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Introduction. In this paper we consider various additive and multi-
plicative problems concerning sets of integers. The major aim of our investi-
gation is in exhibiting the relationship between the number of elements
in a given set of positive integers not exceeding » and the number of inte-
gers that can always be chosen (with or without the restriction that these
should lie in the given set) so that their sums (or products), taken two at
a time, should all lie in the given set. We shall only once consider the
analogous question relating to sums formed with a variable number of
summands.

Notation. The letters ¢,, ¢;, ... denote positive absolute constants,
unless otherwise indicated. A sum or product in this paper will mean, un-
less otherwise indicated, one formed with distinet integers. A sequence
will always mean a strictly increasing sequence of positive integers.

1. Let 4 denote a set of # ¢ integers not exceeding 2x. It is clear that
if # = 1 then in general one cannot choose three integers from 1, 2, ..., 2n
whose sums, taken two at a time, all appear in 4; for instance we may
let A consist of 2 and all the odd integers not exceeding 2n. It turns out,
however (as Theorems 1-4 below show), that corresponding to ¢ = 2,
€1, 03logn, c,n'? respectively, we can always choose three, four, five,
or six integers respectively so that in each case all sums, taken two at a
time, will appear in the given sequence A ; further, these results are essen-
tially best possible. Theorems b and 6 below give us some idea of the rate
of growth of the smallest integer i, (k = 3) such that for any sequence of
n -1, integers not exceeding 2n, we can always choose % integers all whose
sums, taken two at a time, appear in the sequence.

THEOREM 1. Suppose n = 4 and let A denote a sequence of n+2 positive
integers not execeeding 2n. Then there are integers b, by, by such that b;+b;
(1<i<<j<3) are all in A.



38 8. L. G, Choi, P. Erdos and E. Szemerédi

Proof. We assume the theorem false and proceed to deduce a con-
tradiction. Accordingly, suppose there exists » = 4 and a sequence 4 of
n -2 integers not exceeding 2n such that one can never choose by, by, b,
with &,+8; (1<?i<<j<3) in A.

Let 2m +1 be the smallest odd integer = 3 in 4. Then 3 < 2m 1 << 2n.
Since the sum of m -1 and m is 2m +1, for each integer j = m-+2,...,2n—
— (m +1), at most one of the sums m +j, m+1-+j belongs to A. In other
words, no two consecutive integers from 2m 42, ..., 2n can belong to 4. In
view of the choice of 2m +1, there are at most m -1 integers (i.e. consisting
of 1 and the even integers) from 1, 2,..., 2m belong to A4, which implies
that at least # —m of the integers 2m +2, ..., 2r» belong to 4. As we have
already shown that no two consecutive. integers from 2m 2, ..., 2n can
belong to A, the last sentence implies that there are precisely n —m inte-
gers from 2m 2, ..., 2n belonging to A and that these are simply the
even integers from 2m 2, ..., 2n; further all the even integers from 1,
2, ..., 2n also belong to 4. Consequently all the even integers from1, 2, ...
<.y 2n belong to A and these include the numbers 4, 6, 8 since n = 4.
But then the number b, =1, b, =3, b, =5 have all sums b, b
(1 <7< j<3) belonging to A. This gives the desired contradiction.

We remark that # = 4 in the above theorem is best possible since we
cannot choose by, by, b; all whose sums b;-}-b; (1<{4<j<3) appear in
1, 2, 3, 4, 6.

The proofs of Theorems 2-4 below depend on the following lemma
(¢f. [3], Lemma p(d, 1)) and its corollary.

LeyMA A. Suppose B denotes a sequence of positive inlegers wnot ex-
ceeding 2n

Yo=Y

then, provided t = 9%n' =", there exist positive integer x, and distinct posi-

tive integers ®,, ..., & such that B coniains the subset:
(1) {@o} +{0, @} 4 ... +{0, @}

Proof. The proof is by induction on k. Clearly the theorem is true for
L =1 or 2. Let now %k = 2 and assume theorem holds for k. We proceed
to prove that the theorem holds also for & 1. Accordingly let B denote a se-
quence (1) of integers not exceeding 2n, where ¢ > 25 7= Since there
are 3(t—1)t¢ differences y;—vy; (1 <j<i<1t) there exists some integer
m such that there are t, > {t(t—1)}/(8n) > 12/(16n) distinct pairs yi < ¥~
(¢ =1,...,%) such that

yf*—yfzm (1t =1,2,...,1).
It is clear that yf (¢ =1, ..., ;) are distinet and

—& ) —k
1, > 22— (16n) "1 > 2Fal 2T,
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But then by the induction hypothesis there exists a subset of form
{xﬁ} +eee {0! wfc}

in the set {y;; i =1,...,%). Since for each ¥,y +m =y;" is also
in B we conclude, by taking #,., = m, that the set

{@o} +{0, @1} + ... +1{0,3;.,}
is also a subset of B.

As a consequence of Lemma A, we prove the following

COROLLARY. Suppose n = ny(k) and Ift A denote a sequence of t even
integers not exceeding 2n, where t = 25n'~*"". Then there exist integers by, ...
vovy by such that all b, +-b; (0 <1< j < k) appear in A.

Proof. By the lemma, A possesses a subset of type

(o +{0, 2} + ... {0, 2}

We take by = 2y, by = $ay+2y, ..., 0, = La,+2,. Since 2, is an even
integer, by, by, ..., b, are integers whose sums b, +b; (0 <<i<<j< k) are
all in 4.

THEOREM 2. There exists a positive integer ¢, such that if n = n,{c,) and
A denotes a sequence of n ¢, positive inlegers not exceeding 2n, then there
are by, by, by, by so that all sums b;+b; (1 <i<<j<4) are in A.

Proof. Let ¢; be a sufficiently large integer. Let ¢ denote the number
of even integers in 4. Then

¢, <t<10%n,

the latter inequality holding in view of the corollary to Lemma A, if n is
chosen large enough. By the same corollary, provided ¢, is chosen large
enough, we may assert that there exists an even integer 2m in [201, 2n —
—20t]. Let b, and b, be even integers defined by
by +by = 2m,
2 if m is odd,
by—by = 3 n
4 if m is even.
If a is any integer in [m —10¢, m +-10f] then certainly
0<atb, <2n,
0< atb,<2n.

Now there are 5¢ pairs of odd integers , y in [m —10¢, m +10¢] such that
x+y = 2m. For each © = 1, 2, there are at most { odd integers a in [n —
—10t, m+10¢] such that b;-+ e is not an integer in A. Thus there exist
at least 3¢ pairs of odd integers x, y in [m —10¢, m +10¢] with # + y = 2m and
such that b, -2, b, o, b, 4y, b, -y arveall in 4. Let b;, b, be one such pair.
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Then by, by, b;, b, are integers such that all the sums b;+8; (1 <i<<j<4)
are in 4.

TraeoreM 3. There ewists an absolute constant ¢, > 0 such that if n
= noley) and A is a sequence of n--m positive integers not exceeding 2w,
where m = ¢,logn, then there are integers by, by, by, b,, b, such that b;+ b,
(1<i<j<B) are all in A. Further, the result no longer holds if ¢, is rep-
laced by ¢y, where c, is sufficiently small.

Proof. Let ¢ denote the number of even integers in A. Then, provided
n is sufficiently large, we may assume

eologn <t < 107%n,

the right-hand side inequality holding since otherwise an application of
the corollary to Lemma A (with & = 4) gives the theorem. In view of the
corollary again, provided ¢, > 0 is sufficiently large, and n = n,(¢,), there
are at least 2log,elogn even integers from our sequence A falling into the
interval [40f, 2n—40¢]. Therefore there exists a subinterval [#y, 2%n,]
containing three even integers a; < @, < a; from A. Let the integers
by < by < b; be determined by
by+by = a;,
by+by = a3,
bg + ba = ﬂ:: ‘
We thus obtain
by = }(a; +a; —a3),
by = §(af —a; +a3),
by = (ay —a] +@).

It is clear that b,, b,, b, are either all odd or all even. Suppose they are
all odd (the case when b,, b,, b, are all even can be treated similarly). There
are 10¢ pairs of even integers b, < b, in [(a]/2)—20t, (a7 [2) +20¢] such
that b,+b;, = aj. We note that for any a in [(a]/2)—20t, (ay/2)--20¢t],
a+b; <2n (i =1, 2, 3). We choose a pair b, < b, such that b,+b,, b, +b,,
b,+ by, by+by, by+by,, bs+b;, are all in A. This is possible since
for each ¢ = 1, 2, 3 there are at most ¢ even integers a in [(a]/2)—20¢,
(ay /2) +20t] such that b; - a is not in 4. This proves the main part of the
theorem.

Finally, if A consists of all the odd integers and the integers 2, 22,
2%, ...,in [1, 2n] then one cannot choose b,, ..., b, such that b;+b; (1
<i<<j=<b)are all in A. This completes the proof of Theorem 3.

THEOREM 4. There ewists ¢; > 0 such that if n = ny(e,), and A is a
sequence of m--m positive integers not exceeding 2n, where m = e;n'?, then
one can find sixz integers by, ..., b, whose sums b;+-b; (1 <i<j<6) are
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all in A. Further, the results becomes false if ¢y is replaced by a sufficient-
ly small constant c;.

Proof. Let { denote the number of even integers in A. Then we can
assume, in view of the corollary to Lemma A, that

oL < 107%,
and that there are at least 3t > 12x'” even integers of A falling into the
interval [40f, 2n —40¢]. Thus, if ¢; is sufficiently large, there exists a sub-
interval [n;, 2n,] containing at least 3»!”? even integers of A. Since

the sum of any two integers in [#n,, 2n,] lies between 2n, and 4n,, there
exist even integers z,, 2,, 2;, 2,, 25, %, 0f 4 such that

B2 =2+2 =27
and 4
My <2< 22 << 2y <2< 2<2m,.

We determine integers b,, by, b;, b, such that

bbby, = 2y,

by+b, = 25,

bi+b; = 2,

b, +b, =2
and thus also

bo-tby = 2y,

b+ by, = 2.

It is clear that &, < b, << b, << b, and that they are all odd or all even.
Solving for b,, by, b,, b, gives

by £ 3(%5—2),

by = $(22, —2;+2,—2),

by = 3(22+2,—2),

by = $(ep—2;1+25). '
Since clearly b, > 0 we have b, >0, b, > 0, b, > 0 as well.

I b,,..., b, are all odd (even) then we determine even (odd) integers
b, bs in [12,—20%, 32,-+20t] such that
bs+bs = 2

and such that b;-b; (i =1,2,3,4) and b;+b, (1 =1,2,3,4) are all in
A. This is possible since for each 1 =1, 2, 3, 4 there exist at most ¢ even
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(odd) integers e in [$#; —20%, 42, -20¢] such that b;,—a does not belong
to 4 ; but there are initially 10¢ possible choices for b, b, such that b, b,
= 2.

To prove the last part of the theorem we let 4 consist of all the odd
integers < 2n and ¢;n'® even integers = 2(4) so that the sums taken two
at a time of these even integers are distinct. Suppose in fact there exist
biy.eey bg such that b,4+b; (1 <4< j< 6) are all in 4. We shall deduce
a contradiction. Clearly at most two of the integers b, can be even for
otherwise we have a sum = 0 (4). Thus there are four odd b,, say by, b,,
by, b,. The sums by + by, by +by, by -+-by, by--b, are in A, But then

(14 b2) + (B3 4-by) = (by+b5) + (by+by),

violating our choice of the even numbers in A.

We summarize the results contained in Theorems 1-4 as follows. We
first recall the definition of ¢, in the opening paragraph of this section.
For large n, Theorems 1-4 reveal that the order of magnitude of ¥, (k&
= 3,4, 3, 6) is known. More precisely

t3 —_— 2; 2 { 34 g C
e logn <t < glogn, eyn'? <ty < ey,

where ¢,, ¢, 0;, ¢, ¢5, ¢, ¢; are positive absolute constants. It might be
of interest to determine these constants precisely. For % > 7, the order
of magnitude of #, is not known, but Theorems 5 and 6 below give some
indication of the possible rate of growth of #,. We mention that a slightly
more precise form of Theorem 5 below is possible; but as there is no indi-
cation that Theorem 5 is anywhere near the best possible we shall not
aim at precision here.

THEOREM 5. Let k be a positive integer and n = ny(k), and suppose A
is @ sequence of n-+1 positive integers not exceeding 2n, where t = 28n' 2"
Then there exist integers by, ..., b, all whose swms b, +b; (0 <i<j<k)
are in A.

Proof. Since there are at least 2¢n!~* " even integers in A4, the the-
orem follows from the corollary of Lemma A.

COROLLARY. If A is a sequence of n+t positive integers not exceeding
2n, where t = dn, and n = ny(0), then we ean find integers by, ..., b, where
Lk < loglogmn, with the implied constant depending on §, such t?mt all sums
bi+b (1<i<j<k) are in A.

Proof. By Theorem 5 we can always choose by, ..., b, if

S
ni 2R < 8

which is valid if % < loglogn.
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Before stating our next theorem, we prove a result concerning the
frequency of occenrrence of seguences with few distinet sums (taken two
at a time).

LemmA B. Suppose a, is given. Then there ewvist ky = ky(a;) and a,
depending only on a,, such that, if k =k, and n = »n,(k, a,), the number of
choices of sequences A

Gy < o< @ W

each with < a,k distinct sums {{aken two at a time), does not exceed n".
‘We deduce the lemma from the following theoram of Freiman (see [2],
p. 134) reworded to snit onr present purposes.
THEOREM A. Suppose the sequence 4

Gy < 5o @

is such that there are at most ek distinet sums a;+a; (1 <i<<j<k), then
there exist k*, ¢* depending only on ¢, and an integer m < ¢—1, such that,
if k= k", there are arithmetic progressions By, By, ..., B,, each of length
at most ¢ k such that A is contained in the set S,,, where the sets 8, (i = 0,1,
..., m) are defined inductively by '

Su - Bn,
& Sf = U (Si—l_..'bf}, e
ﬁi“ﬁi

Proof of Lemma B. We apply Theorem A with ¢ = ¢;. Then we
have &k, = k" such that if & > &, the sequence A is contained in §,,, with
8§,, defined by (2). The number of choices for B; (i = 0, ..., m) i3 at most n.
Thus the total number of choices for 8, is << #*", Now the number of
choices of A corresponding to each choice of 8, is << (¢"k)“1*. Therefore, the
total number of choices of A is

< n®1(c" k)T < n,

where a, depends only on ¢, if we choose n = n,(k, a,).

THEOREM 6. Suppose 0 < &< 1 is given. Then there evist k,(s) and
ng(ky) such that if n = n,, there exists a sequence A of n |t positive integers
consisting of all the odd integers < 2n and t positive even integers < 2m, where
t = [n'"°], such that there ave at most ky(e) —1 integers

iy eeey bk“{s)—-] ’
all whose sums b;+b; (L <i<<j<ko(e)—1) are in A.
Proof. Let a = [2/e]+-1. We apply Lemma B with ¢, = a%. Let
ky = 2ayak,, where &, and a, are the numbers in Lemma B corresponding
10 ¢; = a® Finally let n, = ny(k,. o) be the choice of », in Lemma B
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corresponding to k& = k,. We shall establish the theorem with these choices
of &k, and n,. Accordingly let n > n, and we proceed to esgtablish the ex-
istence of a sequence A with the desired property.

We determine first the number of choices of sequences B

bh<...< bkagn

so that the number of distinct even sums b;+b; is < ak,. We let B*, B**
denote the subsequences of B consisting of respectively the odd and even
integers of B. Further we denote by 7(B*), T(B**) the number of dis-
tinet sums (taken two at a time) formed from the integers of B* and B**
respectively. We have -

T(B*) < aky,

T(B*™) < ak,.

We consider two cases according as both B*, B™ have each > a ™'k, > I,
integers or otherwise. Take the first case and let M, denote the number
of choices of B in this case. Then

T(B*) < o®|B*| = a,|B"|
and similarly
T(B™) < a,|B*|.

Since |B*| >k, and |B**| > k, we may apply Lemma B to B* and B**
to conclude that
M, < 0P,

'We next congider the second case. Let M, denote the number of choices
of B in this case. One of the sets B*, B™ has < a™ 'k, integers and thus
the number of choices for this set is < #0/°. The number of choices for
the other set is < #°2, by an application of Lemma B. Thus

M, < 2n¥oe e,
Thus the number of choices of B each with < ak, distinct even sums is

3.1
-1 —a ko
M, M, < n?%2 420700 +o2 L 2 i

since ky = 2ayak;.
Each such sequence B determines at least k,—3 even sums, so cor-

responding to a given B, there exist < (’::f::

these sums. Let ¥, denote the number of choices of A corresponding to
these B. Then

: ) choices of 4 containing

Ea_lk
(3) Jng(n"k“-}-:;)nz 0

t—kg+3
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We now consider sequences B having each at least ak, distinct even
sums. Bach such sequence determines at least ak, distinet even sums and

thus the number of choices of 4 containing these even sums is at most

(':h[[;‘f;']]) As there are < (;: ) choices for such B, the number N, of
— 0

choices of A corresponding to all such B satisfies

n—[akel) [
(4} NE é (t—t&?ﬁg]) (kﬂ).

Since the total number of possible choices of A i (”

t) we have our theorem

if we can prove
(1) > ¥yt ¥,
We shall estabilish this by showing that

m<if) M<if):
We have

3 1
n\ f{n—Ky+3 ekg+0(1) 3% ko
(‘)/(t-kw?')?n i

on recalling @ = [2/e]+1 and ¢ = [#'~"]. The above inequality implies
N, < %(f)m view of (3).
Next

n —[ak] eakg-+ O1)
(waﬂ>”° >2 (5

on using ¢ = [2/¢] +1 and ¢ = [#'7*]. We have N, < %(:’) in view of (4).
This completes the proof of Theorem 6.

2. In this section we consider the question of estimating the number of
integers that can be chosen from a given sequence so that all sums, taken
two at a time, should appear in the sequence. We shall prove three theorems
(Theorem 7, 8, and 9) of which the last depends on the followmg theorem
which has ]ust been established by Szemerédi.

THEOREM B. For any given infeger k=2 let ?‘k(n) denote the largest
number of integers that can be chosen from 1,2, ..., n with no k terms in
arithmetic progression. Then n™'r,(n)—>0 as n—co.

We further remark that Theorem 7 would also follow from Szemerédi’s
result though we give a proof which uses only a theorem of Varnavides.
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THEOREM 7. For any given ¢ > 0 and any integer k > 1, there exists
nole, k) so that if n = n, and A is a sequence of t integers not excedding n,
where 1= (; +&)n, then we can find k integers

Qpp tgyeeny Oy

in A whose sums a;+a; (1 <i<<j<k) are all in A.

Proof. Since ¢ = (& +¢)n there exist ¢ integers, where s > &%, in the
sequence A, say a,, ..., 4, such that2q,, 2a,, ..., 2a,are also in 4. By a theo-
rem of Varnavides (see [4]) there are ¢, n?® triples Gp s Gryy G, Which form
an arithmetic progression. Thus there is an integer, say @;, for which
there are = g,n integers a-f_j.’s so that

3@, +ay) = ay;

but then a; -+a; = 2a; is also in 4. Now repeat the same argument with
these &, aij’s, and so on. In this way one can find integers a; , @;,, ..., @;
in A such that a; +a; (1<wu<wv-<k)areallin 4.

The following theorem is a refinement of Theorem 7.

THEOREM 8. Suppose k is given. Then there ewists g, > 0 such that if
n=ngle, k) and A is a sequence of t inlegers mnot exceeding m, where
t = (2 —e,)m, then one can find k indegers in A

Ay oy ooy

whose sums a;+a; (1L <i<j<k)areall in A.

Proof. Let g, > 0 be a sufficiently small number. In view of Theorem
7, we may assume there are at most g,» integers a in A such that 24 is also
in A. Thus there exists a subset B of 4 with at least (2 — 2¢,)n integers and
with the property that whenever @ belongs to B then 2a does not belong
to B. This property is crucial in our proof and we refer to it as
property P. '

For j =1,...,k,let

I, = m2~%, n2~9%%], Iy = (m27', n271],
B; =Bnl;, B; =BnlI].
As property P implies that .

B +1Bj| <27  (j=1,2,...,k)
and as
F‘BE = (§_2'5k}ni
we conclude that
(5) |B;| + IB}"I = (277 —2¢)n.
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Further, by repeated application of property P and using (5), we may assert
that for each j =%,k—-1,...,1, and ¢ =0,1,...,k—j, B; contains
all but at most 2 (4 +1)e,n integers of type 4'x (where « is odd) in I;. By
now choosing g, small enough, we can find an integer b, of type , in By, an
integer b, of type 4z, in B,_,, ..., and an integer b, of type 47z, in B,,
where #;, ..., 2; are all odd, snch that b, +b; (1<i<Cj< k) are all in
B and thus in A. This completes the proof.

THEOREM 9. For any integer ¥ = 2, and any integer k, there exist 6, > 0
and ng(d,, k) such that if n=n,(0,, k) and A is a sequence of t positive
integers not exceeding n, where £ = (1 — d6,)n, then there exists a subsequence

H< o< O
such that all sums of the form
k k
Esjar- {sjzﬂ,l;lgz‘@jg?‘)
i=1 =1

are in A.
Proof. We choose 4, = 1/(2r*) and suppose n = %4(9,, k). Then there
exist 8 = n/(2r?) and a subsequence of A
a, < ... < a,

in [(r—1)r2n,r 'n] such that Zaj., 3ay, ...,ra; (j =1,2,...,5) are all
in A. By Theorem B, we can find an arithmetic progression

a,a+b, ..., at+r(k—1)b

within a,, ..., a,. Now we take

by =a, b,=a+v'b, ..., by=a+r{&—-1)b.
i k
Clearly >'e;b;, subject to 1< Ye, < r, are all in A. This completes
i=1 =1
the proof of the theorem.

3. In this section we consider some aspeets of the multiplicative analo-
gue of the additive problems in § 1 and 2. Theorems 10-12 below repre-
sent the type of results that can be established by probabilistic arguments.

THEOREM 10. Suppose ¢, is any positive integer and n = ny(e,). Then
there exisls a sequence A of k positive integers not exceeding n, where
k> n(l — e~ alo8n08108n) gyl that for any s, where s is an integer or the
reciprocal of one, there. exvist at most t < "8 ™1B18™ iptogors

b1< i‘.< bt’

where ¢, depends only on ¢y, such that all products s~'bb; (1<i<j<1t)
are tn A.
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Proof. Let t = [¢5'87818™] L1 where ¢, is a sufficiently larg

constant depending on ¢,. Let & = n— [nm™'], where m — e‘losn/loglogn

Suppose B is a sequence of ¢ integers

(6) b <...<b.

We first estimate the number of sequences 4
A << ... < Ay N

which contain all products b;b;s™" (1 < ¢< j< t) for a given s, where s is
an integer or the reciprocal of one.

Since d (1) < 20+oslloglosl £4,. 7 > 7 (¢), where d(l) denotes the divisor
function, the number of distinct products b;b; determined by (6) is

> z—lt(t_l)2—(l+e}logﬂ!lﬂglogn+os(l) ? isfz’

if ¢; is chosen large enough. Thus, if A contains all s~ b;b; for a fixed s,
at least h = [t**] of its integers are fixed by B and thus the number of
choices of A is at most

(%)

E—hj"

Hence, on allowing ¢ to vary, the number of possible choices of 4 corre-
sponding to a given B is at most

o (B—N
n (k_h).

"). Since the number of choices of A (without

The number of choices of B is ( " )

restriction) is (}:), the theorem would follow if we can prove
g ()= (0)= 6 23)
] = \i E—h)"

We have
(-n)/(n—h) _ oo (n—h+1)
klf \Ne=b] ko (B—h+1)
For each ¢ =0,...,h—1,

= —)"'=(m—hnm—2nm ) =1 Lm

Therefore,
n n—h - » 1443
EY/ Gz armp s oem s

. : : o ETRN !
since h = [1*?] and m = efslogniloglosn —qyailes Pyt (;)nz < nin' < ettt

Thus we have (7) as required.
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The following lemma, whose proof is somewhat involved (see [4])
enables us to strengthen Theorem 10.

LEMMA C. Suppose k is any positive inieger, and t = (logyn)*, where
log,n denotes the logarithmic function to the base 2. Then for any sequence

@< ...<@G=mn

of t positive integers, there are at least ck*t distinet products a;a; (1 <1< j<1)
where c is a positive absolute constant.

Using the above lemma we obtain the following

THEOREM 11. Suppose 0 << a<< 1, and n = ny(a). Then there ewists
a sequence of k positive integers mot exceeding n, where k= aw, such
that for any s, where s is an integer or the reciprocal of one, there exist at most
o [ec{,(logn)lleoglogn] — [(logn)cﬁuogn)lﬁ] integers

b 5y

where ¢, depends only on a, such that all products s~ b;b; (1 <i<j<t)
are in A,

Proof. Arguing as in proof of Theorem 10 and using Lemma C
instead of d(l) < 20+9loslloglosl e need only prove that

i n — [e7(logn)i] 2 (7
(ranJ)/ ([cm] — [os(logn) =J) = (s ) ;
We note that the left hand side is > e°#2~ )%00gn¢ which is greater than

n“( }, if ¢; and hence also ¢; is large enough in terms of a.

It seems quite plausible that the following conjeeture is true:

Suppose @, < ... < a; < n,t>= (log,n)*. Then there are (1--¢)*t dis-
tinet produets a;a; (1<¢< j<t), where ¢ is some positive absolute
constant.,

The above conjecture, if true, would imply the following

THEOREM 12. Suppose 0 < a <1 and n = ny(a). Then there ewxists
a sequence A of k positive integers not exceeding n, where k > an, such that
for any s, wkere s s an integer or the reciprocal of one, there exist at most
t = [e90B18m*] jptoaers

b|<o--<bg,

where ¢, depends only on a, such that b;bs™ (1 <i < j<t)are all in A.

The proof, which we omit, is an adaptation of the probabilistic argu-
ment used in the proof of Theorem 10. The theorems in this paragraph can
undoubtedly be sharpened considerably. We hope to return to these
questions at another occasion.

4 — Acta Arithmetica XXVII.
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