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Abstract : Let k, n be positive integers in the intervals

1 -": k f a (n) , 1 < n < 100, where x (n) is the ntunber

of primes up to n . For each pair k, n we specify one

of the k-sets of positive integers up to n, with the

property that its least common multiple is maximum . For

each n, the specification takes the form of a sequence

of integers and "cancellative terms" ; each k-set can

immediately be read off once the sequence is given .

1 . Introduction .

For any finite set S of positive integers, let A(S) denote the

least ccmmon multiple of the integers in S, let [l,n] denote the

set of positive integers up to n, and let L(n,k) = irax{A(S) : S ! [1,n],

I SI = k} . A k-set S = [ l,n] will be called optimal for n if

X(S) = L(n .k) .

In [1] it was shown that L(n,k) increases monotonically with

k up to its maximum, which occurs when k = ,r(n) if n ? 2, where
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as usual 7r (n) denotes the number of primes up to n . A concise

method employing a sequence to specify an optimal k-set for fixed

n and each k in the interval 1 < k < 1T (n) was also indicated .

We outline the idea below, then give a precise definition of the

sequence . The main purpose of this report is to present some com-

putationally-oriented results concerned with these sequences . A

number of more theoretical results about these and related sequences

will be presented elsewhere .

2 . Sequence specifying optimal k-sets for n .

We would like to list a sequence of integers from [l,n] with the

property that for each k < a (n) the first k terms

constitute an optimal k-set for n . However this cannot quite be

achieved in practice, since for suitable choices of n and k no

optimal k-set for n has any proper subset which is also optimal for

n . (For example, the only optimal 3-set for 12 is {11,10,9}, whereas

{12} and {12,11} are the only smaller optimal sets for 12 .) This com-

plication is accommodated by allowing terms present in some initial

segments of our sequence to be removed (cancelled) from larger initial

segments . We shall now make these ideas precise .

For each positive integer n, the canoe Native sequence maximizing

Zeast common muZtiples up to n is the sequence

of the sequence

A(n) = al , a2 , . . ., a£

with the following properties . Each term a2 is either an integer



from [l,n] or else is a cancelZative term, written as a-1 where

a is an integer occurring earlier in the sequence . For 1 ,j " f,

a residual term of the ,jth initial segment of A(n)

m such that ai = m for some i<,7 and ar j m-1 for

i < r < <j . For 1 < k < n(n), let V (k) be the smallest integer

for which the v(k)th initial segment of A(n) contains

	

k

residual terms . The subset of [l,n] comprising these k residual

terms will be denoted by A(n,k) . The sequence A(n) is chosen so

that for each k <i(n) the set A(n,k) is optimal for n, and so

that v(k+l) - v(k) is minimal for each k < x(n) .

This completes the specification of the most important features

of A(n) . However, to ensure uniqueness we must add several further

requirements of a technical nature . For each k < n(n), any can-

cellative terms in the segment

	

{a . : v(k) < i < v(k+l)}

	

precede
71

	

-

any terms which are integers . Let the elements of the relative com-

plement A(n,k)\A(n,k+l) be arranged in decreasing order : the

corresponding terms in A(n) are the cancellative terms in the

segment

	

Jai : v(k) < i < v(k+l)}, and they occur in the same order .

Similarly let the elements of the relative complement A(n,k+l)\ A(n,k)

be arranged in decreasing order : they occur in precisely this order

as the integers in the segment

	

{a . : v(k) < i < v(k+l)} . Finally if
z

S is an optimal (k+l)-set for n and S i A(n,k+l) then either

IS\A(n,k)l ? IA(n,k+l)\A(n,k)l, or else the elements of S\A(n,k)

arranged in decreasing order form a lexicographically later ("larger")

sequence than the corresponding sequence obtained from A(n,k+l)\A(n,k) .

is any integer



As a first example, we give the cancellative sequence maximizing

least common multiples up to 12 :

A(12) = 12, 11, 12 -1 , 10, 9, 7, 8 .

At the end of this report we tabulate A(n) for 1 < n < 100 .

3 . Bounds for terms of A(n), with computational consequences .

Given S s. [l,n] an elementary replacement on S replaces any one

integer in S by one from its complement . If S is not optimal for

n, there need not exist a sequence of elementary replacements by

which we can proceed from S and reach an optimal set of the same

cardinality without incurring a decrease in least common multiple

at some intermediate step . For example, if 6In then

L(n,3) _ (n-1) (n-2) (n-3), and {n-1, n-2, n-3} is the only optimal

3-set for n if n = 12 . However, this set is obtainable from

{n, n-1, n-5} by a sequence of elementary replacements only if X

is decreased at some intermediate step, for both sets are maxima] .

members of the partially ordered set resulting from ordering the

3-subsets of [l,n] so that S < T just when T is obtainable

from S by a sequence of elementary replacements none of which

decreases a .

This observation accounts for much of the difficulty involved

in explicitly determining A(n), since in general we cannot calculate

A(n,k+l) from A(n,k) by first adjoining the largest available in-

teger which is prime relative to L(n,k), and then making elementary



replacements which do not decrease a . However, this approach does

yield useful lower bounds on the terms of A(n), as we shall now

show .

Note that from any S c [l,n] it is trivial to derive a set S'

of coprime integers with a(S') = X(S), merely by deleting excess

prime-power factors from elements of S . The following theorem uses

coprime optimal sets .

THEOREM . For j, k satisfying 1 < j < k < 'R(n), suppose there

exists a decreasing sequence t, > t 2 > . . . > tj of j integers

from [1,n], each of which is prime relative to L(n,k-j) . Let

s1 <
82

< . . . < sk be any increasing sequence of k coprime in-

tegers from [l,n] such that

	

s1s2 . . .sk = L(n,k) . Then

a 1sg . . .sj > a(tl,t2, . . .,tj)

Proof. For brevity, write s = s ls z . . .sj and t = h(tl,t2, . . .,t17) .

Suppose s < t . Let T be a k-set formed by adjoining tl,tz, . . .,tj

to some (k-j)-set which is optimal for n . Then

s ls` . . .sk = ssj+l . . .s k = L(n,k) > a(T) = tL(n,k-j),

whence sj+l . . .sk > L(n,k-j) . But S = ( sj+l, . . .,sk)

	

is a coprime

(k-j)-set of integers from

	

[l,n], so L(n,k-j) > a(S)

This contradiction proves the theorem .

For any integer m < n, let [m,n] denote the set of integers from

m to n, inclusive . The case j = 1 of the theorem yields

= sj+l . .s k .



COROLLARY 1 . If 1 < k < ,r(n) and S is any k-set which is optimal

for n, then S c [m,n], where m is the largest integer in [1,n]

which is prime relative to L(n,k-1) .

More generally, for any S s [l,n] define the lexic sequence for

S eked n to be the decreasing sequence tl > t2 > . . . in which

each term tj is the largest integer in [l,n] which is prime

relative to X(S) and to each ti with i < j . Note that the

lexic sequence terminates with 1 . If S is optimal for n, no

term in the lexic sequence for S and n exceeds the least integer

in S, for otherwise an elementary replacement of the least integer

in S by the first term in the lexic sequence would increase a .

The theorem immediately implies

COROLLARY 2 . For j, k satisfying 1 < j < k < n(n), let T be

an optimal (k-j)-set for n, and suppose the lexie sequence for

T and n has at least j terms, t 1 > t2 > . . . > tj . Let S be

the optimal k-set containing the integers s 1 < s2 < . . . < sk . Then

a(s1,s2, . . .,sj) > t1t2 . . .tj .

The proof of the theorem shows that s = t can only hold if we have

sj+l . . .sk = L(r.,k-j), so the case j = I yields

COROLLARY 3 . For 1 < k < n(n), let m be the largest integer in

[1,n] which is prime relative to L(n,k-1) . Then either every coprime

optimal k-set for n is of the form S = T u (m), where T is an

optimal (:k-1)-set, or else every optimal k-set comprises integers

from [m+1,n] .



These results have numerous consequences for the calculation of

A(n) ; we shall conclude this report by pointing out several of them .

If m is the largest integer in [l,n] prime relative to L(n,k-1),

it follows from Corollary 3 that either A(n,k) = A(n,k-1) u (mi

or else A(n,k) S [m+l,n] . The latter is precisely the case which

necessitates the presence of one or more cancellative terms in A(n) .

Next note that if m > n/pa , where pa is a power of a prime,

Corollary 1 shows that A(n,k) can contain at most one multiple of

pa , by considering any coprime k-set derived from A(n,k) . Another

useful result which follows at once from the theorem is that

A(p,k) = A(p-l,k-1) u {p) for every prime p and 1 < k <*(p) .
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TABLE : The cancellative sequences A(n), for 1 s.n < 100 .

1 21 20 19 17 13 11 16 9
2 22 21 19 17 13 20 16 9

3 2 23 22 21 19 17 13 20 16 9

4 3 24 23 241 22 21 19 17 13 20 16 9

5 4 3 25 24 23 241 22 21 19 17 13 16 9

6 5 4 26 25 23 21 19 17 11 16 9

7 6 5 4 27 26 25 23 19 17 11 16 7

8 7 5 3 28 27 25 23 19 17 13 11 16

9 8 7 5 29 28 27 25 23 19 17 13 11 16

10 9 7 8 30 29 3028 27 25 23 19 17 13 11 16

11 10 9 7 8 31 30 29 3Ő1 28 27 25 23 19 17 13 11 16

12 11 121 10 9 7 8 32 31 29 27 25 23 19 17 13 11 7

13 12 11 121 10 9 7 8 33 32 31 29 25 23 19 17 13 27 7
14 13 11 9 5 8 34 33 31 29 25 23 19 32 13 27 7
15 14 13 11 8 9 35 34 33 31 29 23 19 32 13 27 25
16 15 13 11 7 9 36 35 36 1 34 33 31 29 23 19 32 13 27 25
17 16 15 13 11 7 9 37 36 35 36 134 33 31 29 23 19 32 13 27 25

18 17 18 i 16 15 13 11 7 9 38 37 35 33 31 29 23 17 32 13 27 25

19 18 17 181 16 15 13 11 7 9 39 38 37 35 31 29 23 17 32 11 27 25

20 19 17 13 20-1 16 15 11 7 9 40 39 37 40 138 35 31 29 23 17 32 11 27 25



TABLE : The cancellative sequences A(n)-continued

41 40 39 37 40 1 38 35 31 29 23 17 32 11 27 25
42 41 42 1 40 39 37 46 1 38 35 31 29 23 17 32 11 27 25
43 42 41 42 1 40 39 37 40 1 38 35 31 29 23 17 32 11 27 25

44 43 19 17 27 32 2541 39 37 35 31 29 23

45 44 43 41 37 31 45 1 39 35 29 23 19 17 27 32 25

46 45 43 41 37 31 45 1 39 35 29 19 17 32 11 27 25

47 46 45 43 41 37 31 45 1 39 35 29 19 17 32 11 27 25
48 47 48 1 46 45 43 41 37 31 45 1 39 35 29 19 17 32 11 27 25
49 48 47 48 1 46 45 43 41 37 31 29 44 45 1 39 25 19 17 27 32
50 49 47 43 50 1 46 45 41 37 31 29 44 45 139 25 19 17 27 32
51 50 49 47 43 41 37 31 29 23 44 19 13 27 32
52 51 49 47 43 41 37 31 29 25 23 19 11 27 32
53 52 51 49 47 43 41 37 31 29 25 23 19 11 27 32
54 53 54 1 52 51 49 47 43 41 37 31 29 25 23 19 11 27 32
55 54 53 54 1 52 51 49 47 43 41 37 31 29 23 19 27 32 25
56 55 53 51 47 56 152 49 43 41 37 31 29 23 19 27 32 25
57 56 55 53 47 56 152 49 43 41 37 31 29 23 17 27 32 25
58 57 55 53 49 47 43 41 37 31 52 23 17 27 32 25
59 58 57 55 53 49 47 43 41 37 31 52 23 17 27 32 25
60 59 6Ő158 57 55 53 49 47 43 41 37 31 52 23 17 27 32 25



TABLE : The cancellative sequences A(n) -continued

61 60 59 66 1 58 57 55 53 49 47 43 41 37 31 52 23 17 27 32 25
62 61 59 57 55 53 49 47 43 41 37 29 52 23 17 27 32 25
63 62 61 59 55 53 47 63 1 57 49 43 41 37 29 52 23 17 27 32 25

64 63 61 59 55 53 47 63 1 57 49 43 41 37 31 29 23 17 13 27 25

65 64 63 61 59 53 47 631 57 49 43 41 37 31 29 23 17 11 27 25
66 65 66 1 64 63 61 59 53 47 63 1 57 49 43 41 37 31 29 23 17 11 27 25
67 66 65 66 164 63 61 59 53 47 63 1 57 49 43 41 37 3 .1 29 23 17 11 27 25
68 67 65 63 61 59 53 47 63 1 57 49 43 41 37 31 29 23 64 11 27 25

69 68 67 65 61 59 53 49 47 43 41 37 31 29 19 64 11 27 25

70 69 67 7Ó1 68 65 61 59 53 49 47 43 41 . 37 31 29 19 64 11 27 25

71 70 69 67 7Ó1 68 65 61 59 53 49 47 43 41 37 31 29 19 64 11 27 25

72 71 72 1 70 69 67 70168 65 61 59 53 49 47 43 41 37 31 29 19 64 11 27 25

73 72 71 72`70 69 67 70 1 68 65 61 59 53 49 47 43 41 37 31 29 19 64 11 27 25
74 73 71 69 67 65 41 68 31 29 19 64 11 27 2561 59 53 49 47 43

75 74 73 71 67 61 75 169 65 59 53 49 47 43 41 68 31 29 19 64 11 27 25
76 75 73 71 67 61 75 1 69 65 59 53 49 47 43 41 37 31 29 17 64 11 27 25
77 76 75 73 71 67 61 75 1 69 65 59 53 47 43 41 37 31 29 17 64 27 49 25
78 77 78 1 76 75 73 71 67 61 75 1 69 65 59 53 47 43 41 37 31 29 17 64 27 49 25
79 78 77 78 1 76 75 73 71 67 61 75 1 69 65 59 53 47 43 41 37 31 29 17 64 27 49 25
80 79 77 73 80 1 76 75 71 67 61 75 1 69 65 59 53 47 43 41 37 31 29 17 64 27 49 25



TABLE : The cancellative sequences A(n)-continued

81 80 79 77 73 71 67 8d'76 65 61 59 53 47 43 41 37 31 29 23 17 64 49 25

82 81 79 77 73 71 67 65 61 59 53 47 43 76 37 31 29 23 17 64 49 25

83 82 81 79 77 73 71 67 65 61 59 53 47 43 76 37 31 29 23 17 64 49 25

84 83 841 82 81 79 77 73 71 67 65 61 59 53 47 43 76 37 31 29 23 17 64 49 25

85 84 83 84 1 82 81 79 77 73 71 67 61 59 53 47 43 76 37 31 29 23 64 13 49 25

86 85 83 81 79 77 73 71 67 61 59 53 47 41 76 37 31 29 23 64 13 49 25

87 86 85 83 79 77 73 71 67 61 59 5 3 47 41 76 37 31 81 23 64 13 49 25
88 87 85 83 79 58186 77 73 71 67 61 59 53 47 41 76 37 31 81 23 64 13 49 25

89 88 87 85 83 79 88 1 86 77 73 71 67 61 59 53 47 41 76 37 31 81 23 64 13 49 25

90 89 90188 87 85 83 79 88 186 77 73 71 67 61 59 53 47 41 76 37 31 81 23 64 13 49 25

91 90 89 90' 1 88 87 85 83 79 73 71 67 61 59 53 47 43 41 37 31 81 23 19 64 49 25

92 91 89 87 85 83 79 73 71 67 61 59 53 47 43 41 37 31 81 88 19 64 49 25

93 92 91 89 85 83 79 73 71 67 61 59 53 47 43 41 37 29 81 88 19 64 49 25

94939189858379737167 61 59 53 92 43 41 37 29 81 88 19 64 49 25

95 94 93 91 89 83 79 73 71 67 61 59 53 92 43 41 37 29 81 88 17 64 49 25

96 95 96194 93 91 89 83 79 73 71 67 61 59 53 92 43 41 37 29 81 88 17 64 49 25

97 96 95 96 1 94 93 91 89 83 79 73 71 67 61 59 53 92 43 41 37 29 81 88 17 64 49 25
98 97 9S 93 89 981 94 91 83 79 73 71 67 61 59 53 92 43 41 37 29 81 88 17 64 49 25

99 98 194 91 83 79 73 71 67 61 59 53 92 43 41 37 31 29 99188 81 17 64 49 2598 97 95 89

100 99 97 10Ő198 95 89 98194 91 83 79 73 71 67 61 59 53 92 43 41 37 31 29 99 1 88 81 17 64 49 25
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