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ON THE INTEGRAL OF THE LEBESGUE FUNCTION
OF INTERPOLATION

By
P. ERDOS, member of the Academy and J. SZABADOS (Budapest)

Let
(1) —l=x, <X, <. <X,.,=1

nn —

be the nodes of interpolation (shortly x,=x; ,);

w(x)

l(x) = 1, ,(x) = ) —x)

(k =1,...,n; okx)= xl—;u (x—x,)

the corresponding fundamental polynomials, and

iola, b) = agixa;bk;“; i(x) if —1=a<b=1.
The quantity 4,(—1,1) called Lebesgue constant plays an important role in the
theory of Lagrange interpolation; as G. FABER [1] showed !
(2) (=1 1) =c¢ logn
for an arbitrary system of nodes (1). Moreover, S. BERNSTEIN [2] proved that
(3) in(a,b) = cylogn (n=ny(a,b); —1l=a<b=1)

for all systems (1) again.

In this paper we prove a more general result from which (3) will follow as a
corollary.

THEOREM. For an arbitrary system of nodes (1) and subinterval [a, b)]Z[—1, 1]
we have
b a )
(4) S/ r)j l(x)| dx = ¢cy(b—a)logn (n = ny(a, b)).
a k=1
In the special case a=—1, b=1, this result has been announced in [3] (with

an indication of a possible method of proof). Our proof is simpler and follows a
different pattern.

PrOOF. According the growth rate of 2,(a, b) we distinguish two cases.

1 In what follows, ¢, ¢, ... will denote absolute positive constants.
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Case 1: 2,(a, b)=n®. Then let y,€[a, b] be such that
say X;=y,=X;+;. On the interval [x;, x;4,], Z [1,(x)| is identical wath a polyno-

mial of degree less than n, and this poiynom!al attains its absolute maximum on
[a, b] also at y,. But then by Markov’ s inequality, the absolute value of this polyno-

- b—a a
mial is =5 #* in the interval [y,, E " Yot W] Hence
n I . b—a b—a
Nyt = —pn? = M PRI P D M
2 (%) = ke if  x€[a, b]| |[y,, e Yut ]’
€.
o 1 ,b—a b—a
HWe d [ = — 3 —
ufk;; |l (x)] dx 5> M7 g "

which 1s even more than we need.

Case 2: s,(a.b)<=n®. Then, as we shall see from the following lemma, the
intervals [x;, x,.,]=[a, b] cannot be “too long".

LEMMA. We have

(5) max _ (X=X = 25 (n = ny(a, b))

a= YF‘ "Xy s -l—

. log/,(a,b)
n

for an arbitrary system of nodes (1).

By a slightly more complicated argument, we could replace x, by arc cos x;
in this lemma, and then (5) would be a generalization of Theorem IV from [4].
However, the given formulation will be sufficient for our purposes.

PROOF OF THE LEMMA. Assume the contrary; then there exists a subinterval
[cn.d,)<[a, b] of length
log A,(a, b)

n

d,—¢, =125

which does not contain any of the nodes x,, k=1,2,....n?% Let
__ 3eyt2d, . 2¢,+3d,
in T 5 k) n 5
and z,. k=1, ...,n, the roots of the Chebyshev polynomial 7,(x) of degree n.

The polynomial _
P"(x_) . [[ (x— :k)

:kél}'n'én]
is of degree less than n. Let x,4[y,,d,] be a point such that |T,(x)| attains its local
log 4, (a, b)

* We may assume that 25 —————=h —a; otherwise there is nothing to prove.
n
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maximum at x,. Such a point exists because by the Bernstein's result (3)

d,—c, log Z,(a, b n
imr, =g =5 RS - Do e a0 mab)

holds. Thus we obtain for x€[—1, 11N\[e¢,, d,]

| T
o =| T G-l

T Elvpe O

T,(%) |
[T

Xo— Zy
X—2z,

(1A

'k([.ﬂln‘anl

1 ik .
= pa(x0) - {{!Iﬁ g = |pa(xo)l +2° e ]< Pu(Xo) 2y (a, B)~11 (n = ns(a, b)).

Hence, by the Lagrange interpolation formula

Pa(%o)| = ,g": Pa(xi)] - [l (X0)| < [Pa(x0)l 4y (a, b)'mk;"; (x| = [pa(xo)| 2, (a, b)= 1,

ie. A,(a,b)=1. a contradiction. The lemma is proved.
Returning to the proof of our theorem, (5) implies that in case A,(a, b)=n®
we have

Iogn

(6) max _ (X1 — %) = = 75——  (n = ny(a, b)).

A=Xp - "Ir-.—l—
Let
(a qf——)x' = Xipl e xj(‘:: b)

be all the nodes lying in the interval [a, b]. then
X;~a, x;—~b as n e

(otherwise even |/i(a)| or |/;(b)| would increase at least as a geometric progression).
Further

(7)
l ji=1 sl
fz () dx = ,,,Z. f 2’ hldx =5 3 [ RO+l (0]} dx =
i-1 j—1 Fma T+
35 21 (1) + Iy n ) e [ (Ol 141 (0)]) ).

Let Ax,=x,.,—x; and

“‘.\'m)‘i"xk {1 =m=k= j—l),

X,
A'Ylll S
then using the inequality
LWM+La, (Nl (5 =y =Xx41)
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(cf. [5, Lemma IV]) we get

w(Xx) { Xi+1 )'}
| = i o A
U (O] 4 [l 1 ()] L"( le (¥ ) oy (¥) - X% =
w(x) Ax, ‘w(x} Ax,
= LW+, =
L(y) rremmers LR A P P
[x+Ax'““ix<x _Ax,,,]
m ' 4 = = “*m+1 4 .
Thus
dx,,
¥ Tm+1™ 1 ( ) d
GO+ lesa(0) |} dx = l“’ ol \ o S
x:.[ i KRl jl;m w(y) &= 4(xp 41 —Xp)
Fmi T g -
Ax,
A kel !
= O |¢M dy
X1 —Xm)  ax, @)
xk+-—4-
Similarly, by changing the roles of & and m, x and y,
Ax,,
R o A TesrT T ( }
. . _ X, w(y
x;f {"fm(x)! +'!'!'m-inl(x)“dx - 4(xk+l_xm) {xk w(x}
Hence and from (7)
Axy
izl Ax TR w(x) w(y) }
(®) f Z ()] dx 2 kzmxm = { {wm |w{x) dy
Ak"T
2.
= l Axm % _Axk_._.b
8 sy w0 k=m Xg 41— Xpy
In order to estimate the inner sum, let
,,,.Z[X...+?Sl:g”r. o TSlogn(H_l)] L0, o)
where
- (b-a)n]
" 1150 lognl”
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Then by (6), I, ,,—[a, b], and each I, ,, contains at least one of the nodes x,. Hence

it Ax, 3 Ax, 5, n

= > = > 2 Ax,

k=m Xg+1— Xy F=ﬂxkiﬁf(_,.,xk+l_xm -'="?5(f+]}|0g” X 2,

2], =]

1
Ax, = —=
75]08’”;_1 f *pely ml_.rle'”1 My o, K f

Thus (8) yields

Iy

A logn (n = ng(a. b)).

2| —

| logn __b-a
IZI'{\N(J'X_ T3 Za—bd-\m_ 0 logn (1= ny(a, b))

Q.E.D.

The best constants in (2) and (3) are (roughly speaking) 2/z. Apparently, our
¢, in (4) is far from being best possible, and our method does not seem to be applic-
able to finding of the largest ¢,.
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