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1 . Introduction .

We say that a collection of finite sets has a common intersection of size

t provided that the intersection of each pair of these sets is equal to the

intersection of all of them and this intersection has exactly t elements . A

family of sets with this property is therefore a strong 0-system [6 ;7] . Denote

by f(n ;r,k,t) the smallest integer with the property that if F is any family

of subsets each of size r of a set of size n, and if IFI > f(n ;r,k,t), then

some k members of F have a common intersection of size t .

The values of f for t = 0 or for r = 2 can be deduced from various well

known results . A few theorems and conjectures have also appeared dealing with

certain cases in which k = 2 and t > 1 . It appears, however, that almost no

attention has been given to any of the cases where k > 2 and t > 1 . Here we

investigate the general behavior of f(n ;r,k,t) for large n, obtaining specific

values or bounds for certain r and t and proposing a conjecture about the size

of f for all r > 2, k > 2, and 0 < t < r-1 .

2 . Older Results .

The value of f(n ;r,k,O) is the size of the largest possible collection of

r-sets,no k of which are pairwise disjoint,that can be chosen from a set of

size n . As such, the value of f(n;r,2,O) for r > 2 and n > 2 r can be deduced

directly from the Erdös-Ko-Rado Theorem [5] . A generalization of that theorem

[3] states that for each r > 2 there exists a constant c(r) such that

(1)

	

f(n ;r,k,0) =
n

-
n r-1 for n > c(r)k .

For r = 2 this result is contained in older theorems [4] dealing with sets

of independent edges in graphs . The values f(n ;2,k,l) = (k 2)n
can also be

obtained from well known graph-theoretic results .

3 . r = 3 ; Families of Triples .

The first result we mention for r = 3 is due to Brown, Erdös, and S6s [1] .

It concerns conditions for the existence of a pair of triples having exactly
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two elements in common and states that

(2)

	

lim n2f(n;3,2,2) = 116 .
n-

The lower bounds for f in this case follow from the existence of Steiner triple

systems for n =- 1 or 3 (mod 6) . By using collections of disjoint triple

systems, (2) has been generalized [2] yielding the following for a family of

k triples having a common intersection of size 2 .

(3)

	

lim n2f(n;3,k,2) = k61 .
n-

For pairs of triples having exactly one element in common the next result

was obtained by Erdös and S6s [1] and independently in [2] .

n-2 for n - 2 or 3 (mod 4)
(4)

	

f(n ;3,2,1) = n-1 for n

	

1 (mod 4)
n for n 0 (mod 4) .

It was the question of determining the correct analogue of (4) for k > 2 which

led to the present work . The following construction yields a lower bound for

f(n;3,k,1) for all k > 2 . Given an n-element set S and an odd integer k, we

form a graph G consisting of two disjoint copies of the complete graph Kk and

having all of its vertices in S . Let F be the collection of all triples which

can be obtained by taking the union of an edge of G with an element of S not

in G. F contains k(k-1)(n-2k) such triples, no k of which have a common

intersection of size 1 . For k even we replace G by a graph consisting of one

copy of Kk and one copy of Kk-l . It follows that

k(k-1)(n-2k)

	

for k odd

2
(k-1) (n-2k+1) for k even .

(5)

	

f(n ;3,k,1) >

Peter Frankl has pointed out that the bound can be improved somewhat when

k is even by taking G to be a graph on 2k-1 vertices having degree sequence

k-1, k-1, . . .,k-1, k-2 .

In the other direction one can show that for each k > 2 there exist

constants c(k) and n o(k) such that

(6)

	

f(n ;3,k,1) < c(k)n

	

for n > no(k) .



This result can be derived from the proof of the theorem given in the next

section, and can also be established by an argument along the following lines .

Let F be a family of triples chosen from a set S with ISI = n and IFI > c(k)n .

We may assume that the elements of S which are contained in few triples of F

(say less than 2c(k)) have been deleted . Each element of S therefore has a

large "valence" with respect to the triples of F . Either there exist k triples

of F having a common intersection of size 1 or each element of S is contained

in a pair which in turn is contained in many members of F . In the latter case

there exist many such pairs of high valence, so either k such pairs share a

common element or there exists a large collection of these pairs which are

independent . In either event the result follows .

Frankl has now given an argument involving A-systems of edges in graphs

which shows that f(n ;3,k,1) <l5/3)k(k-1)n for sufficiently large n . He also

informs us that he has been able to use this technique to show that

f(n;3,3,1) = 6(n-6) + 2 for n > 54, thus settling in the affirmative a con-

jecture which we made just a few months ago .

4 . r = 4 ; Families of Quadruples .

Let F be a family of quadruples chosen from a set S. By the link of an

element x in S we mean the collection of all triples whose union with x yields

a member of F. If ISI = n and IFI > cn2 , for a given constant c, then there

exists an element of S whose link contains at least cn triples . It follows

from (6) that there exist constants c 1 (k) and n1 (k) such that

(7) f(n ;4,k,2) <
c1(k)n2

	

for n > n l (k) .

This argument can also be used in conjunction with (3) to show that there

exist c 2 (k) and n 2 (k) such that

(8)

	

f~n ;4,k,3) < c 2 (k)n3

	

for n > n2 (k) .

As in the case of (3), lower bounds can be obtained in some of these cases

from the study of designs . The first, for t = 2, comes from a result on

disjoint pairwise balanced designs due to Poucher [10] . The second, for t = 3

and k = 2, is from a result of Hanani [8] concerning sparse designs .

(9)

	

f(n;4,k,2) > e 3 (k)n 2

	

for n > n3(k) .



(10)

	

f(n;4,2,3) > e
4
n3

	

for n > n4 *

Katona (unpublished) proved that f(n ;4,2,1) =
n22

, for n sufficiently

large . A lower bound for f(n ;4,k,1) for all k > 2 can be obtained by using

the following inequality which holds for all r > 2 and 0 < t < r-1 and

sufficiently large n .

(11)

	

f(n ;r,k,t)

	

n-t-1
- r-t-1

This inequality, which has been used many times elsewhere, can be seen

as follows . Let S be a set with ISI = n, A C S, and JAI = t+1 . If F is the

family of all r-element subsets of S which contain A, then no k members of F

have a common intersection of size exactly t .

It follows that there are constants c5 (k) and n5 (k) such that

(12)

	

f(n;4,k,1) > c 5 (k)n 2

	

for n > n5 (k) .

An upper bound is given by the following general result .

Theorem . There exist constants c 6 (k) and n 6 (k) such that when k > 2 we have

(13)

	

f(n ;4,k,1) < c 6 (k)n 2

	

for n > n6 (k) .

Proof . Suppose F is a family of quadruples chosen from a set S with ISI = n,

I FI > c(k)n 2 . Let x be an element of S for which the valence v(x) (that is,

the number of quadruples of F containing x) is as large as possible . If

v(x) > ~(k-1)n2 , then by (1) the link of x contains at least k disjoint triples

and the result follows . Thus we may assume that v(x) = an, where a < z(k-1)n,

and that no collection of mutually disjoint triples in the link of x has more

than k-1 members . It follows that some element y of S is contained in at

least 3(
an

l) triples which are in the link of x . The pair {x,y} is then

contained in at least
3(knl)

quadruples of F . Hence there is a triple {x,y,z}

which is contained in at least 3(k-1) members of F .

Delete x, y, and z and those quadruples of F which contain one or more of

these three elements . At most 3an quadruples are thus removed, and at least
	a3(k-1) of these quadruples contain the triple {x, y,z} .

For c(k) sufficiently large we can repeat this procedure (at least k times)

until zc(k)n 2 quadruples have been deleted . Note that on the average at least



one out of every 9(k-1)n quadruples which were removed contained one of the

triples which was deleted, and that these triples were mutually disjoint . It

follows that if c(k) > 18k(k-1), then some element of S forms a quadruple of

F with each of at least k of these triples, and this completes the proof .

5 . The General Case .

The proof of the theorem in the last section can be modified to yield the

following for all k > 2 and r > 3 .

There exist constants c(r) and n(k,r) such that

(14)

	

f(n;r,k,l) < c(r)k(k-1)nr-2

	

for n > n(k,r) .

The bounds given in (11) and (14) for t = 1, r > 3 and those obtained for

the remaining cases when r = 2,3, or 4 suggest the following which we con-

jecture to be true for all k > 2, r > 2, and 0 < t < r-1 .

Conjecture . There exist constants c I (k,r) and c2 (k,r) such that for all

sufficiently large n we have

(15)

	

cI(k,r)nmax(r-t-l,t) < f(n;r,k,t) < c 2 (k,r)n
max(r-t-l,t) .

P . Frankl has just recently informed us that he has been able to establish

(15) for all r < 8 . He further states that he has obtained f(n ;r,k,t) <

c(k,r)n
r-t-1

for [ r/3] > t, which, together with (11), establishes the con-

jecture for these values as well .

It would also be interesting to know whether k always enters as a

multiplicative constant . That is, does there always exist a constant c(k)

such that f(n ;r,k,t) < c(k)f(n ;r,2,t)?
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