote by f(n) the largest integer for which
there is a G(n,f(n)) so that

n(Kq36(n3f(n)) < 2n - 1.

f(n) > cn log n/loglog n. f(n) < n5}3+e follows

easily by the probability method. We have no idea of
the true order of magnitude of f(n). {n(G1,Gz) is
the smallest integer so that if we color the edges of
K{n(G],Gz)] (i.e. the edges of the complete graph of
k(61,62) vertices) by two colors, either color I
contains G, or color I, Gz}.

Let F(n) be the largest integer so that for
every & < F(n) and every G(n;®)

n(Ka;G(n;z)) <2n - 1.
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Clearly f(n) > F(n). It seems certain that
f(n)/F(n) » », F(n)/n + . We have no idea of the
true order of magnitude of F(n) and f(n).

Denote by Ck the circuit of k edges. Graver,
Yackel and I proved that

(4) c1n2/(1og n)2< &[C3,Kn)< c2n2 loglog n/log n.

It would be interesting to obtain an asymptotic
formula for k(cs,Kn), but this will probably be very
difficult. It seems certain that for n > no{a]

(5) n(Cynk) < nPE

n
for some € > 0 independent of n. I give 100 dollars
for a proof or disproof of (5).

So far only one of our quadruple papers has ap-
peared: P, Erdds, R. J. Faudree, C. C. Rousseau and
R. H. Schelp, Generalized Ramsey theory for multiple
colors, J. Comb. Theory, ser. B 20(1976), 250-264.
Several more papers will soon appear, some jointly
with S. Burr. '

The reader can find lots of information in the
excellent review article by S. A. Burr, Generalized
Ramsey theory for graphs, A survey, in "Graphs and
combinatorics 1973" (R. Bari and F. Harary, Editors)
Springer Verlag, Berlin, 1974. A new survey by Burr,
a survey of noncomplete Ramsey theory for graphs, will
soon appear.

For the results of Graver, Yakel and myself, see
e.g., my book with Spencer quoted in the previous
chapter.

&(Cm,Kn) < {(m - 2)(n1/k+2) - 1in - 13k = [E%l]
is proved in our quadruple paper "On cycle-complete
graph Ramsey theorems" which will soon appear in the
Journal of Graph Theory.
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5. Erdbs-Rado conjecture on A-systems.

Let f3(n) be the largest integer with the prop-
erty that [A;] = n, 1 < < fa(n), and no three A's
have pairwise the same intersection. Rado and I con-
jectured more than twenty years ago that there is an
absolute constant C so that

(6) fa(n) < ¢n,

I offer 500 dollars for a proof or disproof of
(6). The best upper bound is due to Joel Spencer; he
proved that for n > no{e)

faln) < (1 + e)™n!

Abbott, Hanson and others obtained lower bounds,
Abbott in particular proved that f3(3) = 20.

P. Erdds and R. Rado, Intersection theorems for
ystems of sets I and II, J. London Math. Soc. 35
1

s
(1960), 85-90 and 44(1969), 13-17.

P. Erdtos, E. Milner and R. Rado, Intersection

theorems for systems of sets III, J. Australian Math.
Soc. 18(1974), 22-41.

See also a forthcoming paper of Szemerédi and
myself where several further related problems will be
stated. Our paper will soon appear in the Journal of
Combinatorial Theory.

6. Work with Ulam and Selfridge.

Now I give full details of some work which I did
with Ulam on a combinatorial problem and with Selfridge
on a problem in combinatorial number theory. Both re-
sults are very far from being complete--but if we live
we hope at least partially to remedy this situation.

First I discuss my joint work with Selfridge
which is closer to being complete: Let PosPys---sPy
be a set of u + 1 primes. An interval of length x

u
can expect to contain roughly speaking } [E%]
i=0[Pi
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multiples of the p's:s if the interval is short it
may happen that all or most of the multiples of the
p's may coincide. Thus to avoid trivial cases we

henceforth assume x > 2pu. We prove the following

Theorem 1. Let u = k2 - 1. To every e >0
there is a sequence of primes Pg <« <Py and an
interval I of length (3 - e)p,s which contains
exactly 2k distinct multiples of the p's. 1In other
words the number of distinct integers a in I for
which ay = 0 (mod pk) for some x, 0 < <u is 2k.
We further show that this result is best possible
in the following strong sense: Every interval of
length > 2pu contains at least 2k distinct mul-

tiples of the p's.

This result is complete and best possible as it
stands. Unfortunately we know next to nothing for
intervals longer than 3pu. In particular, is it true
that for every C and e there are primes Pg<-++<Py
and an interval of length > Cpu which contains fewer
than eu distinct multiples of the p's? At present
we can not answer this question.

First we prove that our Theorem is best possible.
In other words we prove that if I has length > 2pu
then it contains at least 2k distinct multiples of
the p's. Let (a,b) be the interval I, b - a > 2p,,-
Denote by I, the interval (a, a + l%l) and by I,

the interval (a + lll, b). Both of these intervals

u
contain at least ) RS multiples of the

p's (counted by multiplicity). Ifno m in I s a
multiple of more than k p's then clearly there are
at least 2k distinct multiples of the p's- in I.
Thus assume that, say in [1, there is an integer m
which is divisible by x p's, 2 is maximal and x> k.

- 36 -



Then in T, there are at least {%i} distinct multi-
ples of the p's (where {x} 1is the least integer not
less than X).

Let pil"."pia be the p's which divide m.

S
Consider the smallest S5 > 0 for which m + 2 in

J
is in 12 - such an S5 clearly exists. The numbers
S,
m+ 2 in_ are clearly all distinct; thus I contains

J
at least a + {%5} > 2k distinct multiples of the
p's, as stated.
Now we prove the main part of our Theorem.
First we need a Lemma which is of some independent
interest:

Lemma. Put wu = k2 - 1. For every k and arbi-
trarily large N there are k2 primes

N<pg <o <py <N+ (log N3

satisfying for every 1 < i <k - 131 <t < k -1

Pi = Po ™ Pistk ~ Pek-

In other words there are k sets of k primes
whose internal structure is the same.

Probably very much more is true: there is an f(k)
and infinitely many primes p so that all the numbers
p+ tf(k), 0 <t < kz are primes--in fact consecutive
primes. MNeedless to say it is quite hopeless at present
to prove this conjecture and fortunately we do not need
i,

The proof of the Lemma is by a simple counting
argument. It follows from the prime number theorem
(or a more elementary theorem) that for every L there
is an interval (x, x + L) which contains more than
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?_#Eﬁ—x primes. Denote these primes by

X< Qy <. Q<X+, w> E_T%E_E

" W s
Consider the ¢ differences Quk+1 ~ q(u-]}k+1'

We only retain those differences which are less than
4 L
4k log x3; clearly, there are at least 7% Tog X

such differences. The number of patterns for these k
primes {q(u-1}2+1""’quk} is clearly less than

(4k 1og x)k+1. Thus if L > (4k log x)k+2 there are
at least k k-tuples of primes giving the same pat-
tern, which completes the proof of our Lemma.

Now using the Chinese remainder theorem we are
ready to complete the proof of our Theorem. Put

k-1 k=1
o, = Piparzs By = p .y 0 ci <k -1,
i i=0 ik+j i g=0 = Lkti - =
k=1 k-1 u
Clearly 1T ay = By = T p.. Now we determine
i=0 i=0 j=0 J

x {mod Trpj) as follows:
x +p; =0 (mod 81), X+ Py =P (mod ai),

0<i<k=1T,

A simple argument shows that the interval
(x - Po + 1s X + 2py - 1) of length (3 - a)pu con-
tains only 2k multiples of the p's; namely, the
unique multiples of Opsenes@p3Bysa.sBy.

Unfortunately if the interval has length (3+ E)pu
so to speak "all hell breaks loose" and we lose con-
trol of the set of multiples of the p's. We hope to
return to this subject at a later occasion. The fol-
lTowing related problem is also interesting: Determine
the smallest h(u) so that if Py < en < pL is a
sequence of u primes, every interval of length

f(u)pu contains an integer divisible by precisely one
p. Many related questions can be asked.
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Ulam and I considered the following combinatorial
problem: Let |S| = n be a set. Split the 2" sub-
sets of S into two classes. Determine the largest
integer f(n) so that there always is a family of
f(n) sets in the same class which is closed with re-
spect to taking unions and intersections. Here we
only could make the trivial observation that f(n)z_ﬁ%l
(since there is a sequence of length n + 1 of nested
subsets). We have no plausible conjecture for the true
order of magnitude of f(n). Denote by F(n) the
largest integer for which there is a family of F(n)
sets of the same class which is closed with respect to
taking unions. Here we conjecture that F(n) > n¢
for every ¢ if n > nO(c). From above we conjecture
F(n) < (1 +¢)" for every e >0 if n > ng(e). We
have no good guess about the true order of magnitude
of F(n).

An older result substantially due to R. Rado and
J. Sanders stated that for every k there is an ne so
that if n > n, and we divide the subsets of |s| = n
into two classes there are always k disjoint subsets
so that all the Zk - 1 wunions are in the same class.
Unfortunately the proof gives for n an exorbitantly
fast rate of growth which probably (?) does not de-
scribe the true state of affairs. We can show that
N tends to infinity exponentially and in faqgt we
prove the following more general

Theorem 2. Let |S| = n. There is a division of
the subsets of S into two classes so that if A;e s,
1< i<k are such that all the 2%
A e Ai are distinct and belong to the same class

- 1 unions

i
1 r
then k < (1 + o(1))1og n/log 2.

To prove Theorem 2 observe that the subsets of S
(not counting the empty set) can be divided into two

n

classes in 22 -1 ways. Now we estimate the number
of those divisions into two classes for which there
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are k sets A1,...,Ak in the same class so that all
the 2k - 1 wunions formed from them are distinct and
are in the same class.

The k sets A]""’Ak can be chosen in at most

n
( 2 3 2kn
k

ways. Once the sets A],...,Ak have been chosen since
the Ek - 1 wunions are assumed to be all distinct and
in the same class there are

n k n .k
2_22 -1 2-(2 -1) _ 22 -27°+1

ways of splitting the subsets into two classes so that
all the unions of the sets ﬂ],...,Ak should be in the
same class. Now

kny2"-2ke1 2"

2 < 2

if
(2) 2 > gkn

A simple calculation gives that (2) holds if
log n ; QS
k > (1 + 0(1)) Tag_f' Thus there is a splitting of

the subsets into two classes so that there should be

no k subsets all whose Zk - 1 wunions are distinct

and in the same class if k > (1 + g) }gg 2‘

We can not get at present a better upper bound
even if we assume that the A's are disjoint, and in
neither case has it been possible to obtain an accept-
able lower bound.

Assume that we split the subsets into two classes
in such a way that subsets of the same size belong to
the same class. In this case Howorka proved that for
every ¢ and n > nglc), F(n) > nc.
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