
On Cycle Complete
Graph Ramsey
Numbers

ABSTRACT

A new upper bound is given for the cycle-complete graph Ramsey
number r(C,,,, K„), the smallest order for a graph which forces it to
contain either a cycle of order m or a set of ri independent vertices .
Then, another cycle-complete graph Ramsey number is studied, namely
r( :C,,,, K„) the smallest order for a graph which forces it to contain
either a cycle of order 1 for some I satisfying 3 :1 !~ ,m or a set of n
independent vertices . We obtain the exact value of r( :C,,,, K„) for all
m > n and an upper bound which applies when m is large in comparison
with log n .

1 . INTRODUCTION

The Ramsey number r(C,,,, K„) is the smallest positive integer p such that
every graph of order p contains either a cycle of order in or a set of n
indcpendent vertices . The study of r(C,,,, K„) was initiated by Bondy and
Erdős in [3] . Among their several results concerning Ramsey numbers for
cycles, there is a proof that, for all values of m and n,

r(C,,,, K„)75 mn'.

	

(1 .1)

In the first part of this paper we shall give an improvement of the
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Bondy-Erdős bound by proving that, for all m ? 3 and n ? 2,

r(C,n , K„)<1(m-2)(ná/k+2)+11(n-1),

	

(1 .2)

where k = [(m - 1)/2] . For the particular case of m = 4, we shall give a
further modest improvement of (1 .2) by showing that

r(C 4i Kn ) C c(n log log n/log 11) 2

	

(n --->-) . (1 .3)

The Ramsey number r(!~C, K„) is the smallest positive integer p such
that every graph of order p contains either a cycle of order l for some l
satisfying 3 l to or a set of n independent vertices . In one of the
earliest applications of the probabilistic method in graph theory, one of
the authors [P . E .] obtained a lower bound for Kn ) . Using a
theorem of Lovász, Spencer has obtained an improved lower bound for
r(!5C, n, K„) ; in [10], Spencer proves that if m is fixed and n is sufficiently
large, then

r( :!E; C,,,, K„)? c(n/log n)cn,-1>i(,n-z)

	

(1 .4)

In this paper, we shall give the exact value of r(:5Cn„ Kn ) for all m > n
and an upper bound which applies when nt is large in comparison with
log n . Interest in r( :!~-! C,,,, K n ) stems from several sources . In particular,
recent work has pointed to the fact that the class of Ramsey numbers
typified by r(<_ C,,, K„) occur very naturally in the study of Ramsey
theory for multiple colors [6] .

2. NOTATION

For the most part, our notation will be in conformity with that used in [1],
[2], or [9] . All graphs considered will be finite, undirected, and without
loops or multiple edges . The graph with vertex set V and edge set E will be
denoted G(V, E) . The order of the graph is I VI and its size is JET .
For X s V, the subgraph of G induced by X will be denoted (X) . The

set of all vertices adjacent to at least one vertex of X will be denoted
F(X) . In the special case where X consists of a single vertex, í .e ., X = {v},
r(v) is called the neighborhood of v. If u and v are two vertices of the
graph, the distance d(u, v) is the length of the shortest path which
connects u and v. On occasion, in writing (X), 1'(X), or d(u, v) there will
be a reason for emphasizing the identity of the graph to which these
symbols refer . Accordingly, we shall write, when necessary, (X),, r,(X),
or dc,(u, v) .

Whenever x represents a real number, the symbols [x] and {x} will
signify the greatest integer :!~;x and the least integer >-x, respectively .
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3. AN UPPER BOUND FOR r(C,,,, K„)

In the proof of our upper bound for r(C,,,, K„), the graphical property
now defined plays a central role .

Definition . Let 1 be a natural number . A graph G has property 11, if, for
every independent set X, JF(X)J_ IJXJ .

For our purposes, it will suffice to know the existence of an induced
subgraph having property 1-1, .

Lemma. Let G( V, E) be a graph of order at least (I + I )(fi - 1) which
contains no set of it independent vertices . Then G contains an induced
subgraph (W) which has property 11,.

Proof. Assume, to the contrary, that none of the induced suh raphs of
G has property If, . Thus, if (W) is any induced suh,raph of G, there
exists an independent set X S W such that Y = f' <<t .,(X) satisfies I YJ <
I JXJ. With this property in mind, define G, = G, LI', -- V, and for i
1,2, . . ., set Wi+ ,=Wi --Zi and G; + where Z_,=X,UY„ X i is
an independent set, and Yi = r ( ;,( X,) satisfies j Y ;j < 1 jXj . Since G is finite
and ~Xj) - 1 for i = 1,2,-, there exists a positive integer M such that
WM 1 _0 '

is a partition of V, and

At
X = U Xi

i =1

is an independent set in G(V,E). Since JZj j<(1-t 1) JXJ for i-
1, 2, . . . , M, we find that IVI< (I + 1) ~Xj and this result contradicts the
hypothesis that G is of order at least (I-+-1)(n-1) and that it contains no
set of fi independent vertices . 1

We are now prepared to prove the main result .

Theorem 1 . For all rn ? 3 and n 2, the cycle-complete graph Ramsey
number r(C,,,, K„) satisfies

r(C,,,,K„)

	

{(m-2)(n'fk+2)-+-1)(n-1),

where k -- {(m- 1)/2J .

Nf
U Li
i= 1
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Proof. Assume G(V,E) to be a graph of order (t+l)(n-1) which
contains no cycle of order tit and no set of it independent vertices . We
shall show that if l ? {(m - 2)(n "k + 2% these assumptions about G lead
to a contradiction .
By means of the preceding lemma, we know that G contains an

induced subgraph H= ( W) which has property l l, By heredity, H con-
tains no Cand no set of n independent vertices . Henceforth, we shall
disregard the original graph G and, instead, focus our attention on the
graph H and its assumed properties .

Let x be an arbitrary vertex of H . We may assume that H is connected .
Otherwise, we would simply work within the connected component of H
which contains x. Set k = [(m - ])/2] and, for i = 1, 2, . . . , k, define A; _
{v I d„(x, v) = i} . We shall refer to the set A; as the ith level .

A central part of our argument is the claim that for each i, i =
1, 2, . . . , k, the induced subgraph (A,) contains an independent set of at
least {JA,j/(m-2)} vertices . The justification of this claim is based on the
construction of a spanning tree, T, and the introduction of a total
ordering for each of the sets A„ i = I, 2, . . . , k . These processes are
carried forth simultaneously according to a recursive procedure which we
now describe. First, order the vertices of A, in an arbitrary way .
Assuming that the process has been carried out to the ith level, proceed
as follows . Make each vertex in A, + , adjacent in 7' to the least element of
A; to which it is adjacent in H . Then order the vertices of A,,, in
conformity with the following requirement . If vertices y and z in A,,, are
adjacent in T to vertices u and v, respectively, in A, and if u < v, then
y<z.
A sequence of vertices v,, v 2 , . . . , v h, in A, satisfying v, < v 2<

	

<
vm will be called a monotonic sequence .

If, for such a sequence of vertices, (v,, v 2 , . . . , v h ,) is a path (A,), then
P =- (v,, u 2 , . . . , v,,,,) wí11 be called a monotonic path . We now claim that
since H contains no C,,,, there can be no monotonic path of order in - l .
Suppose that there were such a path, P = (v,, v 2 , . . . , v,,,_,) . Let

d*=max d-,-(v,, v,, ,)=d7_(v,.,vs,,) .

A consideration of the relationship between the construction of T and the
ordering of the sets A,, i = I, 2, . . . , k, shows that, in fact, d,,(v„ v,) = d *
for all r s and t s+ 1 . Moreover, it is apparent that, whatever the
value of d*, there exist vertices v, and v, such that the subpath of P,
(v„ v,,,, . . . , v,), together with the path connecting v, and v, in T, forms a
cycle of order nt . Since H contains no such cycle, we have proved that
(A,) contains no monotonic path of order in -- 1 .
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We now employ the pigeonhole principle to prove that (A ;) contains an
independent set of at least {jA j/(art -2)) vertices . To each vertex v in (A;)
assign as a label the order of the longest monotonic path in (A;) which
has v as its least element and note that, by definition, two vertices having
the same label must be independent . Since there is no monotonic path of
order to - 1, the possible labels are the integers I through m -- 2 . An
application of the pigeonhole principle yields at least 11Á;1/(m -2)) ver-
tices having the same label and these are necessarily independent .

For i = 1, 2, . . . , k, let B; denote a maximal independent subset of A,
and let r; _ jB;j/jB ;_,j with JB,j = l . Since H has propcrfy 11,, we know that
~l'(B ;)j-_ 1 jB i l for i = l, 2, . . . , k . Also, since 1'(B ;) c A; _, U A, U A;,, and
JBJ > JJAJ/(m -2)), it follows that for i = l, 2, . . . , k,

(m-2)(IB, ,I+jB;J+jB ; ) I) ~° 1 JBJ .

In terms of the ratio, r,, this inequality becomes

1

	

)

	

l
r; + , -	Li -2

1

	

,

If we now set I={(m-2)(n"'+2)), then

r; , 1 :

	

'it

	

I-I/r;,

	

i=1,2, . . .,k-1 .

	

(3 .3)

Since r, - {1/(m - 2)) > n'"`, it follows by induction using (3.3) that r ; > n " k
for i = 1, 2, . . . , k, and hence JB,I = r, r, • • - rk > a, contradicting our as-
sumption that H contains no set of it independent vertices . I

We note that for the cure where in is even, an improvement of (1 .1) is
already available from a result of Bondy and Simonovits [4], used in
conjunction with Turán's theorem . With m = 21, the upper bound ob-
tained this way is, asymptotically, (200 ln)' '-'~ '(I fixed, it - co) . The
upper bound given by Theorem I is, asymptotically, 2(1- I)tt "

4. THE SPECIAL CASE OF r(C4, K„)

With two exceptions, the bound given by Theorem I represents progress
toward understanding the behavior of r(C,,,, K„) when m is fixed and it is
large . The first exception, to = 3, is classical . Concerning this well studied
case, it is known [cf . 7, Chap . 5] that there exist constants c, and c 2 such
that, for all sufficiently large it,

c, n ,

	

c2 n`(lo~ log rt)
(log rt)-

	

r(C~, K<<) --

	

log rt

(3.1)

i=1,2, . . .,k ---1 .

	

(3 .2)
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Concerning the second exception, in = 4, less is known. However, by
making use of the method of Graver and Yackel [81, [cf . 7, pp . 26-29],
one can prove a stronger statement than that which is contained in
Theorem 1 . The theorem which follows was first obtained by Spencer and
one of the authors [P . EJ, but the proof has not been published . It is
included here for the sake of completeness .

Theorem 2
In log log It 2

r(C,,K„)<ct

	

//

	

(rt
log n

Proof. Let G(V, E) be a graph of order - 1 which contains
no C, and no set of n + 1 independent vertices . Since the graph obtained
from G by adding an isolated vertex must contain a set of n + 1 indepen-
dent vertices, we know that G contains a set S of it independent vertices .
Let T = V - S and, for every X c T, let K (X) = r(X) n S. For k =
0, l, . . . , n, define Tk ={x 1x E T, 1R(x)1= k}, and let N k -_ IT I .

Since S is not part of a larger independent set, itt follows that N„ = 0 .
Also, N, = 2n, as we can see by the following argument . If N, ? 2n + 1,
there are three vertices in T which are adjacent to the same single vertex
in S. If any two of these three_ vertices are independent, then G has a set
of n + 1 independent vertices. Otherwise, G certainly contains a C, .
Note that no two vertices in T can be adjacent to a common pair of

vertices in S, for then G would contain a C, . Since every vertex in
U Tk accounts for at least (2') pairs of vertices in S, it follows that for
k=m

all tit = 2,

	

,-,
(2) _ n(n-1)

	

(4 .l)
k „

	

ni

	

tn(m-1)
2

Thus, with the choice of in left at our discretion, we may write

n(n-1)
r(C,,K„)<r(C,,K,,,1)~1+3rt+ Z Nk +

k 2

	

n-t(ni + 1) ,

	

(4.2)

1,1

The required bound on Z Nk can be realized by proving that if Nk is
k

too large, then there must exist ti set A E- S and an independent set C in
(Tk) such that R(C)A and ~C1>1A1 . If this were so, then G would
contain a set of at least it-4-1 independent vertices . The situation just
described is illustrated in Fig . 1 . The existence of such an independent set
in (Tk) is tied to constraints on the edges of (Tk) dictated by the fact that
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FIGURE 1 . Existence of a larger independent set .

G contains a C, Note that if x and y are any two vertices of T, then
JR(x) n R(y) I is either 0 or 1, for, otherwise, G contains a C, . Accordingly,
we classify each edge {x, y} in O'k) as either type 0 or type 1 . Let Mk . „ and
M,;,, denote the number of type 0 and type 1 edges, respectively, in (T k )
and let Mk =Mk,„+Mk., .

Let x be an arbitrary vertex in Tk and suppose that x is incident in (T k )
with edges Jx, y,}, . . . , {x, y,} . Since G contains no C,, the sets R(y,),
i = 1, . . . , l, are disjoint and, therefore, kl < n . Similarly, suppose that of
the incident edges, {x, y,}, . . . , {x, y} are of type 1 . Again, since G
contains no Ca , the vertices R(x) n R(y,), i = 1, . . . , in, are distinct and,

respectively .
At this juncture, we employ the probabilistic method to prove that,

unless N k < 5rr'`/kn' 1k , there exist A c S and Cc T k such that C is an
independent set, R (C) g A, and JCJ > JAJ . Let 12 denote the sample space
consisting of all subsets of S and, with the value of p to be chosen later,
assign the probability P(A) =pJ A l(1-p)" -I" I to each AgS. Equivalently,
each vertex in S has independent probability p of belonging to A .
Corresponding to each A c S, define

B={x I xE Tk , R(x)gAl

and let C denote a maximal independent subset of B .
Let us introduce the random variables X., _ JAI and X,,= JCJ . The

therefore, in
edge bounds,

k . Finally, the degree bounds, 1 :5 n/k and in k, imply the

and

Mk Nk (n/2k) (4.3)

N, (k/2), (4.4)
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expected vatue of X„ ís

E(Xf,)= tip .

	

(4.5)

It is difficult to ascertain the value of J CJ, but we may obtain a lower
bound for JCJ try subtracting the size of (B) from JBI . It follows that the
expected value of X c satisfies

E(X,)~: Nkp k-
(Mk, p2k+Mk,IP2k i) •

	

(4.6) .

Using the bounds given in (4.3) and (4.4), together with the fact that
p2k-' _ pzk ? 0, we find that

E(X,Nk p k _
11p 21, k ( f ~zi

-
I

p2k)

	

(4.7)
)~ (

	

2k

	

2

	

)

If p_ k 2/(n + k 2), then k(p2k -' -pzk)/2 s np2k/2k and so, by placing this
restriction on p, we may be sure that

E(XC)' Nk (pk _ np
2k/k) .

	

(4 .8)

Now, let us set p = (k/2n)' /k . An elementary calculation shows that
(k/2n) Ilk >- k 2 /(tr A- k 2 ) for all k 2 and n 1, with equality itf k = 2 and
n = 4 . Hence, our choice of p = ( k/2n)'"' is consistent with the previously
made restriction .

If E(X,-)> E(X„), then it would be certain that G contains a set of at
least n + l independent vertices . As this must riot be the case, we know
that

and hence

Nk (4 n 2/k)(k/2n) I/k <5n2/kn tik

	

(4 .10)

where, in the last inequality, we have used the simple fact that, for all
k ? 1, (k/2) ' /k < 5/4. For fixed ti, kit III, decreases with increasing k as long
as k <log n . Hence, if nt < log n, it is certainly true that

kNk/4n ti (k/2n) "'

	

(4.9)

Referring to (4 .2), we have

r(C,, K„)< 1+3tt+511 2 / t, IIm+11 2/tn 2 .

Finally, by taking m -log 11/(2 log log t1), we obtain the bound

r(C4 , K„) < c(ti log log 11/log 11) 2

	

(n > ),
as claimed . 1

1,1

Z Nk<51T 2 /it 1lmn

k=2



5 . EXACT RESULTS FOR r(!~ C,,,, K„)

Bondy and Erdös [,3] have proved that if in n'-2, then r(CK„)=
(m-1)(n-1)+1 . In other words, if m is sufficiently large in comparison
with n, then the canonical example of n - I disjoint copies of K,,, _, is
critical. A similar state of affairs exists in the case of r(~s C,,,, K„) . Here
too, if m is sufficiently large in comparison with n, simple examples can
be cited and subsequently proved to be critical . Another feature of
r(<_C,,,, K„) in this realm is that, over specified intervals, it is constant,
independent of m .

Theorem 3 . Por all n > 2,

r(:5C,,,,K„)=2n-1 if n -i >2n-1,

and

r(SC„„K„)-=2n if it <in<2n-l .

Proof. The example of n - l disjoint copies of K, shows that, for all
in, K„) 2n- 1 . Let G(V, E) be a graph of order 2n - I and
assume that G contains no C, for 1-2n-1 . Then G is a forest and it
contains a set of J1 VJ/2) = n independent vertices . Thus, we have shown
that r(-s; C,,,,K„)=2n-I if in ?2rr-l .

The example of Czi _, shows that, for all nr < 2n -1, r(rC,,,, K„)- 2n .
To show that K„) = 2n if n < m <2n - 1, let (;(V, E) be a graph
of order 21t which contains no C, for 1 n + 1 . We wish to show that G
contains a set of it independent vertices . If G is a forest, the result is
immediate . Consequently, we assume that G contains a cycle . Note that
G must be a planar graph . If G were nonplanar, it would contain a
subgraph homeomorphic from K S or K3 .3 . A simple count shows that a
graph which is homeomorphic from K s and which contains no cycle (" for
1 n + I is of order at least {(10n + 5)/3) . Similarly, a graph which is
homeomorphic from K3 , 3 and which contains no C, for 1 n + I is of
order at least {(9n+6)/4) . In both cases, there is a clear contradiction of
the fact that G is of order 2n .

Let X be the set of all vertices of G which lie on at Icast one cycle . We
may assume (X) to be a 2-connected plane graph and we note that for
this graph the boundary of every region is a cycle . Suppose that (X) has r
regions and that it is of order p and size q. We shall show that r<4 . For
i- 1, . . . , r, let L; denote the length of the cycle, forming the boundary of
the ith region. Then, since each cycle is of length at last n +2,
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2q =

	

L; - r(n + 2),

	

(5 .1)
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and, by Euler's formula,

p=q-r+2>_2(n+2)-r+2=2 n+2 .

	

(5 .2)

If r?4, then p?2n+2, in contradiction of the fact that G is of order 2n .
Our conclusion is that r must be either 2 or 3, i .e ., (X) is either a cycle or
a theta graph. In either case, there is a vertex, x, which belongs to every
cycle of G. Hence, G - x is a tree of order 2n - 1 and so it contains a set of
n independent vertices . I

6 . AN UPPER BOUND FOR R( .fs; C,,,, K„) WHEN m IS LARGE IN
COMPARISON WITH log n

The slowly varying nature of r( :f:-!C,,,, K„) as revealed by Theorem 3
prompts further inquiry in the form of the following question . How large
must ni be in order to make r( :5C,,,, K„)--'2n.? In answer to this question,
we shall show the existence of a constant A, such that r(~C,,,, K„)
j(2+ ,-)n) whenever nl ? [AE log n]. At the crux of our proof is the
following result .

Lemma. Let 5 be a fixed real number satisfying 0 < S < 1/2 and let n ? 3 .
If G(V, E) is a graph of order it and size at least ((] +5)n}, then G
contains a cycle C, for some l satisfying 3 :~ Vs 2[log n/log (1 + 8) 1 .

Proof. For the case of n=-3, 1(1+3)3)--4 and the lemma holds
vacuously . For the case of n = 4, ((1 + S)4} 5 and 2[log 4/log (I + S)] 6 .
A graph of order 4 and size at least 5 contains a C 3 and so the stated
proposition certainly holds . We now take n > 4 and assume that the
proposition holds for every in satisfying 3 m < it .

Let x be an arbitrary vertex of G and define A,,= (x} and A ; -_
(v I d(x, v) = i) for i = 1, 2, . . . . Set k = [log n/log (1 + (5)] and define

k

A=UA; .

We now assume that, contrary to the stated proposition, G contains no
cycle of order 1!~2k . It follows that (A) is a tree .

We may assume that for j = 0, 1, . . . , k,
1~

	

1

IA,I> (1+(5)

	

IAij ;

	

(c.1)
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otherwise, since (A) is a tree, the graph G-X where

i
X = U A;,

i=0

is a graph of order In <n and size at least {(I+(5)m}_ In this case, G
would contain a cycle of order l { 2[log n1/log (I + 6)], contrary to our
assumption .

From inequality (6 . 1) we obtain
1

IA ;+11>(I+s)+s

	

IAj1,

	

j=0,1, . . .,k

	

(6 .2)

By induction, it follows that

IA;I>(I+S)',

	

j=1,2, . . .,k+1 .

	

(6 .3)

In particular, since k + I > log n/log (1. +5), our assumption that G con-
tains no cycle of length 1 2k has led to the absurd conclusion that
1Ak-i 11 > ti-

	

1
We are now prepared to prove the previously stated upper bound .

Theorem 4 . Let E > 0 be fixed . There exists a corresponding constant A E,
such that

whenever ni [A, log n] .

Proof. Let us set 6 = E/2(2+ e) and A F = 2/log (I + S) . Let G(V, E) be
a graph of order p = {(2 +E)n} and let H,, . . . , Il k denote the connected
components of G . If, for some component H, IE(H)I > (I + S) 1 V(H)I, our
lemma shows that H, and hence G, contains a cycle C, for some l
satisfying 375 I=[AE log n} . If not, i .e ., if IE(I-1)1<(l +-8) 1 V(H) for every
component, then by deleting at most {Sp} appropriately chosen edges, we
obtain a forest F of order p. Now we know that F contains a set of at
least {p/2} independent vertices . Upon reinstatement of the deleted edges,
G is still in possession of a set of at least {p/2}-{5p}=n independent
vertices . 1

7. QUESTIONS

Our present understanding of the behavior of r(C„„ K,,) mid
still leaves much to be desired . This is perhaps most apparent in the case
of m fixed and ti large, where we lack asymptotic formulas for either

r(<-C,,,, K„) :s~ {(2+e)ti}
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r(C,,,, K,.,) or r({C,,,, K„) . At present, we only know that

c,(n/log n)(",--'u(,,,--z) < r( :~-C,,,, K„)

	

r(C,,,, K„)< C2""11[("'- 1)12'1

A second problem area concerns the behavior of r(C,,,, K„) as a
function of in, when n is fixed . From [3], we know that if m > 112 -2, then

r(C,,,,K„)=(tit -1)(n-1)+1,

and so, eventually, the Ramsey number increases montonically with m .
We now pose two questions :

(i) What is the smallest value of m such that r(C,,,, K„)=
(m - 1)(n-1)+ 1? It is conjectured that this formula holds for all nr > n .

(ü) What value of rn gives the minimum value of r(C,,,, K„)'? From the
bounds quoted above, we know that if rr is fixed, but suitably large, then

r(C"„ K„)> r(C2", ,, K„) and r(C,,,, K„)> r(C2,,,, K„)

for sufhcicntly small values of nt. It is possible at that for a suitably large
fixed value of n, r(C,,,, K„) first decreases monotonically, then attains a
unique minimum, then increases monotonically with in .
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