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1. INTRODUCTICN, Let p, g, r bDe positive integers with r > 3 and
2rz2qz2r . W shall denote by g(p, r, @) (resp. f(p, r, q}) the
least integer & z O such that, whenever a graph (resp. complete graph)
on p points has each of its lines coloured with one of r-1 colours
(resp. r colours) in such a way that every colour is an more than &
lines, then the graph has a subgraph on <q points which contains all
the colours. If no such £ exists we put g(p, r, q) = = (resp.

f(p, r, @) == ). We will prove

Theorem 1. Given n <1 for p sufficiently large f(p,r,r) > %(g) .
In particular f(p, 3, 3) == for p=z5.

Theorem 2. f(p, r, 2r-2) =0 for rz3.

Theorem 3. f(p, r, 2r-3) = (g) for r 24 where f-‘:[%] &

Theorem 4. (g) s f(p, r, 2r-4) < (uzl) for r25 where a=[A] and

o 1+ Mr-1)° + B(r"-Ir45) (p7-p)
2(r?-lr+5)

Theorem 5. We always have f > g . In particular we can replace f by
g in theorem2, 3, 4.

by

Theoren 6. For p 21 whave g, 3 3 = (5] a
(3) < glp, 4, b) < (u;l) where o = [p] and

s 3% /5 + 20(p7-p) .
10

H

Notice that theorem 1 really says there is no sensible theorem for
f(p, r, ) , but thecrem 6 is one for g(p, r, r) . This is the only
difference that we could find between [ and g . Some asymptotic
results ocn f and g are given in section 4. 1In section 5 we give a
best possible theorem on polychromatic trails.
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2. LOWER BOUNDS FOR £ AND g . These can be easily evaluated from

Example 1. We partition the complete graph Kp into r-1 disjoint
subgraphs Vl, Vz, Wy vr-l . Let Cys cz, vees € denote r colours
and for 1 &£ 1 g r-1 colour all lines in V y with ¢; and write Uy
for the union of all the points in vi’ vi+l’ M vr-—l . Now choose an
integer z in 0g z ( r-3 . For 14 :I.£ z we colour every line from
a point in V Then for z‘i<j$r-—1

to a point in U by ¢

we colour eve::y line from V 1 1::+1V i witli e, The resulting graph
contains a subgraph of 2r-z-2 points carrying all r colours, but no
smaller one does. Hence if we find the least number of lines of one
colour we have a bound for £ . If we delete all lines colour e s
then in the same way we get a bound for g. So let the number of
points in U:L and Vi be u, and vy respectively, giving

vl+v2+ . +vr_1 =p . When the v, are chogen to yield the largest

possible v such that v MV 4p e WV =V and

ztl
(vi)+vu Z(V) for 1gigz=
2 174+l 2
we get the lower bound (;) for both £(p, r, 2r-z-3) and g(p, r, 2r-z-3).
We conjecture that f and g are close to this bound for farge p .

When the z 1s chosen to be odd ?3 we can modify example 1 as
follows. We colour the V, and U ., as before. Then for 11 £z
a line from V, to V v, . U... ¥ vi+§ (z-1) u U, ie colour e

i+1 142
where suffices are reduced modulo z . We now like Vs Vgr seea ¥ to

be nearly equal and Vaot1r Vappr tter Vog to be nearly equal Whenz
calculating bounds.

Example 2, This is like example 1 except we have an extra set Vr and
z=T=1, No r points carry all r colours.

Suitably choosing the v, in example 2 proves the first part of
theorem 1, but we leave the comstruction for the second part as an
exercise.

Suppose some graph gives a lower boumd é%—{g) for g . Then by
deleting superfluoss lines and adding lines of a new colour we get the

same bound for f£.
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1= THE PROOFS OF THEOREMS 2-6. We start by introducing our termino-
logy.

(1) For any positive integers p, r, N we let Gp(r, N) denote
a graph cn p points whose lines are coloured by €15 Cos wres in
such a way that each colour c3 is one more than N lines. Also Si

denotes the set of points on at least one line colour ey -

(i1) The colour of a line xy will be denoted by co(xy) .

(iii) For each point x we let N(x) denote the set of all
points adjacent to x and p(x) be the number of colours in the set
{c(xy) |y « NGO} .

(iv) We put p(G) = Sup{p(x)|x ¢ G} .
(v) Any path abc of length 2 will be called an elbow at b,

(vi) A subgraph H of G is called polychromatic if it contains
all colours in G .

(vii) Let S be aset and x an element of S . We shall denote
the set of all elements of S other than x by S-x .

lemma 1. If r>n 22 then in each l(p(r, 0) with p(Kp)zn there
is a polychromatic subgraph on <2r-n points.

Proof. There is apoint x on n colours and r-n 1lines of the other
colours. If these r lines do not form the subgraph we get it by can-
sidering lines on x .

Proof of theorem 2. Apply lemma 1 with n =2 .

Proof of theorem 3. Assume the theorem is false for a certain

K, (z, (g)) . By lemma 1with n =3 we must have p(K) =2 . Choose
an elbow y,X.y, with ¢, = c(ylxa) and ¢, = c(xzyz} say. For
i=3,4, ..., r choose a line %44 coloured c; . Then Xy * Xg
and c(xexs) is e, or ¢, , say the former. let

S = {x2' ees X Vs eees yr} so |8] = 2r2.

Claim 1. c(xixj) c(yiyj) = c(xiyj) =c; forall i=j in
2si,j<r . For example c(xzys} is ¢; or c, because 0(Kp)=2,
if it was ¢

dietion.

5 then S—y2 is polychromatic of size 2r-3 a contra-
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Claim2. If 3<isr and c(ah)=ci for some line ab then
c(xza} = ¢; . Indeed if c(xza) =c, then (S«-{yz, Xis yi}} v {a, b}
is polychromatic, a contradiction.

Claim 3. Szn33=¢. Indeedifae32n83 then c(ab,) = c, and
c{ab3J = ey for some b, b3 e N(a) . By claim 2 we have c(xza) = ey
so p(K) > 2, a contradiction. Similarly we hawve 8 n S,j = for
2si<jsr,so |5] sp/(r-1) forsome i and the proof is
complete.

Proof of theorem 6. The first part is trivial, so assume that a given
(3, (u;]'}-l) does not contain a polychromatic subgraph of size sl .
Then p(G) <3 and themdoes not exist a path abed in G such that
e{ab), c(be), c(cd) are 211 distinet. Thus G can be partitioned into
six sets Tl’ le, 'I'z, T23, T3, 'I'31 , where Ti.)' is the set of points
on both colour ey and cJ. » but Ti is the set of points on 5
only. Let the size of the T's be a, b, ¢, d, e, h as shown in
figure 1. Of course some sets or lines may not be in G , but the
figure indicates every possibility. Notice that a+b+h 2 a+l for
otherwise we would have <(°;1) lines coloured c, . Similarly
bte+td 2 atl and dteth 2 a+l .

Claim 1. The nuber m of lines missing from G is less than (a+l)2.
Indeed, suppose on the centrary that m 2 (a+l)?2 . Then m 2 p? and
since p is the positive root of 5p?-3y = p?-p the number of lines in
G is at most

(g)-m s (g)-u‘ = §(5u%-3u)-p? = %u(u-l} < 3(";1)
This contradicts our hypothesis that each colour in G ocecurs on at
least (“;1) lines.

Claim2. b>e,d>8a,h>c, Indeed if b <e say, then b? < be ,
ba < ea, be < ec . Hence using our earlier remarks

(a+1)? < (atb+h) (b+c+d) = ab+ac+ad+b?+be+bd+hb+he+hd
< ae+ac+ad+be+ec+bd+hb+he+hd = m

a contradiction to claim 1.
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Now since the total number of lines of G is at least 3(°3l) , one
of atbtc, ctdie, ethta 1is at least o+l , say the first. But then
(a+1)? < (a+b+c)(d+e+h) < m because O < (d~a)(h-c) , contradicting
claim 1. 'This proves the right hand inequality for g(p, 4, 4) , and
example 1 provides the other one.

Proof of theorem 4. 'The constant A is the positive solution of the
simultaneous equations

(1) p = (r-2)A+8 and IA(A-1) = (r-2)BX + }B(B-1) .

Hence the left hand inequality comes from example 1.

Assume that a given Kp(r, (“;1}-1) does not contain a poly-
chromatic subgraph of size <2r-4 . By lemma 1 we have p(l{p) <4, W
shall next show that p(%} < 3 . Indeed if p(Kp) = 3 then there
exists a point x in 1(p and ¥y, ¥ Y3 € N(x) such that c(xyl) s
"(’Q";z) , c(w3) are distinet (say = ¢, ¢, ey respectively). For
h <isr choose aline x;y; coloured c; . Then c(xxh) is e s
C, or cy, say o . Let S = {x, Xys wevs X Vop wenes y!,} .. Then
by similar argument as those used in the proof of theorem 3, we have:

Claim 1. c(xxi) =c(xyi)=cl for $o=lly By iy e
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Claim2. If 4 <is<r and c(ab) = c; for some line ab then
c(xa) = ¢ .
Claim 3. There is no elbow abe such that ec(ab) = 5 s clbe) =,

J
with b<i<j<sr.,

"

i<jsr and ab, cd are lines coloured c,, C.

Claim 4. If 4 i

respectively then c(ac) = ¢y -

Claim 5. There is no path of the form abed with
{e(ab), c(be), c(ed)} = {02, e ci} where 124 .

Now by claim 3 we have S, nS.=¢ for 4<i<jsr. Also
SBD(SHUSSU.--U Sb}stl} for otherwise we would have less than

(u;‘-i) lines coloured 5 s since by claim 5 all lines from S

with i 2 4 are not coloured Cy - Similarly we have
S, n (Sy v een v Sr} = . let us assume without loss of generality
that Sanu:ﬂJ.

B By

Claim 6. nSi=¢?1‘or 5<isr. Indeed if false for i =5 say
choose elbows abe, def such that c(ab) = U c(be) = Cy s c(de) = Cs5
c(ef) = ¢ . Then (5'{x’5’2’y3’yu'y5’xu”‘5” v {a,b,e,d,e,f} is a poly-
chromatic subgraph of size =2r-4 , a contradiction,
Claim 7. SBnSi=1}=SeuSi for 5si<r. Tis follows from
claim 6 by symmetry.

Next consider the subgraph G = S, v 83 U8y of Kp with all
lines colour ¢y omitted therefrom. Then G carries only three colours
and if it has w points, by (1) we have

(2) w
Now from example 1 the p of theorem 6 is the solution of
(3) W= 2udy and Iu(p-l) = 2ypidy(y-1) .

Since r 2 5 comparison of (1), (2), (3) shows that u+l <X , or in

other words that each colour occurs more than g(w, 4, 4) times in G .
Hence by theorem 6 there is a polychromatic subgraph H of size =4 in
G . 'hen (S'—{x,ya,yj,yh,xu}) v H is a polychromatic subgraph of size

p-(r-)(a+l) < p=(r-¥) 2 = 2)+8 .

I
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s 2r-4 of . By this contradiction we have so far proved that
p{Kp) < 3, 80 it must be 2 .

There must be an elbow in Kp . Suppose it has colours ¢y and
e, - Since p(Kp) = 2 we can not have another elbow colour cy and
¢y - Ingeneral for 3si<jsr wehaw SinSj=1Jandﬁn'ther,
gll lines from .S:.L to SJ. are the same colour ¢, say. The last
paragraph now gives a contradiction which this time campletes the proof.

Proof of theorem 5. Write f farf(p, r, @) and let Gp(r—l, f) be
given. The case f = = is trivial so assure f <« . Remove lines
arbitrarily until colour ¢; ocecurs exactly f times for 1 < i s r-1.
Let m be the number of lines missing from G . Then

m= §)-(-1)f 2 £ since coviously =(B) 2 f. Addto G all the
missing lines and colour them e - This gives a l&,(r, f) which by
definition of f contains a polychromatic subgraph H of size <q .
Evidently H , as a subgraph of G , is also polychromatic. This
proves that f 2 g , and the remainder of the theorem follows by taking
suitable versions of example 1. '

4, SOME ASYMPTOTIC RESULTS. We will need

Lemma 2. Let n > 2 be an integer and Gp(r; (g}) be given with

o= ,}]—’] . Tenno n of the S;'s are pairwise disjoint.

Proof. By hypothesis we have |S;| >a for 1<isr.If
5 32, .v.y S say are disjoint then
p= ]Sl| + ]Sa| .. F |Sn1 = n(a+l) > p , a contradiction.

Theorem 7. If r=2t>2 then g(p, r, 2r-t-2) < (;) where

¢ = P
r—2t+l
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Proof. Given Gp(r-l, (g)) choose the maximum possible number s of
elbows such that the 2s lines involved carry 2s distinet colours. We
have s 2t for otherwise by applying lemma 2 with n = r-2t+l to the
remaining colours we can increase s by 1 . These elbovstogether with
ane line for each of the remaining colours form a polychromatic subgraph
on sr+2t-2 points as required.

Theorem 8. If r>»5 then glp, r, 2r-5) < (3) where a = [—rlf-,;] N
provided p is sufficiently large.

Proof. Assume the theorem is false for a certain Gp(r-l, (g}} 8

Claim 1. No three elbows carry six colours. Otherwise by choosing a
line for each of the other r-7 colours we get all colours on £2r-5
points, a contradiction.

As in the proof of the last theorem we can get a pair of elbows
carrying say s C and C3s Oy respectively. Then S_, ...,
are pairwise disjoint by claim 1. Using lemma 2 shows that
Slntssu...usr_l)zb 80 slns5==¢ say. Similarly there is a
j in 5sj<r-1 with 83n5j=¢,andtl'emisala:'gest i in
5%<is<rl with S,nS; =0 . Wecannot have i>5 as we would
then have elbows coloured °3"°l¢ and Cys c5 and Css ci contra-
dicting claim 1. By using symmetry claims 2 and 3 below follow easily.

r-1

Claim 2. For i =1, 2 the sets Sy» § are disjoint for 6 < k s r-1,
but slnssstp and S, nS; =9 .

Claim 3. For i = 3, 4 the sets Si’sk are disjoint for 5 s k s r-1,
k=j,bu Ssnsjaqland SunSj:O.

Case j =5 . Here since |Sil 2 atl > p/(r-4) we have
W= |Slu...u55! = p-—}35|—...-lsr_l| < p=(r-6)p/(r-1) = 2p/(r-4)
and hence

Bt (o) 50 < & [ (B )

which is impossible for large p .
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"

Case j>5 say j=6. Inthis case

W' o= |Slu...u56| p—IS?l-...—ISr_ll < p=(r-T)p/(r-4) = 3p/(r-4) .

Now if Q=Sln.182u‘55 and R=53USM”56 by claim 1 we must have
QnR=0. Hence we may assume |[R| < iw' < 3p/2(r-4) and so

e 1) ) < 36 =2 o) foce

which is also impossible for p large, completing the proof.

faj=

Conjecture, If 0 <z <r-3 then f=glp, r, 2r-z-2) v (g) where

a = [%] , provided r is sufficiently large.

This conjecture says that when r is large the sets Vl,Vz,...,Vz
of example 1 are small. With a little extra work g can be replaced by
£ in theorems T with r > t+2 and 8 with r > 5 . Hence the conjecture
istrue when z is 0, 1, 2, 3 by theorems 2, 3, 7, 8 respectively. It
does not extend to 2z = r-2 by our earlier remarks on theorems 1 and 6.
For 2 <z s r-3 if the conjecture is true it is best possible by
example 1. We feel it would be the most important result in this
subject.

5. POLYCHROMATIC TRAILS. We shall call a sequence T of lines
a8y B8y, wey B, @ trail if all lines are distinet. The number
n 1is called the length of the trail T .

Lemma 3. Let G be a connected subgraph of Kp with r 21 1lines.
i p> %mz there exists a trail T of length :%r_ containing all
edges of G . Moreover T contains at most one more arbitrarily
chosen point a than G and if b, ¢ are the end points of T the
lines ab, ac are not in T and a = b,c .

Proof. Let 45 dys -ees d, be the degree sequence of G with di odd
for 1<1i<a and di even for a<is<v. If a=0 then G has
an Eulerian cireuit € , and if o = 2 then G has an Eulerian trail
D. Weecanthenput T=C or D in these cases. Since a 1is always
even, we may assume that o = 4§ . If the line joining two points of odd
degree of G is not in G , we adjoin it to reduce the number of odd
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degree points. Repeat this as often as possible to get a graph H with
degree seguence €15 B5y nes By with ei:di for a<icsv

and by renurbering the points, there isa B = 2 such that e, = di
Tor 1<i< B and e = di+l for 8<1sa. Fromour construction,
if B2 Y4 any two points of H of odd degree are adjacent in H , and
in fact in G . Hence we can remove (Bél) lines from among these B
points and still leave G comnected. Since in a connected graph the

number of points is at most the number of lines plus one, we have
(@B)] vgr-(ﬁgl)+1 for g=22.

If 8=2, then H has an Eulerian trail T and the number of lines
is r+ }oB) sr+ 3(vp)=r+iv-1c< %r by (1). Now suppose that
Bzl . Ifapoint of H of even degree is not joined to two points
of odd degree in H , we join it to reduce the number of odd points by
2. We repeat as often as possible to get a graph I with y odd
points 2 <ys<B . Ify =2, then I contains an Eulerian trail T
and at most r + }(w-B) + (B~y) lines, But (1) yields

v+ §(a-B) + (B=Y) < T + §(v-B) + (B-2) < 2r ,
with strict inequality if B > 4 . However if B = 4 inspection of the
graph shows we have strict inequality in (1), Bence we get the required
result when y = 2 and now assume y 2 4 . Then in I each point of
even degree is adjacent to at least vy-1 points of odd degree so

@) r2 Q)+ (v)rl) .
Now © 2> (1) 2 2(w.r-l) and hence l1'-+;‘ > +X: v where the last
2’ % 3 3 Y12

inequality is (2). T™us there exists a point a of Kp not in G .
We join y-2 of the odd degree points of I to a , obtaining a graph
J with two odd points different from a . Thus there is an Eulerian
trail T of J of length at most

P+ 3aB) + (By) + (y=2) < + }(v-B) + (B-2) < 2r ,

completing the proof.

- 1lg -



For lemma 3 the example where G is a star shows that -g—r cannot

be reduced. Also we need p > ]3;{42 because any graph with three
vertices having maximum possible degree p-1 odd hasno T .

Theorem 9. Given l(p(r, 0) with r23 and p > %na there is a
polychromatic trail of length <2r-3 .

Proof. Let F be a subgraph of Kp consisting of one line of each
colour. If each commected component of F is a path the desired trail
is easily constructed. Hence suppose G 1is a connected component of F
with s 1lines which is not a path. Then G has a vertex of degree
greater than 2 and s 23 . If s =3 we easily get 2ll the colours
of G in a trail of 3 or 4 different colowr lines. If s > 3 by
lemma 3 we can embed G in a trail T of «%s lines. Thus in every
case we can embed G in a trail T , with end points b, ¢ say, con-
taining t colours and <2t-3 lines. Moreover the t colours include
all the s colours of G . We may have apoint ae¢ T\G but a = b,c
and the lines ab, ac ¢ T ,

Now if F\T is empty we have finished, so suppose it has a comnec-
ted component G' with s' lines. If G' is not a path, by the method
of the last paragraph, we can embed G' in a trail T' with ends b',c'
containing %' colours and =<2t'-1l lines. This weaker result <2t'-1
holds also if G' is a trail. We repeat the process on F\(T u T') to
get T and so on. Note carefully that if in applying lemma 3 we need
a new point we will always choose the end b of T . We now adjoin the
lines cb', ¢'b", e¢"p"', ... and this connects T, T', ... into the
required trail. If we needed a point a in the first paragraph it does
not matter where it happens to lie. We have t+t' + ... = r and
t < 26=3 and t+t'+l < (26-3) + (26'-1) + 1 = 2(b+t') - 3 and so on,
s0 the trail has the correct length.

The example where -1 colours each appear on only cne line shows
the theorem is best possible. It is clearly stronger than theorem 2.
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6. A CLASS OF PROBLEMS, Consider a graph G whose lines or points or
both have been coloured with single colours or sets of colours. It is
natural to look for global and local conditions on the ecolouring which
ensure that a particular kind or class of coloured graphs exist as sub-
graphs of G . This paper deals with one such problem, others appear in
[1, 2, 31, and there must be many more interesting ones. The conditions
on the colouring place restrictions on the histogram for the number of
lines of each colour for G and for each point of G .
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