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ABSTRACT

In this paper, we show that if n=4 and if G is a 2-connected graph with
2n or 2n-1 vertices which is regular of degree n—2, then G is
Hamiltonian if and only if G is not the Petersen graph.

We use the terminology of Behzad and Chartrand [2]. In particular, a set
of vertices in a graph is independent if no two of the vertices in the set are
adjacent. A graph is cubic if every vertex of the graph has degree three.

Dirac [6] showed that if G is a graph with m =3 vertices and if every
vertex of G has degree 3m or more, then G is Hamiltonian. Dirac’s work
has been extended in [10], [11], [3], [5], [8], and [4], but these results all
require the existence of vertices of degree at least 3m. Avoiding this latter
requirement, Gordon [7] recently proved the following:

Theorem. Let G be a finite graph with 2n vertices in which every vertex
has degree at least n — 1. Then either G is Hamiltonian, G has a subgraph
isomorphic to K, ., ,.—;, G has a subgraph isomorphic to G,,, for some
b=n, or G has a subgraph isomorphic to H, where G,,, and H are
precisely defined non-Hamiltonian graphs.

As a consequence of Gordon’s theorem, if n=3 and if G is a
2-connected graph with 2n vertices which is regular of degree n — 1, then
G is Hamiltonian.
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We will need the following three theorems:

Theorem A (Dirac [6]). Let G be a 2-connected graph with m vertices
in which every vertex has degree k or more. Then either m <2k or G
includes a cycle of length 2k or more.

Theorem B (Moon and Moser [9]). Let n=2. If B(n, n) is a bipartite
graph with n vertices in each color class, and if every vertex in B(n, n)
has degree greater than 3n, then B(n, n) is Hamiltonian.

Theorem C (Derived from Balaban et al. [1]). the Petersen graph is the
only cubic block with at most ten vertices which is not Hamiltonian.

While every Hamiltonian graph is 2-connected, it is not always neces-
sary to include this property as a condition in a theorem whose conclusion
is that a class of graphs is Hamiltonian (e.g., Dirac’s 1952 theorem).
However, in the case of the theorem proved here, 2-connectedness must
be required, as is shown by the class of graphs described below. Given a
function f which assigns a non-negative integer to each vertex of a graph
G, an f-factor of G is a spanning subgraph S of G such that the degree of
each vertex u in S is f(u). It is not difficult to show the following
theorem:

Theorem 1. Let G be a graph with 2n—m, m {0, 1}, vertices which is
regular of degree n —2. Then G is not 2-connected if and only if there are
subgraphs F and H of G such that G =FU H, there is a vertex v with
V(FN H)={v}, and there is an integer p such that 2<2p=<n, F is formed
from K, ,,_,, by removing the edges of an f-factor of K, ,,_,. with
flv)=2p-m and f(u)=2—-m for all u in V(k,,,_,.)—{v}, and H is
formed from K, by removing the edges of an h-factor of K, with
h(v)=n-2p+1 and h(u)=1 for all u in V(K,)—{v}.

In this theorem, note that FUH is not connected if 2pe{2, n}, and
FUH has a bridge if 2p=n—1.

Throughout the remainder of this paper, n is a positive integer, G is a
2-connected graph with 2n or 2n—1 vertices which is regular of degree
n—2, P is a cycle of maximum length in G, R = V(G)— V(P), r is the
number of elements of R, and v and w are used only to name vertices in
R. Further, given v€ R and given a direction around P, C is the set of
vertices of P adjacent to v, A is the set of vertices immediately preceding
vertices of C on P, and B is the set of vertices immediately following
vertices C on P. It is easily seen that
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oBSErRVATION: A U{v} and B U {v} are independent sets of vertices.

In the proof of Theorem 2, we first show that R is independent. Using the
independence of R, one can easily show that r=1. Finally, we examine
the remaining case of r=1 and find only the Petersen graph is not
Hamiltonian.

Lemma 1. Suppose v and w are in R, v# w, and suppose v and w are
joined by a path of length k in G— V(P). If v is joined to a vertex ¢ of P
and w to a different vertex ¢’ of P, then between ¢ and ¢’ on P there are
at least k+1 vertices not adjacent to either v or w.

Proof. If the lemma fails, we may suppose that between ¢ and ¢’ there
are k or fewer vertices joined to neither v nor w and no vertices joined to
either v or w. But then a longer cycle than P can be formed by replacing
the portion of P from ¢ to ¢’ by the path of length k joining v and w
together with the edges from v and w to ¢ and ¢'. Thus the lemma is
true. 1

Lemma 2. Let v and w be distinct vertices of a component S of
G — V(P), and suppose there is a path of length & in S joining v and w.
Suppose the number of edges from v and w to vertices of P is j and
suppose that, going around P, there are i cases in which a vertex of P
which is joined to exactly one of v or w is followed by a vertex joined to
the other of v and w with no vertices joined to either between them and
i’ cases in which a vertex of P is joined to both v and w. Then

2n-m—(k+1)=|V(P)|=j+ik+i'(k-1)+(j—1).

Proof. The upper bound is obvious. Since there are j—i' vertices of P
joined to v andf/or w, it is sufficient to show that P has at least
j+ik+i'(k—1) vertices not joined to either v or w. Suppose v and w are
both joined to a vertex ¢ of P. Then between ¢ and the next vertex ¢’ of P
joined to either of v or w there are at least k+1 vertices joined to
neither. Allowing for two of these to be counted against the edges joining
v and w to ¢, there are k—1 vertices between ¢ and ¢’ which are not
counted against edges. If a vertex ¢ of P is joined to either of v or w but
not both, then the next vertex on P is joined to neither by Lemma 1 and
the observation and can be counted against the edge to c; further if the
next vertex ¢’ after ¢ on P which is joined to either v or w is joined to the
one of these not joined to c, there are still k of the vertices between ¢ and
¢’ which are not counted against any edge from v or w to P. The lemma
follows. 1
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In the remainder of this paper, the symbols i, i', j, and k are as defined
in Lemma 2.

Lemma 3. If G- V(P) has a nontrivial component S, then n=4.

Proof. Let d be the smallest degree in S for which there are two
vertices of S of degree d in S. Since S has no more than four vertices but
is nontrivial, S has at least two vertices of degree exactly de{l,2, 3}
joined by a path of length at least d. Then Lemma 2 together with
j=2(n—2—d) and j—i'=n-2—d imply that

2n—d-1-m=3(n-2-d)+id+i'(d—-1), 1)
which yields
0=(n—-5)+d(i-2)+i'(d-1)+m. (2)

If i# 0, then i is at least two, so n is no more than 5 by (2). Thus i =2 and
n=>5. Now we have 0=i{'(d—1)+m, so m =0. Since n =5, G is cubic, so
|V(P)|=|V(G)|—1 by Theorem C. Thus i=0.

Now from the definition of i, if there is a vertex of P joined to just one
of v and w, then no vertex of P can be joined to the other of v or w. Thus
i'=j{2=n—2—d. Substituting this into (1), we obtain

d*+3d+3—m=dn. (3)

If i'=0, then n=35 and d =3; but this case is finished. Thus {">0 and
n=6. We now consider the three choices for 4.

Case 1. Let d=1 and note that ne{6,7} by (3). If n =7, then i'=4, so
P has at least 12 vertices by Lemma 1. Thus |V(S)| =2 and each vertex of
S is adjacent to the same equally spaced i’ =4 vertices in P. If any vertex
in A is adjacent to more than one vertex in B, then G has a cycle longer
than P. Thus each vertex in A is adjacent to every vertex in C and this
implies that the vertices of C have degree 6 or more, which is impossible.
Thus n#7. If n=6, then i'=3 and P has either 9 or 10 vertices by
Lemma 1. In either case, P has a subpath ¢, b, a, ¢’ where ¢ and ¢’ are in
C. If b is adjacent to at least two vertices in A, then G has a cycle longer
than P. Thus b is adjacent to at least two vertices in C, so C has a vertex
with degree at least 5. Since this is impossible, d# 1.

Case 2. Let d =2 and note that n=6. Also i'=2, so P has either 8 or 9
vertices by Lemma 1. Since S does not have two vertices of degree 1, S
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must have a cycle containing the two vertices v and w. Let x be another
vertex on the cycle in S. Since x can be joined to at most 3 vertices of S, x
must be joined to a vertex of P. But x cannot be joined to a member of
C, and there is a path in § between x and each of v and w of length at
least two. Thus a longer cycle than P exists in G no matter what vertex of
P is joined to x. Thus d# 2.

Case 3. Let d=3 and note that n=6 or n=7. Clearly, i'=n—d-2=
1. Also, S = K, and this, by symmetry, implies that each vertex of S is
adjacent to the same i’ vertices in P. Thus G has a vertex (in C) which
has degree at least 6. Since this is impossible, the result follows. 1

Lemma 4. If n=35, then R has order r=1.

Proof. 1f ({w}U A) has at least two edges, then w is adjacent to two
vertices of A and we can easily find a cycle longer than P. Thus
{{w}U A} has no more than one edge. Similarly, {w}U B) has no more
than one edge.

Let p be the number of edges in (A U R). Since {v} together with A is
an independent set, p=r—1 and G has exactly (n—2+r){n—2)—2p
edges joining vertices in A UR to those in V(G)—(A UR). Thus

IE(G)l=n(n—-2)-m(n-2)2=(n-2+r(n—2)—-2p+p,

and this implies that (r—2+m/2)(n—3)<1-—m/2.

Since n=35, we have r=5/2-3m/4. Thus, if m=1, r=1. Suppose
m =0, so r=2. Supposing that r=2, note that p=r—1=1. If p=0, then
AUR is an independent set of n vertices and Theorem B implies that G
is Hamiltonian. Thus (A U R) has n vertices and exactly one edge and,
therefore, G —(A U R) has exactly one edge. Thus G is Hamiltonian by
Theorem B if n=6. If n =35, the lemma follows from Theorem C. 1

Let D=ANB and let X=V(P)-(AUBUCQ).
Lemma 5. If n=35, then X =¢.

Proof. Clearly |X|=2—m. Suppose that X ={x, y} and note that x
and y are consecutive in P. Thus P contains the subpath ¢, b, x, v, a, ¢’
where {a}=A-B and {b}=B-A. If both x and y are adjacent to
vertices in D, then we can easily find a Hamiltonian cycle in G. If x is
adjacent to no vertex of D, then {B U{v, x})= H has n vertices and one
edge and this implies that G — V(H) has one edge. However, G — V(H)
has the subpath y, a, ¢’, which is a contradiction. Likewise if y is adjacent
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to no vertex of D, then {A U{v, y}) has only one edge and this leads to a
contradiction. Thus |X|# 2.

Suppose that X={x}. If m =0, note that |A—B|=|B—A|=2. Let
A-B={a,a't and B—A={b,b'}, where ¢, b, x, a, ¢’ and b’, a' are
subpaths of P. G is Hamiltonian if edges ab’ and a’b are both in G. If ab’
is not an edge of G, then (A U{y, b'})=H has n vertices and one edge
while G — V(H) contains xb and bc; this is impossible. Likewise, if a'b is
not an edge, then (BU{v,a’t)=H' has n vertices and one edge while
G—V(H') has edges xa and ac’; again this is a contradiction. Thus
[X]#1if m=0.If m=1, then (AU BU{v}) has n vertices and at most
one edge. If (AUBU{v}) has no edge, then n(n—2)=(n—1)(n—2),
which is impossible. Otherwise, n(n—2)—-2=(n—1)(n—2), whence n =4.
Thus X =4¢.

Theorem 2. If n=4 and G is a 2-connected (n—2)-regular graph with
2n or 2n —1 vertices, then either G is Hamiltonian or G is the Petersen
graph.

Proof. If G is not Hamiltonian, then n=5 and V(P)=AUBUC.
Also, |V(P)|=2n—1—-m and |A-B|=|B—A|=3-m. Let A—-B=
{ay,...,as_ .} and let B—A ={b,,..., b,_,.}, where a,b, are edges of P
for i=1,...,3—m and they occur in cyclic order on P.

Suppose m =0. If ((A U B)— D)= H has at least seven edges, then we
can easily find a Hamiltonian cycle in G using edges a;b; and ab; for
some i# . Thus H has no more than six edges, and this implies that
(AUBU{v}) has n+2 vertices and no more than six edges. Thus
(n+2)n—-2)-12=(n—-2)n-2), or n=5. But if n=35, the theorem
follows from Theorem C. The case m =1 is similar.

If n=4, G is a 2-connected 2-regular graph, i.e., G is a cycle. The
theorem follows., 1
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