On Cycle-Complete Graph Ramsey Numbers

P. Erdös
HUNGARIAN ACADEMY OF SCIENCES

R. J. Faudree
C. C. Rousseau
R. H. Schelp
MEMPHIS STATE UNIVERSITY

Abstract

A new upper bound is given for the cycle-complete graph Ramsey number $r\left(C_{m}, K_{n}\right)$, the smallest order for a graph which forces it to contain either a cycle of order m or a set of n independent vertices. Then, another cycle-complete graph Ramsey number is studied, namely $r\left(\leq C_{m}, K_{n}\right)$ the smallest order for a graph which forces it to contain either a cycle of order I for some I satisfying $3 \leq I \leq m$ or a set of n independent vertices. We obtain the exact value of $r\left(\leq C_{m}, K_{n}\right)$ for all $m>n$ and an upper bound which applies when m is large in comparison with $\log n$.

1. INTRODUCTION

The Ramsey number $r\left(C_{m}, K_{n}\right)$ is the smallest positive integer p such that every graph of order p contains either a cycle of order m or a set of n independent vertices. The study of $r\left(C_{m}, K_{n}\right)$ was initiated by Bondy and Erdös in [3]. Among their several results concerning Ramsey numbers for cycles, there is a proof that, for all values of m and n,

$$
\begin{equation*}
r\left(C_{m}, K_{n}\right) \leq m n^{2} . \tag{1.1}
\end{equation*}
$$

In the first part of this paper we shall give an improvement of the Journal of Graph Theory, Vol. 2 (1978) 53-64 (c) 1978 by John Wiley \& Sons, Inc.

Bondy-Erdös bound by proving that, for all $m \geq 3$ and $n \geq 2$,

$$
\begin{equation*}
r\left(C_{m}, K_{n}\right) \leq\left\{(m-2)\left(n^{1 / k}+2\right)+1\right\}(n-1) \tag{1.2}
\end{equation*}
$$

where $k=[(m-1) / 2]$. For the particular case of $m=4$, we shall give a further modest improvement of (1.2) by showing that

$$
\begin{equation*}
r\left(C_{4}, K_{n}\right)<c(n \log \log n / \log n)^{2} \quad(n \rightarrow \infty) \tag{1.3}
\end{equation*}
$$

The Ramsey number $r\left(\leq C_{m}, K_{n}\right)$ is the smallest positive integer p such that every graph of order p contains either a cycle of order l for some l satisfying $3 \leq l \leq m$ or a set of n independent vertices. In one of the earliest applications of the probabilistic method in graph theory, one of the authors [P. E.] obtained a lower bound for $r\left(\leq C_{m}, K_{n}\right)$. Using a theorem of Lovász, Spencer has obtained an improved lower bound for $r\left(\leq C_{m}, K_{n}\right)$; in [10], Spencer proves that if m is fixed and n is sufficiently large, then

$$
\begin{equation*}
r\left(\leq C_{m}, K_{n}\right) \geq c(n / \log n)^{(m-1) /(m-2)} . \tag{1.4}
\end{equation*}
$$

In this paper, we shall give the exact value of $r\left(\leq C_{m}, K_{n}\right)$ for all $m>n$ and an upper bound which applies when m is large in comparison with $\log n$. Interest in $r\left(\leq C_{m}, K_{n}\right)$ stems from several sources. In particular, recent work has pointed to the fact that the class of Ramsey numbers typified by $r\left(\leq C_{m}, K_{n}\right)$ occur very naturally in the study of Ramsey theory for multiple colors [6].

2. NOTATION

For the most part, our notation will be in conformity with that used in [1], [2], or [9]. All graphs considered will be finite, undirected, and without loops or multiple edges. The graph with vertex set V and edge set E will be denoted $G(V, E)$. The order of the graph is $|V|$ and its size is $|E|$.

For $X \subseteq V$, the subgraph of G induced by X will be denoted $\langle X\rangle$. The set of all vertices adjacent to at least one vertex of X will be denoted $\Gamma(X)$. In the special case where X consists of a single vertex, i.e., $X=\{v\}$, $\Gamma(v)$ is called the neighborhood of v. If u and v are two vertices of the graph, the distance $d(u, v)$ is the length of the shortest path which connects u and v. On occasion, in writing $\langle X\rangle, \Gamma(X)$, or $d(u, v)$ there will be a reason for emphasizing the identity of the graph to which these symbols refer. Accordingly, we shall write, when necessary, $\langle X\rangle_{G}, \Gamma_{G}(X)$, or $d_{G}(u, v)$.
Whenever x represents a real number, the symbols $[x]$ and $\{x\}$ will signify the greatest integer $\leq x$ and the least integer $\geq x$, respectively.

3. AN UPPER BOUND FOR $r\left(C_{m}, K_{n}\right)$

In the proof of our upper bound for $r\left(C_{m}, K_{n}\right)$, the graphical property now defined plays a central role.

Definition. Let l be a natural number. A graph G has property I_{l} if, for every independent set $X,|\Gamma(X)| \geq l|X|$.

For our purposes, it will suffice to know the existence of an induced subgraph having property Π_{1}.

Lemma. Let $G(V, E)$ be a graph of order at least $(I+1)(n-1)$ which contains no set of n independent vertices. Then G contains an induced subgraph $\langle W\rangle$ which has property Π_{i}.

Proof. Assume, to the contrary, that none of the induced suberaphs of G has property I_{1}. Thus, if $\langle W\rangle$ is any induced subgraph of G. there exists an independent set $X \subseteq W$ such that $Y=\Gamma_{(w,}(X)$ satisfies $|Y|<$ $l|X|$. With this property in mind, define $G_{1}=G, W_{1}=V$, and for $i=$ $1,2, \ldots$, set $W_{i+1}=W_{i}-Z_{i}$ and $G_{i+1}=\left\langle W_{i+1}\right\rangle$, where $Z_{i}=X_{i} \cup Y_{i}, X_{i}$ is an independent set, and $Y_{i}=\Gamma_{G_{i}}\left(X_{i}\right)$ satisfies $\left|Y_{i}\right|<l\left|X_{i}\right|$. Since G is finite and $\left|X_{i}\right| \geq 1$ for $i=1,2, \ldots$, there exists a positive integer M such that $W_{\mathrm{M}+1}=\varnothing$,

$$
V=\bigcup_{i=1}^{M} Z_{i}
$$

is a partition of V, and

$$
X=\bigcup_{i=1}^{M} X_{i}
$$

is an independent set in $G(V, E)$. Since $\left|Z_{i}\right|<(l+1)\left|X_{i}\right|$ for $i=$ $1,2, \ldots, M$, we find that $|V|<(I+1)|X|$ and this result contradicts the hypothesis that G is of order at least $(l+1)(n-1)$ and that it contains no set of n independent vertices.

We are now prepared to prove the main result.
Theorem 1. For all $m \geq 3$ and $n \geq 2$, the cycle-complete graph Ramsey number $r\left(C_{m}, K_{n}\right)$ satisfies

$$
r\left(C_{m}, K_{n}\right) \leq\left\{(m-2)\left(n^{1 / k}+2\right)+1\right\}(n-1)
$$

where $k=[(m-1) / 2]$.

Proof. Assume $G(V, E)$ to be a graph of order $(l+1)(n-1)$ which contains no cycle of order m and no set of n independent vertices. We shall show that if $l \geq\left\{(m-2)\left(n^{1 / k}+2\right)\right\}$, these assumptions about G lead to a contradiction.

By means of the preceding lemma, we know that G contains an induced subgraph $H=\langle W\rangle$ which has property I_{1}. By heredity, H contains no C_{m} and no set of n independent vertices. Henceforth, we shall disregard the original graph G and, instead, focus our attention on the graph H and its assumed properties.

Let x be an arbitrary vertex of H. We may assume that H is connected. Otherwise, we would simply work within the connected component of H which contains x. Set $k=[(m-1) / 2]$ and, for $i=1,2, \ldots, k$, define $A_{i}=$ $\left\{v \mid d_{H}(x, v)=i\right\}$. We shall refer to the set A_{i} as the i th level.

A central part of our argument is the claim that for each $i, i=$ $1,2, \ldots, k$, the induced subgraph $\left\langle A_{i}\right\rangle$ contains an independent set of at least $\left\{\left|A_{i}\right| /(m-2)\right\}$ vertices. The justification of this claim is based on the construction of a spanning tree, T, and the introduction of a total ordering for each of the sets $A_{i}, i=1,2, \ldots, k$. These processes are carried forth simultaneously according to a recursive procedure which we now describe. First, order the vertices of A_{1} in an arbitrary way. Assuming that the process has been carried out to the i th level, proceed as follows. Make each vertex in A_{i+1} adjacent in T to the least element of A_{i} to which it is adjacent in H. Then order the vertices of A_{i+1} in conformity with the following requirement. If vertices y and z in A_{i+1} are adjacent in T to vertices u and v, respectively, in A_{i} and if $u<v$, then $y<z$.

A sequence of vertices $v_{1}, v_{2}, \ldots, v_{M}$ in A_{i} satisfying $v_{1}<v_{2}<\cdots<$ v_{M} will be called a monotonic sequence.

If, for such a sequence of vertices, $\left(v_{1}, v_{2}, \ldots, v_{M}\right)$ is a path $\left\langle A_{i}\right\rangle$, then $P=\left(v_{1}, v_{2}, \ldots, v_{M}\right)$ will be called a monotonic path. We now claim that since H contains no C_{m}, there can be no monotonic path of order $m-1$. Suppose that there were such a path, $P=\left(v_{1}, v_{2}, \ldots, v_{m-1}\right)$. Let

$$
d^{*}=\max _{i} d_{T}\left(v_{j}, v_{j+1}\right)=d_{T}\left(v_{s}, v_{s+1}\right) .
$$

A consideration of the relationship between the construction of T and the ordering of the sets $A_{i}, i=1,2, \ldots, k$, shows that, in fact, $d_{T}\left(v_{n}, v_{t}\right)=d^{*}$ for all $r \leq s$ and $t \geq s+1$. Moreover, it is apparent that, whatever the value of d^{*}, there exist vertices v_{r} and v_{t} such that the subpath of P, $\left(v_{r}, v_{r+1}, \ldots, v_{t}\right)$, together with the path connecting v_{r} and v_{t} in T, forms a cycle of order m. Since H contains no such cycle, we have proved that $\left\langle A_{i}\right\rangle$ contains no monotonic path of order $m-1$.

We now employ the pigeonhole principle to prove that $\left\langle A_{i}\right\rangle$ contains an independent set of at least $\left\{\left|A_{i}\right| /(m-2)\right\}$ vertices. To each vertex v in $\left\langle A_{i}\right\rangle$ assign as a label the order of the longest monotonic path in $\left\langle A_{i}\right\rangle$ which has v as its least element and note that, by definition, two vertices having the same label must be independent. Since there is no monotonic path of order $m-1$, the possible labels are the integers 1 through $m-2$. An application of the pigeonhole principle yields at least $\left\{\left|A_{i}\right| /(m-2)\right\}$ vertices having the same label and these are necessarily independent.

For $i=1,2, \ldots, k$, let B_{i} denote a maximal independent subset of A_{i} and let $r_{i}=\left|B_{i}\right| /\left|B_{i-1}\right|$ with $\left|B_{0}\right|=1$. Since H has properiy $\left[I_{1}\right.$, we know that $\left|\Gamma\left(B_{i}\right)\right| \geq l\left|B_{i}\right|$ for $i=1,2, \ldots, k$. Also, since $\Gamma\left(B_{i}\right) \subseteq A_{i-1} \cup A_{i} \cup A_{i+1}$ and $\left|B_{i}\right| \geq\left\{\left|A_{i}\right| /(m-2)\right\}$, it follows that for $i=1,2, \ldots, k$,

$$
\begin{equation*}
(m-2)\left(\left|B_{i-1}\right|+\left|B_{i}\right|+\left|B_{i+1}\right|\right) \geq l\left|B_{i}\right| . \tag{3.1}
\end{equation*}
$$

In terms of the ratio, r_{i}, this inequality becomes

$$
\begin{equation*}
r_{i+1} \geq\left(\frac{l}{m-2}-1\right)-\frac{1}{r_{i}}, \quad i=1,2, \ldots, k-1 \tag{3.2}
\end{equation*}
$$

If we now set $l=\left\{(m-2)\left(n^{1 / k}+2\right)\right\}$, then

$$
\begin{equation*}
r_{i+1} \geq n^{1 / k}+1-1 / r_{i}, \quad i=1,2, \ldots, k-1 \tag{3.3}
\end{equation*}
$$

Since $r_{1} \geq\{l /(m-2)\}>n^{1 / k}$, it follows by induction using (3.3) that $r_{i}>n^{1 / k}$ for $i=1,2, \ldots, k$, and hence $\left|B_{k}\right|=r_{1} r_{2} \cdots r_{k}>n$, contradicting our assumption that H contains no set of n independent vertices.

We note that for the case where m is even, an improvement of (1.1) is already available from a result of Bondy and Simonovits [4], used in conjunction with Turán's theorem. With $m=2 l$, the upper bound obtained this way is, asymptotically, $(200 \ln)^{1 /(1-1)}(l$ fixed, $n \rightarrow \infty)$. The upper bound given by Theorem 1 is, asymptotically, $2(l-1) n^{1 /(l-1)}$.

4. THE SPECIAL CASE OF $r\left(C_{4}, K_{n}\right)$

With two exceptions, the bound given by Theorem 1 represents progress toward understanding the behavior of $r\left(C_{m}, K_{n}\right)$ when m is fixed and n is large. The first exception, $m=3$, is classical. Concerning this well studied case, it is known [cf. 7, Chap. 5] that there exist constants c_{1} and c_{2} such that, for all sufficiently large n,

$$
\frac{c_{1} n^{2}}{(\log n)^{2}}<r\left(C_{3}, K_{n}\right)<\frac{c_{2} n^{2}(\log \log n)}{\log n}
$$

Concerning the second exception, $m=4$, less is known. However, by making use of the method of Graver and Yackel [8], [cf. 7, pp. 26-29], one can prove a stronger statement than that which is contained in Theorem 1. The theorem which follows was first obtained by Spencer and one of the authors [P. E.], but the proof has not been published. It is included here for the sake of completeness.

Theorem 2

$$
r\left(C_{4}, K_{n}\right)<c\left(\frac{n \log \log n}{\log n}\right)^{2} \quad(n \rightarrow \infty)
$$

Proof. Let $G(V, E)$ be a graph of order $r\left(C_{4}, K_{n+1}\right)-1$ which contains no C_{4} and no set of $n+1$ independent vertices. Since the graph obtained from G by adding an isolated vertex must contain a set of $n+1$ independent vertices, we know that G contains a set S of n independent vertices. Let $T=V-S$ and, for every $X \subseteq T$, let $R(X)=\Gamma(X) \cap S$. For $k=$ $0,1, \ldots, n$, define $T_{k}=\left\{x|x \in T,|R(x)|=k\}\right.$, and let $N_{k}=\left|T_{k}\right|$.

Since S is not part of a larger independent set, it follows that $N_{0}=0$. Also, $N_{1} \leq 2 n$, as we can see by the following argument. If $N_{1} \geq 2 n+1$, there are three vertices in T which are adjacent to the same single vertex in S. If any two of these three vertices are independent, then G has a set of $n+1$ independent vertices. Otherwise, G certainly contains a C_{4}.

Note that no two vertices in T can be adjacent to a common pair of vertices in S, for then G would contain a C_{4}. Since every vertex in $\bigcup_{k=m}^{n} T_{k}$ accounts for at least $\binom{m}{2}$ pairs of vertices in S, it follows that for all $m \geq 2$,

$$
\begin{equation*}
\sum_{k=m}^{n} N_{k} \leq \frac{\binom{n}{2}}{\binom{m}{2}}=\frac{n(n-1)}{m(m-1)} \tag{4.1}
\end{equation*}
$$

Thus, with the choice of m left at our discretion, we may write

$$
\begin{equation*}
r\left(C_{4}, K_{n}\right)<r\left(C_{4}, K_{n+1}\right) \leq 1+3 n+\sum_{k}^{m} N_{k}+\frac{n(n-1)}{m(m+1)} . \tag{4.2}
\end{equation*}
$$

The required bound on $\sum_{k=2}^{m} N_{k}$ can be realized by proving that if N_{k} is too large, then there must exist a set $A \subseteq S$ and an independent set C in $\left\langle T_{k}\right\rangle$ such that $R(C) \subseteq A$ and $|C|>|A|$. If this were so, then G would contain a set of at least $n+1$ independent vertices. The situation just described is illustrated in Fig. 1. The existence of such an independent set in $\left\langle T_{k}\right\rangle$ is tied to constraints on the edges of $\left\langle T_{k}\right\rangle$ dictated by the fact that

FIGURE 1. Existence of a larger independent set.
G contains a C_{4}. Note that if x and y are any two vertices of T, then $|R(x) \cap R(y)|$ is either 0 or 1 , for, otherwise, G contains a C_{4}. Accordingly, we classify each edge $\{x, y\}$ in $\left\langle T_{k}\right\rangle$ as either type 0 or type 1 . Let $M_{k, 0}$ and $M_{k, 1}$ denote the number of type 0 and type 1 edges, respectively, in $\left\langle T_{k}\right\rangle$ and let $M_{k}=M_{k, 0}+M_{k, 1}$.

Let x be an arbitrary vertex in T_{k} and suppose that x is incident in $\left\langle T_{k}\right\rangle$ with edges $\left\{x, y_{1}\right\}, \ldots,\left\{x, y_{i}\right\}$. Since G contains no C_{4}, the sets $R\left(y_{i}\right)$, $i=1, \ldots, l$, are disjoint and, therefore, $k l \leq n$. Similarly, suppose that of the incident edges, $\left\{x, y_{1}\right\}, \ldots,\left\{x, y_{m}\right\}$ are of type 1. Again, since G contains no C_{4}, the vertices $R(x) \cap R\left(y_{i}\right), i=1, \ldots, m$, are distinct and, therefore, $m \leq k$. Finally, the degree bounds, $l \leq n / k$ and $m \leq k$, imply the edge bounds,

$$
\begin{equation*}
M_{k} \leq N_{k}(n / 2 k) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{k, 1} \leq N_{k}(k / 2), \tag{4.4}
\end{equation*}
$$

respectively.
At this juncture, we employ the probabilistic method to prove that, unless $N_{k}<5 n^{2} / k n^{1 / k}$, there exist $A \subseteq S$ and $C \subseteq T_{k}$ such that C is an independent set, $R(C) \subseteq A$, and $|\mathrm{C}|>|\mathrm{A}|$. Let Ω denote the sample space consisting of all subsets of S and, with the value of p to be chosen later, assign the probability $P(A)=p^{|A|}(1-p)^{n-|A|}$ to each $A \subseteq S$. Equivalently, each vertex in S has independent probability p of belonging to A. Corresponding to each $A \subseteq S$, define

$$
B=\left\{x \mid x \in T_{k}, R(x) \subseteq A\right\}
$$

and let C denote a maximal independent subset of B.
Let us introduce the random variables $X_{A}=|A|$ and $X_{C}=|C|$. The
expected value of X_{A} is

$$
\begin{equation*}
E\left(X_{\mathrm{A}}\right)=n p \tag{4.5}
\end{equation*}
$$

It is difficult to ascertain the value of $|C|$, but we may obtain a lower bound for $|C|$ by subtracting the size of $\langle B\rangle$ from $|B|$. It follows that the expected value of X_{C} satisfies

$$
\begin{equation*}
E\left(X_{C}\right) \geq N_{k} p^{k}-\left(M_{k, 0} p^{2 k}+M_{k, 1} p^{2 k-1}\right) \tag{4.6}
\end{equation*}
$$

Using the bounds given in (4.3) and (4.4), together with the fact that $p^{2 k-1}-p^{2 k} \geq 0$, we find that

$$
\begin{equation*}
E\left(X_{C}\right) \geq N_{k}\left(p^{k}-\frac{n p^{2 k}}{2 k}-\frac{k\left(p^{2 k-1}-p^{2 k}\right)}{2}\right) \tag{4.7}
\end{equation*}
$$

If $p \geq k^{2} /\left(n+k^{2}\right)$, then $k\left(p^{2 k-1}-p^{2 k}\right) / 2 \leq n p^{2 k} / 2 k$ and so, by placing this restriction on p, we may be sure that

$$
\begin{equation*}
E\left(X_{C}\right) \geq N_{k}\left(p^{k}-n p^{2 k} / k\right) \tag{4.8}
\end{equation*}
$$

Now, let us set $p=(k / 2 n)^{1 / k}$. An clementary calculation shows that $(k / 2 n)^{1 / k} \geq k^{2} /\left(n+k^{2}\right)$ for all $k \geq 2$ and $n \geq 1$, with equality iff $k=2$ and $n=4$. Hence, our choice of $p=(k / 2 n)^{1 / k}$ is consistent with the previously made restriction.

If $E\left(X_{C}\right)>E\left(X_{A}\right)$, then it would be certain that G contains a set of at least $n+1$ independent vertices. As this must not be the case, we know that

$$
\begin{equation*}
k N_{k} / 4 n \leq n(k / 2 n)^{1 / k}, \tag{4.9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
N_{k} \leq\left(4 n^{2} / k\right)(k / 2 n)^{1 / k}<5 n^{2} / k n^{1 / k}, \tag{4.10}
\end{equation*}
$$

where, in the last inequality, we have used the simple fact that, for all $k \geq 1,(k / 2)^{1 / k}<5 / 4$. For fixed $n, k n^{1 / k}$ decreases with increasing k as long as $k<\log n$. Hence, if $m<\log n$, it is certainly true that

$$
\sum_{k=2}^{m} N_{k}<5 n^{2} / n^{1 / m}
$$

Referring to (4.2), we have

$$
r\left(C_{4}, K_{n}\right)<1+3 n+5 n^{2} / n^{1 / m}+n^{2} / m^{2} .
$$

Finally, by taking $m \sim \log n /(2 \log \log n)$, we obtain the bound

$$
r\left(C_{4}, K_{n}\right)<c(n \log \log n / \log n)^{2} \quad(n \rightarrow \infty)
$$

as claimed.

5. EXACT RESULTS FOR $r\left(\leq \boldsymbol{C}_{\mathrm{m}}, K_{\mathrm{n}}\right)$

Bondy and Erdös [3] have proved that if $m \geq n^{2}-2$, then $r\left(C_{m}, K_{n}\right)=$ $(m-1)(n-1)+1$. In other words, if m is sufficiently large in comparison with n, then the canonical example of $n-1$ disjoint copies of K_{m-1} is critical. A similar state of affairs exists in the case of $r\left(\leq C_{m}, K_{n}\right)$. Here too, if m is sufficiently large in comparison with n. simple examples can be cited and subsequently proved to be critical. Another feature of $r\left(\leq C_{m}, K_{n}\right)$ in this realm is that, over specified intervals, it is constant, independent of m .

Theorem 3. For all $n \geq 2$,

$$
r\left(\leq C_{m}, K_{n}\right)=2 n-1 \quad \text { if } \quad m \geq 2 n-1
$$

and

$$
r\left(\leq C_{m}, K_{n}\right)=2 n \quad \text { if } \quad n<m<2 n-1 .
$$

Proof. The example of $n-1$ disjoint copies of K_{2} shows that, for all $m, r\left(\leq C_{m}, K_{n}\right) \geq 2 n-1$. Let $G(V, E)$ be a graph of order $2 n-1$ and assume that G contains no C_{l} for $l \leq 2 n-1$. Then G is a forest and it contains a set of $\{|V| / 2\}=n$ independent vertices. Thus, we have shown that $r\left(\leq C_{m}, K_{n}\right)=2 n-1$ if $m \geq 2 n-1$.

The example of $C_{2 n-1}$ shows that, for all $m<2 n-1, r\left(\leq C_{m}, K_{n}\right) \geq 2 n$. To show that $r\left(\leq C_{m}, K_{n}\right)=2 n$ if $n<m<2 n-1$, let $G(V, E)$ be a graph of order $2 n$ which contains no C_{l} for $l \leq n+1$. We wish to show that G contains a set of n independent vertices. If G is a forest, the result is immediate. Consequently, we assume that G contains a cycle. Note that G must be a planar graph. If G were nonplanar, it would contain a subgraph homeomorphic from K_{5} or $K_{3,3}$. A simple count shows that a graph which is homeomorphic from K_{5} and which contains no cycle C_{1} for $l \leq n+1$ is of order at least $\{(10 n+5) / 3\}$. Similarly, a graph which is homeomorphic from $K_{3.3}$ and which contains no C_{l} for $l \leq n+1$ is of order at least $\{(9 n+6) / 4\}$. In both cases, there is a clear contradiction of the fact that G is of order $2 n$.

Let X be the set of all vertices of G which lie on at least one cycle. We may assume $\langle X\rangle$ to be a 2 -connected plane graph and we note that for this graph the boundary of every region is a cycle. Suppose that $\langle X\rangle$ has r regions and that it is of order p and size q. We shall show that $r<4$. For $i=1, \ldots, r$, let L_{i} denote the length of the cycle forming the boundary of the i th region. Then, since each cycle is of length at least $n+2$,

$$
\begin{equation*}
2 q=\sum_{i=1}^{r} L_{i} \geq r(n+2) \tag{5.1}
\end{equation*}
$$

and, by Euler's formula,

$$
\begin{equation*}
p=q-r+2 \geq \frac{r}{2}(n+2)-r+2=\frac{r}{2} n+2 \tag{5.2}
\end{equation*}
$$

If $r \geq 4$, then $p \geq 2 n+2$, in contradiction of the fact that G is of order $2 n$. Our conclusion is that r must be cither 2 or 3 , i.e., $\langle X\rangle$ is cither a cycle or a theta graph. In either case, there is a vertex, x, which belongs to every cycle of G. Hence, $G-x$ is a tree of order $2 n-1$ and so it contains a set of n independent vertices.

6. AN UPPER BOUND FOR $R\left(\leq C_{m}, K_{n}\right)$ WHEN m IS LARGE IN COMPARISON WITH $\log n$

The slowly varying nature of $r\left(\leq C_{m}, K_{n}\right)$ as revealed by Theorem 3 prompts further inquiry in the form of the following question. How large must m be in order to make $r\left(\leq C_{m}, K_{n}\right) \doteq 2 n$? In answer to this question, we shall show the existence of a constant A_{r} such that $r\left(\leq C_{m}, K_{n}\right) \leq$ $\{(2+\varepsilon) n\}$ whenever $m \geq\left[A_{\varepsilon} \log n\right]$. At the crux of our proof is the following result.

Lemma. Let δ be a fixed real number satisfying $0<\delta<1 / 2$ and let $n \geq 3$. If $G(V, E)$ is a graph of order n and size at least $\{(1+\delta) n\}$, then G contains a cycle C_{l} for some l satisfying $3 \leq l \leq 2[\log n / \log (1+\delta)]$.

Proof. For the case of $n=3,\{(1+\delta) 3\} \geq 4$ and the lemma holds vacuously. For the case of $n=4,\{(1+\delta) 4\} \geqslant 5$ and $2[\log 4 / \log (1+\delta)] \geq 6$. A graph of order 4 and size at least 5 contains a C_{3} and so the stated proposition certainly holds. We now take $n>4$ and assume that the proposition holds for every m satisfying $3 \leq m<n$.

Let x be an arbitrary vertex of G and define $A_{0}=\{x\}$ and $A_{i}=$ $\{v \mid d(x, v)=i\}$ for $i=1,2, \ldots$ Set $k=[\log n / \log (1+\delta)]$ and define

$$
A=\bigcup_{i=1}^{k} A_{i}
$$

We now assume that, contrary to the stated proposition, G contains no cycle of order $l \leq 2 k$. It follows that $\langle A\rangle$ is a tree.

We may assume that for $j=0,1, \ldots, k$,

$$
\begin{equation*}
\sum_{i=1}^{i \prime 1}\left|A_{i}\right|>(1+\delta) \sum_{i=0}^{i}\left|A_{i}\right| \tag{6.1}
\end{equation*}
$$

otherwise, since $\langle A\rangle$ is a tree, the graph $G-X$ where

$$
X=\bigcup_{i=0}^{j} A_{i}
$$

is a graph of order $m<n$ and size at least $\{(1+\delta) m\}$. In this case, G would contain a cycle of order $l \leq 2[\log m / \log (1+\delta)]$, contrary to our assumption.

From inequality (6.1) we obtain

$$
\begin{equation*}
\left|A_{i+1}\right|>(1+\delta)+\delta \sum_{i=1}^{i}\left|A_{i}\right|, \quad j=0,1, \ldots, k \tag{6.2}
\end{equation*}
$$

By induction, it follows that

$$
\begin{equation*}
\left|A_{i}\right|>(1+\delta)^{i}, \quad j=1,2, \ldots, k+1 \tag{6.3}
\end{equation*}
$$

In particular, since $k+1>\log n / \log (1+\delta)$, our assumption that G contains no cycle of length $l \leq 2 k$ has led to the absurd conclusion that $\left|A_{k+1}\right|>n$.

We are now prepared to prove the previously stated upper bound.
Theorem 4. Let $\varepsilon>0$ be fixed. There exists a corresponding constant A_{ε} such that

$$
r\left(\leq C_{m}, K_{n}\right) \leq\{(2+\varepsilon) n\}
$$

whenever $m \geq\left[A_{\varepsilon} \log n\right]$.
Proof. Let us set $\delta=\varepsilon / 2(2+\varepsilon)$ and $A_{\varepsilon}=2 / \log (1+\delta)$. Let $G(V, E)$ be a graph of order $p=\{(2+\varepsilon) n\}$ and let H_{1}, \ldots, H_{k} denote the connected components of G. If, for some component $H,|E(H)| \geq(1+\delta)|V(H)|$, our lemma shows that H, and hence G, contains a cycle C_{l} for some l satisfying $3 \leq l \leq\left[A_{c} \log n\right]$. If not, i.c., if $|E(H)|<(1+\delta) \mid V(H)$ for every component, then by deleting at most $\{\delta p\}$ appropriately chosen edges, we obtain a forest F of order p. Now we know that F contains a set of at least $\{p / 2\}$ independent vertices. Upon reinstatement of the delcted edges, G is still in possession of a set of at least $\{p / 2\}-\{\delta p\}=n$ independent vertices.

7. QUESTIONS

Our present understanding of the behavior of $r\left(C_{m}, K_{n}\right)$ and $r\left(\leq C_{m}, K_{n}\right)$ still leaves much to be desired. This is perhaps most apparent in the case of m fixed and n large, where we lack asymptotic formulas for either
$r\left(C_{m}, K_{n}\right)$ or $r\left(\leq C_{m}, K_{n}\right)$. At present, we only know that

$$
c_{1}(n / \log n)^{(m-1) /(m-2)}<r\left(\leq C_{m}, K_{n}\right) \leq r\left(C_{m}, K_{n}\right)<c_{2} n^{111 /[(m-1) / 2]} .
$$

A second problem area concerns the behavior of $r\left(C_{m}, K_{n}\right)$ as a function of m, when n is fixed. From [3], we know that if $m \geq n^{2}-2$, then

$$
r\left(C_{m}, K_{n}\right)=(m-1)(n-1)+1,
$$

and so, eventually, the Ramsey number increases montonically with m. We now pose two questions:
(i) What is the smallest value of m such that $r\left(C_{m}, K_{n}\right)=$ $(m-1)(n-1)+1$? It is conjectured that this formula holds for all $m \geq n$.
(ii) What value of m gives the minimum value of $r\left(C_{m}, K_{n}\right)$? From the bounds quoted above, we know that if n is fixed, but suitably large, then

$$
r\left(C_{m}, K_{n}\right)>r\left(C_{2 m}, K_{n}\right) \quad \text { and } \quad r\left(C_{m}, K_{n}\right)>r\left(C_{2 m}, K_{n}\right)
$$

for sufficiently small values of m. It is possible at that for a suitably large fixed value of $n, r\left(C_{m}, K_{n}\right)$ first decreases monotonically, then attains a unique minimum, then increases monotonically with m.

References

[1] M. Behzad and G. Chartrand, Introduction to the Theory of Graphs. Allyn and Bacon, Boston (1971).
[2] C. Berge, Graphs and Hypergraphs. North-Holland, Amsterdam (1972).
[3] J. A. Bondy and P. Erdös, Ramsey numbers for cycles in graphs. J. Combinatorial Theory 14B (1973) 46-54.
[4] J. A. Bondy and M. Simonovits, Cycles of even length in graphs. J. Combinatorial Theory 16B (1974) 97-105.
[5] P. Erdös, Graph theory and probability. Canad. J. Math. 11 (1959) 34-38.
[6] P. Erdös, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, Generalized Ramsey theory for multiple colors. J. Combinatorial Theory 20B (1976) 250-264.
[7] P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics. Academic, New York (1974).
[8] J. E. Graver and J. Yackel, Some graph theoretic results associated with Ramsey's theorem. J. Combinatorial Theory 4 (1968) 125-175.
[9] F. Harary, Graph Theory. Addison-Wesley, Reading, Mass. (1969).
[10] J. Spencer, Asymptotic lower boundsfor Ramsey Functions. Toappear.

