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ABSTRACT

A new upper bound is given for the cycle-complete graph Ramsey
number r(C,, K,), the smallest order for a graph which forces it to
contain either a cycle of order m or a set of n independent vertices.
Then, another cycle-complete graph Ramsey number is studied, namely
r(=C,, K,) the smallest order for a graph which forces it to contain
either a cycle of order | for some [ satisfying 3=/=m or a set of n
independent vertices. We obtain the exact value of r{=C,, K,) for all
m>n and an upper bound which applies when m is large in comparison
with log n.

1. INTRODUCTION

The Ramsey number r(C,,, K,)) is the smallest positive integer p such that
cvery graph of order p contains either a cycle of order m or a set of n
independent vertices. The study of r(C,,, K,) was initiated by Bondy and
Erdos in [3]. Among their several results concerning Ramsey numbers for
cycles, there is a proof that, for all values of m and n,

r(C,, K,)=mn> (1.1)
In the first part of this paper we shall give an improvement of the
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Bondy-Erdos bound by proving that, for all m=3 and n=2,
r(Co K)={(m—=2)(n"* +2)+1}(n 1), (1.2)

where k =[(m—1)/2]. For the particular case of m =4, we shall give a
further modest improvement of (1.2) by showing that

r(Cs, K,) < c(n log log nflog n)* (n—w), (1.3)

The Ramsey number r(=C,, K,,) is the smallest positive integer p such
that every graph of order p contains either a cycle of order ! for some |
satisfying 3=I/=m or a set of n independent vertices. In one of the
earliest applications of the probabilistic method in graph theory, one of
the authors [P.E.] obtained a lower bound for r(=C,, K,). Using a
theorem of Lovasz, Spencer has obtained an improved lower bound for
r(=C,, K,); in [10], Spencer proves that if m is fixed and n is sufficiently
large, then

r(=C,, K,) = c(nflog n)m—m=2), (1.4)

In this paper, we shall give the exact value of r(=C,, K,) for all m>n
and an upper bound which applies when m is large in comparison with
log n. Interest in r(=C,, K,) stems from several sources. In particular,
recent work has pointed to the fact that the class of Ramsey numbers
typified by r(=C,, K,) occur very naturally in the study of Ramsey
theory for multiple colors [6].

2. NOTATION

For the most part, our notation will be in conformity with that used in [1],
[2], or [9]. All graphs considered will be finite, undirected, and without
loops or multiple edges. The graph with vertex set V and edge set E will be
denoted G(V, E). The order of the graph is | V] and its size is |E|.

For X € V, the subgraph of G induced by X will be denoted (X). The
set of all vertices adjacent to at least one vertex of X will be denoted
['(X). In the special case where X consists of a single vertex, i.e., X = {v},
I'(v) is called the neighborhood of v. If u and v are two vertices of the
graph, the distance d(u,v) is the length of the shortest path which
connects u and v. On occasion, in writing (X}, I'(X), or d(u, v) there will
be a reason for emphasizing the identity of the graph to which these
symbols refer. Accordingly, we shall write, when necessary, (X)g, I'g(X),
or dg(u, v).

Whenever x represents a real number, the symbols [x] and {x} will
signify the greatest integer <x and the least integer =x, respectively.



OMN CYCLE-COMPLETE GRAPH RAMSEY NUMBERS 55

3. AN UPPER BOUND FOR r(C,, K,)

In the proof of our upper bound for r(C,, K,), the graphical property
now defined plays a central role,

Definition. Let [ be a natural number. A graph G has property 11, if, for
every independent set X, [U(X)| = 1| X].

For our purposes, it will suffice to know the existence of an induced
subgraph having property II,.

Lemma, Let G(V, E) be a graph of order at least (74 1)(n=1) which
contains no set of n independent vertices. Then G contains an induced
subgraph (W) which has property 11,

Proof. Assumc, to the contrary, that nonc of the induced subgraphs of
G has property L. Thus, if (W) is any induced subgraph of G, there
exists an independent set X € W osuch that Y =y (X)) satisfies Y] <
[1X]. With this property in mind, define G, =G, W, =V, and for i=
1,2,....,8et W, , =W -2 and G,,,=(W,, ), where Z =X, UY, X, is
an independent set, and Y, = T'; (X)) satisfies | Y| < 1|X,]. Since G is finite
and |X;|=1 for i=1,2,..., there exists a positive integer M such that
Wy = J,

M
v=Uz
i=1
is a partition of V| and
M
X_‘ U Xi
i= ]

is an independent set in G(V,E). Since |Z]<(+1)]|X,] for i=
[,2,..., M, we find that [V]<(I+1)]|X]| and this result contradicts the
hypothesis that G is of order at least (I+ 1)(n—1) and that it contains no
set of n independent vertices. 1

We arc now prepared to prove the main result.
Theorem 1. For all m=3 and n =2, the cycle-complete graph Ramsey
number 1(C,,. K,,) satisfics
HC K)={(m=2)(n"* +2)+ 1} (n—1),
where k=[{m~-1)/2].
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Proof. Assume G(V, E) to be a graph of order (I+ 1)(n—1) which
contains no cycle of order m and no set of n independent vertices. We
shall show that if = {(m —2)(n'"* +2)}, these assumptions about G lead
to a contradiction.

By means of the preceding lemma, we know that G contains an
induced subgraph H =(W) which has property 1l By heredity, H con-
tains no C,, and no set of n independent vertices. Henceforth, we shall
disregard the original graph G and, instead, focus our attention on the
graph H and its assumed properties.

Let x be an arbitrary vertex of H. We may assume that H is connected.
Otherwise, we would simply work within the connected component of H
which contains x. Set k=[(m—1)/2] and, for i=1,2,...,k, dcline A, =
{v|dy(x, v) =i}. We shall refer to the set A; as the ith level.

A central part of our argument is the claim that for each i i=
1,2,..., k, the induced subgraph {A;) contains an independent set ol at
least {|A;|/(m —2)} vertices. The justification of this claim is based on the
construction of a spanning tree, T, and the introduction of a total
ordering for each of the sets A, i=1,2,...,k Thesc processes are
carried forth simultancously according to a recursive procedure which we
now describe. First, order the vertices of A, in an arbitrary way.
Assuming that the process has been carried out to the ith level, proceed
as follows. Make cach vertex in A, adjacent in T to the least element of
A; to which it is adjacent in H. Then order the vertices of A, in
conformity with the following requirement. If vertices y and z in A;,, are
adjacent in T to vertices u and o, respectively, in A; and if u <wv, then
y<z

A sequence of vertices vy, vy,..., Uy i A; satisfying v, < v, <+ <
vy Will be called a monotonic sequence.

IE, for such a scquence of vertices, (v,, Uy, - .., Uyy) is a path (A;), then
P=(v,, 03, ..., vpn) will be called a monotonic path. We now claim that
since H contains no C,,, there can be no monotonic path of order m—1.
Suppose that there were such a path, P=(v,, v;,...,v,_,). Let

d* = ITI?X d»,-(ﬂj, U‘: | {) = d'{‘(st Uy l}‘

A consideration of the relationship between the construction of T and the
ordering of the sets A, i=1,2,..., k, shows that, in fact, d(v,, v,)=d*
for all r=s and r=s+1. Moreover, it is apparent that, whatever the
value of d*, there exist vertices v, and v, such that the subpath of P,
(U, Upyyy - .20 1y), together with the path connecting v, and v, in T, forms a
cycle of order m. Since H contains no such cycle, we have proved that
(A;) contains no monotonic path of order m—1.
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We now employ the pigeonhole principle to prove that {A,) contains an
independent set of at least {|A,|/(m —2)} vertices. To each vertex v in (A,)
assign as a label the order of the longest monotonic path in (A;) which
has v as its least clement and note that, by definition, two vertices having
the same label must be independent. Since there is no monotonic path of
order m—1, the possible labels are the integers 1 through m—2. An
application of the pigeonhole principle yields at least {|A;|/(m —2)} ver-
tices having the same label and these are necessarily independent.

For i=1,2,...,k let B, denote a maximal independent subsct of A,
and let r, = |B,)/|B._ ;| with |By|= 1. Since H has property I1,, we know that
(B)|=1|B,| for i=1,2,..., k. Also, since I'(B;))c A, ,UA,UA,,, and
|B:|={|A,[/(m—2)}, it follows that for i=1,2,...,k,

(m=2)(B; | +|B| +|B;,,)) = L|B,]. (3.1)
In terms of the ratio, r, this incquality becomes
| 1
B = U=y 1 E L2l (3.2
fies (m—.? ) r’ ! ]

If we now set [ ={(m—2)(n"*+2)}, then
raze™ 1=, i=12,....k=1. (3.3)

Since r, = {I/(m - 2)} > n'*, it follows by induction using (3.3) that r, > n'"*
for i=1,2,...,k, and hence |B.|=rr . >n, contradicting our as-
sumption that H contains no set of n independent vertices. I

We note that for the case where m is even, an improvement of (1.1) is
already available from a result of Bondy and Simonovits [4], used in
conjunction with Turdn’s theorem. With m = 2[, the upper bound ob-
tained this way is, asymptotically, (200 n)"'~" (I fixed, n— =). The
upper bound given by Theorem 1 is, asymptotically, 2(/—1)n"""".

4. THE SPECIAL CASE OF r(C,, K,,)

With two exceptions, the bound given by Theorem 1 represents progress
toward understanding the behavior of r(C,,, K, ) when m is fixed and n is
large. The first exception, m =3, is classical. Concerning this well studied
case, it is known [cf. 7, Chap. 5] that there exist constants ¢, and ¢, such
that, for all sufficiently large n,

_C.‘”z < r(Cy, K ){____('3”2.(1_(15%_]2%;_&]
(log n)* e '

log n
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Concerning the second exception, m =4, less is known. However, by
making use of the method of Graver and Yackel [8], [cf. 7, pp. 26-29],
one can prove a stronger statement than that which is contained in
Theorem 1. The theorem which follows was first obtained by Spencer and
onc of the authors [P. E.], but the proof has not been published. It is
included here for the sake of completeness.

Theorem 2
nlog log rr)“

(n— =),
logn

r(C,, K,,)éc(

Proof. let G(V, E) be a graph of order r(C,, K,.,;) — 1 which containg
no C, and no sct of n+ [ independent vertices. Since the graph obtained
from G by adding an isolated vertex must contain a set of n+1 indepen-
dent vertices, we know that G contains a set § of n independent vertices.
Let T=V-S§ and, for every X< T, let R(X)=T(X)NS. For k=
0,1,...,n, define T, ={x | xe T,|R(x)| =k}, and let N, =|T,|.

Since § is not part of a larger independent set, it follows that N, =0,
Also, N, =2n, as we can sce by the following argument. If N, =2n +1,
there are three vertices in T which are adjacent to the same single vertex
in S. If any two of these three vertices are independent, then G has a set
of n+1 independent vertices. Otherwise, G certainly contains a C,.

Note that no two vertices in T can be adjacent to a common pair of
vertices in S, for then G would contain a C;. Since every vertex in

m

U T, accounts for at least (5) pairs of vertices in §, it follows that for

k=m

all m=2, (,1)

- 2 (n—1

i (4.1)

k=m (’n) m(m =i 1)

2
Thus, with the choice of m left at our discretion, we may write
. o nin-—1)
H(Cy K)<r(Cy Kyiy) =1+3n +k2‘2 N, +m. (4.2)

m

The required bound on ) N, can be realized by proving that if N, is
k=2

too large, then there must exist a set A € § and an independent set C in
{T.) such that R(C)< A and |C|=|A|. Tf this were so, then G would
contain a set of at least n+1 independent vertices. The situation just
described is illustrated in Fig. 1. The existence of such an independent sct
in {T,) is tied to constraints on the edges of (T, ) dictated by the fact that
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FIGURE 1. Existence of a larger independent set,

G contains a C,. Note that il x and y are any two vertices of T, then
[R(x) NR(y) |iseither 0 or 1, for, otherwise, G contains a C,. Accordingly,
we classify each edge {x, y}in (T}) as either type 0 or type 1. Let My, and
M, , denote the number of type 0 and type 1 edges, respectively, in {T,)
and let M, = M, ,+ M, ,.

Let x be an arbitrary vertex in T, and supposc that x is incident in (T,)
with edges {x, y,},...,{x, }. Since G contains no C,, the sets R(y,),
i=1,...,1 are disjoint and, thercfore, kI = n. Similarly, suppose that of
the incident edges, {x,y,},....{x, y,,} are of typc 1. Again, since G
contains no C,, the vertices R(x)NR(y;), i=1,..., m, are distinct and,
therefore, m = k. Finally, the degree bounds, [ = n/k and m =k, imply the
edge bounds,

M, = N.(n/2k) (4.3)
and
M, 1= Ni(k/2), (4.4)

respectively,

At this juncture, we employ the probabilistic method to prove that,
unless N, <Sn*fkn'*, therc exist A< S and C< T, such that C is an
independent set, R(C)<c A, and |[C]>|Al. Let £ denote the sample space
consisting of all subscts of § and, with the value of p to be chosen later,
assign the probability P(A)= p'*'(1—p)" " to each A = S. Equivalently,
each vertex in S has independent probability p of belonging to A.
Corresponding to each A < S, define

B={x|xeT,R(x)c A}

and let C denote a maximal independent subset of B.
Let us introduce the random variables X, =|A| and X =|C|. The
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expected value of X, is
E(X4)=np. (4.5)

It is difficult to ascertain the value of |C|, but we may obtain a lower
bound for [C| by subtracting the size of (B) from [B|. It follows that the
expected value of X, satisfies

E(Xc)= Nep* = (M op** +M,,p*7"). (4.6)-

Using the bounds given in (4.3) and (4.4), together with the fact that
pi*t—p?* =0, we find that

(4.7)

2k kol 2k
E(X("]?—'Nk(p"__”p - (p P ))

2k 2
If p=k?/(n+k?), then k(p™ '—p**)/2=np®*/2k and so, by placing this
restriction on p, we may be sure that

E(X¢)= Ne(p* — np?t/k). (4.8)

Now, let us set p=(k/2n)" . An clementary calculation shows that

(k[2m)'"™ = k?/(n+ k) for all k=2 and n=1, with equality iff k =2 and
n =4. Hence, our choice of p=(k/2n)""* is consistent with the previously
made restriction.

If E(Xc)=E(X,), then it would be certain that &G contains a set of at
least n+1 independent vertices. As this must not be the case, we know
that

kN, /4n = n(k/2n)", (4.9)
and hence
N, =(@n?k)(kj2n)'™* < 5n?/kn"', (4.10)
where, in the last inequality, we have uscd the simple fact that, for all
k=1, (k/2)"* <5/4. For fixed n, kn'"* decreases with increasing k as long
as k <log n. Hence, if m <log n, it is certainly true that

i N, <Sn*/n'™,
k=2
Referring to (4.2), we have
Cy, K,)<143n+5n%n""" +n’/m?
Finally, by taking m ~log n/(2 loglog n), we obtain the bound

r(Cy, K, )< c(n log log nflog n)* (11— o),
as claimed. 1
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5. EXACT RESULTS FOR r(=C,, K,)

Bondy and Erdés [3] have proved that if m=n*-2, then r(C,, K,)=
(m—1)(n—1)+1. In other words, if m is sufficicntly large in comparison
with n, then the canonical example of n—1 disjoint copies of K, | is
critical. A similar state of affairs exists in the case of r{=C,, K,,). Here
too, if m is sufficiently large in comparison with n, simple examples can
be cited and subsequently proved to be critical. Another feature of
r(=C,, K,) in this realm is that, over specified intervals, it is constant,
independent of m.

Theorem 3. For all n=2,

r(=C,.K,)=2n-1 if m=2n-1,
and

H=C,,K,)=2n il n<m<2n-1.

Proof. The cxample of n—1 disjoint copics of K, shows that, for all
m, r(=C,.K,)=2n—1. Let G(V,E) be a graph of order 2n—1 and
assume that G contains no € for [=2n—1. Then G is a forest and 1t
contains a set of {|V]/2}=n independent vertices. Thus, we have shown
that (=C,,K,)=2n—-1{{ m=2n-1.

The example of €5, shows that, for all m<2n-1, r(=C,, K,)=2n.
To show that r{(=C,, K,)=2n il n<m<2n-1, let G(V, E) be a graph
ol order 2n which contains no G, for [=n+1. We wish to show that G
contains a set of n independent vertices. If G is a forest, the result is
immediate. Conscquently, we assume that G contains a cycle. Note that
G wmust be a planar graph. If G were nonplanar, it would contain a
subgraph homcomorphic from K, or K;5. A simple count shows that a
graph which is homcomorphic from K and which contains no cycle C for
[=n+1 is of order at least {(10n+5)/3}. Similarly, a graph which is
homeomorphic from K;5 and which contains no C; for [=n+1 is of
order at least {(9n +6)/4}. In both cases, therc is a clear contradiction of
the fact that G is of order 2n.

Let X be the set of all vertices of G which lie on at Icast one cycle. We
may assume (X) to be a 2-connected plane graph and we note that for
this graph the boundary of cvery region is a cycle. Suppose that {(X) has r
regions and that it is of order p and size g¢. We shall show that r<4. For
i=1,...,rlet L; denote the length of the eyele forming the boundary of
the ith region. Then, since cach cycle is of length at least n +2,

2q= ) Li=r(n+2), (5.1)
i=1
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and, by Euler’s formula,
p=q—r+22§r(n+2}—r+2=£n+2. (5.2)

If r=4, then p=2n+2, in contradiction of the fact that G is of order 2n.
Our conclusion is that r must be cither 2 or 3, i.e., (X) is cither a cycle or
a theta graph. In either case, there is a vertex, x, which belongs to every
cycle of G. Hence, G —x is a tree of order 2n — 1 and so it contains a set of
n independent vertices. 1

6. AN UPPER BOUND FOR R(=C,, K,) WHEN m IS LARGE IN
COMPARISON WITH logn

The slowly varying nature of r(=C,, K,) as revealed by Theorem 3
prompts further inquiry in the form of the following question. How large
must m be in order to make r(=C,,, K,)=2n? In answer to this question,
we shall show the existence of a constant A, such that r(=C,, K,)=
{(2+¢)n} whenever m=[A, logn]. At the crux of our prool is the
following result.

Lemma. Let 8 be a fixed real number satisfying 0<26 < 1/2 and let n= 3.
If G(V,E) is a graph of order n and size at lcast {{1+8)n}, then G
contains a cycle C for some [ satisfying 3=1[1=2[log w/log (1+8)].

Proof. For the casc of n=3, {(1+8§)3}=4 and the lemma holds
vacuously. For the casc of n=4, {(1+8)4}=5 and 2[log 4/log (1 + 8)] = 6.
A graph of order 4 and size at lcast 5 contains a C; and so the stated
proposition certainly holds. We now take n>4 and assume that the
proposition holds for every m satisfying 3=m <n.

Let x be an arbitrary vertex of G and define A ={x} and A=
{v|d(x,v)=1i} for i=1,2,.... Set k=[log n/log (1+ 8)] and define

We now assume that, contrary to the stated proposition, G contains no
cycle of order [=2k. It follows that (A) is a tree.
We may assume that for j=0,1,...,k

?

il i
Y lAl=(+8) Y |A; 6.1)
i1 [

=1}
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otherwise, since (A) is a tree, the graph G-X where

i

xX=U A,

1=0
is a graph of order m < n and size at least {(1+8)m}. In this case, G
would contain a cycle of order [=2[log m/log (1 + 8)], contrary to our
assumption,

From inequality (6.1) we obtain

i
|Ajal=>(1+8)+8 Y Al j=0,1,... .k (6.2)
i=1

By induction, it follows that
A= (+8),  J=EL2u. .kt L (6.3)

In particular, since k + 12=log nflog (1+8), our assumption that G con-
tains no cycle of length =2k has led to the absurd conclusion that
|A =0

We are now prepared to prove the previously stated upper bound.

Theorem 4. Let e > () be fixed. There exists a corresponding constant A,
such that

r(EC‘"I‘ K!h] = {(2 + £ }rl}

whenever m=[A, log nl.

Proof. Let ussct §=¢g/2(2+¢) and A, =2/log (1+§). Let G(V, E) be
a graph of order p={(2+e¢)n} and let H,,..., H, denote the connected
components of G. II, for some component H, |[E(H)| = (1+8)|V(H)|, our
lemma shows that H, and hence G, contains a cycle ¢ for some |/
satistying 3=1=[A, log n]. If not, i.c., if |[E(H)|<<(1+8)| V(H) for every
component, then by deleting at most {8p} appropriately chosen edges, we
obtain a forest I of order p. Now we know that F contains a set of at
lcast {p/2} independent vertices. Upon reinstatement of the deleted edges,
G is still in possession of a set of at least {p/2}—{8p}=n independent
vertices. |

7. QUESTIONS

Qur present understanding of the behavior of r(C,,, K} and r(=C,, K,))

still leaves much to be desired. This is perhaps most apparent in the case
of m fixed and n large, where we lack asymptotic formulas for ecither
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r(C,. K,) or r(=C,,, K,). At present, we only know that

Cl(”“ng n}(an- I).fim—-?_!q r(SC‘ K"}":—:- Y(C,,,. K,,}‘< Cgfll - IJ."2]‘

A second problem area concerns the behavior of C,, K,) as a
function of m, when n is fixed. From [3], we know that if m =n?—2, then

r(Co K)=(m—=1)(n-1)+1,

and so, cventually, the Ramsey number increases montonically with m.
We now pose two questions:

(i) What is the smallest value of m such that r(C,, K,)=
(m—=1)(n—1)+17? It is conjectured that this formula holds for all m = n.

(ii) What value of m gives the minimum value of r(C,,, K,)? From the
bounds quoted above, we know that if n is fixed, but suitably large, then

F(C,,,, Ku ) = r(cl“!rrl Iy Ku.] aﬂd r((‘m‘ KH ) > r( C’.Znn Kn)

for sufliciently small values of m. It is possible at that for a suitably large
fixed value of n, r(C,, K,) first decreases monotonically, then attains a
unique minimum, then increases monotonically with m.
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