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Introduction . In this paper we consider various additive and multi-
plicative problems concerning sets of integers . The major aim of our investi-
gation is in exhibiting the relationship between the number of elements
in a given set of positive integers not exceeding n and the number of inte-
gers that can always be chosen (with or without the restriction that these
should lie in the given set) so that their sums (or products), taken two at
a time, should all lie in the given set. We shall only once consider the
analogous question relating to sums formed with a variable number of
summands .

Notation. The letters c„ c 2f . . . denote positive absolute constants,
unless otherwise indicated. A sum or product in this paper will mean, un-
less otherwise indicated, one formed with distinct integers . A sequence
will always mean a strictly increasing sequence of positive integers .

1. Let A denote a set of n ; t integers not exceeding 2n. It is clear that
if t = 1 then in general one cannot choose three integers from 1, 2, . . . , 2n
whose sums, taken two at a time, all appear in A ; for instance we may
let A consist of 2 and all the odd integers not exceeding 2n . It turns out,
however (as Theorems 1-4 below show), that corresponding to t = 2,
cl , c 2 logn, C3n' 12 respectively, we can always choose three, four, five,
or six integers respectively so that in each case all suins, taken two at a
time, will appear in the given sequence A ; further, these results are essen-
tially best possible. Theorems 5 and 6 below give us some idea of the rate
of growth of the smallest integer tk (k > 3) such that for any sequence of
n+tk integers not exceeding 2n, we can always choose k integers all whose
siims, taken two at a time, appear in the sequence .

TIIEOREAI 1 . Suppose n > 4 and let A denote a sequence of n +2 positive
integers not exceeding 2n. Then there are integers b 1 , b 27 b3 such that bi + b;
(1 < i < j < 3) are all in A .
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Proof. We assume the theorem false and proceed to deduce a con-
tradiction. Accordingly, suppose there exists n > 4 and a sequence A of
n+2 integers not exceeding 2n such that one can never choose b„ b 2 , b3
with bi + b; (1 < i < j < 3) in A .

Let 2m +1 be the smallest odd integer > 3 in A . Then 3 < 2m =1 < 2n .
Since the sum of m + 1 and m is 2m +1, for each integer j = m +2, . . . , 2n -
- (m +1), at most one of the sums ma +j, m +1= j belongs to A. In other
words, no two consecutive integers from 2m +2, . . ., 2n can belong to A. In
view of the choice of 2m +1, there are at most ma ;-1 integers (i .e . consisting
of 1 and the even integers) from 1, 2, . . ., 2m belong to A, which implies
that at least n - ma of the integers 2m +2, . . ., 2n belong to A . As we have
already shown that no two consecutive . integers from 2m-á-2, . . ., 2n can
belong to A, the last sentence implies that there are precisely n - m inte-
gers from 2m 2, . . ., 2n belonging to A and that these are simply the
even integers from 2m 2, . . ., 2n ; further all the even integers from 1,
2, . . ., 2n also belong to A. Consequently all the oven integers from l , 2, . . .

2n belong to A and these include the numbers 4, 6, 8 since n > 4 .
But then the number b, = 1, b 2 = 3, b 3 = 5 have all sums b i = b;
(I < i < j < 3) belonging to A. This gives the desired contradiction .

We remark that n > 4 in the above theorem is best possible since we
cannot choose b„ b 29 b 3 all whose sums bi +b; (1 < i < j < 3) appear in
1, 2, 3, 4, 6 .

The proofs of Theorems 2-4 below depend on the following lemma
(cf . [3], Lemma p(8, d)) and its corollary .

LEnitA A. Suppose B denotes a sequence of positive integers not ex-
ceeding 2n

Y,< . . .<yt,

then, provided t > 2 kn1-2 k , there exist positive integer x, and distinct posi-
tive integers x„ . . ., xk such that B contains the subset

(1)

	

{xo} {0, x,} + . . . + f o, xk } .

Proof. The proof is by induction on k . Clearly the theorem is true for
k = 1 or 2 . Let now k > 2 and assume theorem holds for k, . 'e proceed
to prove that the theorem holds also for k T1 . Accordingly let B denote a se-
quence (1) of integers not exceeding 2n, where t > 2 k . 1 111--2 (k+l . Since there
are 2(t -1) t differences -yi - y; (1 < j < i < t) there exists some integerr
m such that there are t, > {t(t-1)}f(8m-) > t 2f(16n) distinct pairs yti < y?
(i = 1, . . ., t,) such that

yi*- Y = m

	

(i = 1, 2, . . ., t,) .

It is clear that yi* (i = 1, . . . , t,) are distinct and

t, > 22k}2n2-2 k(16n)-' > 2"n' -2 7%
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But then by the induction hypothesis there exists a subset of form

{xo } =, . . . + {0, xk}

in the set {y? ; i = 1, . . . , t l } . Since for each yi , yi + m = . y2 is also
in B we conclude, by taking xk_ I = na, that the set

{xo} + {0, xl} + . . . '- {0, xk~ l }

is also a subset of B .
As a consequence of Lemma A, we prove the following
COROLLARY. Suppose n > n, (k) and let A denote a sequence of t even

integers not exceeding 2n, where t > 2 k n1-2-k . Then there exist integers bo , . . .
. . ., b k such that all bi - bi (0 < i < j < k) appear in A .

Proof . By the lemrita, A possesses a subset of type

{xo} T {0, xl} + . . .

	

{0, xk} .

l e take bo = z xo, bl = z x o +x	bk = xo x,L . Since xo is an even
integer, b o , b l , . . ., bk are integers whose sums bi =, b} (0 < i < j < k) are
all in A.

TttLOREnr 2. There exists a positive integer cl such that if n >, n,(0 1 ) and
A denotes a sequence of n = cl positive integers not exceeding 2n, then there
are b i , b 27 b 37 b4 so that all sums bi +b; (1 < i < j < 4) are in A .

Proof. Let c l be a sufficiently large integer . Let t denote the number
of even integers in A . Then

cl<t<10-2 7Z,

the latter inequality holding in view of the corollary to Lemma A, if n is
chosen large enough. By the same corollary, provided cl is chosen large
enough, we may assert that there exists an even integer 21n in [20 t, 2n -
-20t] . Let b l and b 2 be even integers defined by .

b, b2 = 2rn,
2

	

if m is odd,
b,-b, =

4 if m is even .

If a is any integer in [m-lot, m+lot] then certainly

0 < a + b l < 2n,
0< a+b2 <2n .

Now there are 5t pairs of odd integers x, y in [m-lot, m -lot] such that
x + y = 2m . For each i = l, 2, there are at most t odd integers a in [m -
-lot, m + lot] such that b i + a is not an integer in A . Thus there exist
at least 3t pairs of odd integers x, y in [m -lot, m +lot] with x + y - 2m and
such that b, +x, b 2 +x, b,+y, b 2 +y are all in A . Let b 3 , b4 be one such pair .
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Then b,, b27 b 3 , b 4 are integers such that all the sums bi+b; (I < i < j < 4)
are in A .

THEOREJI 3. - There exists an absolute constant 02 > 0 such that if n
no(c 2 ) and A is a sequence of n + m positive integers not exceeding 2n,

where 7n > e 2 logn, then there are integers b l , b27 b37 b47 bs such that bi+b;
(1 < i < j < 5) are all in A . Further, the result no longer holds if e 2 is rep-
laced by c2, where e2 is sufficiently small .

Proof. Let t denote the number of even integers in A . Then, provided
n is sufficiently large, we may assume

C 2 1ogn <. t < 10 -2 n,

the right-hand side inequality holding since otherwise an application of
the corollary to Lemma A (with k = 4) gives the theorem. In view of the
corollary again, provided c 2 > 0 is sufficiently large, and n > no (COI there
are at least 2log,elogn even integers from our sequence A falling into the
interval [40t, 2n-40t] . Therefore there exists a subinterval [n l , 2n,]
containing three even integers a, < a2 < a3 from A. Let the integers
b l < b 2 < b3 be determined by

b l+b 2 = a„*

b l + b3 = a,* ,

We thus obtain
bl

	

1 (a,2 * + a2
*
- a3

*-

	

),

b2 - 2(a* - a2 + a3),
1 (a*3

	

2 -a1+a2)'b

It is clear that b l , b 27 b3 are either all odd or all even. Suppose they are
all odd (the case when b l , b 27 b 3 are all even can be treated similarly) . There
are 10t pairs of even integers .b4 < bs in [(a*J2)-20t, (a*J2)+20t] such
that b 4 +b5 = a* . We note that for any a in [(a*f2)-20t, (a*J2)+20t],
a + bi < 2n (i = 1, 2, 3) . We choose a pair b4< b5 such that b4 +b„ b4 +b2f
b4 + b 3 , bs + b„ bs + b,, b5 + b3 , are all in A. This is possible since
for each i = 1, 2, 3 there are at most t even integers a in [(a* /2) -20t,
(a, J2) +20t] such that b2 + a is not in A. This proves the main part of the
theorem .

Finally, if A consists of all the odd integers and . the integers 2, 2 2 ,
2 3 , . . ., in [1, 2n] then one cannot choose b l , . . ., b5 such that bi + b; (1

i < j < 5) are all in A. This completes the proof of Theorem 3 .
THEOREM 4. There exists c 3 > 0 such that if n ->-no (c3 ), and A is a

sequence of n + m positive integers not exceeding 2n, where m > e3 n 1 /2 , then
one can find six integers b l , . . ., b b whose sums bi +b; (1 < i < j < 6) are

b2 ; b 3 -a3 .



and
nl<z..5<z3<zl<z2< x4 <z6 <2n1 .

We determine integers b„ b 2f b 3 , b4 such that

bl + b 2 = xlf
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all in A . Further, the results becomes false if c 3 is replaced by a sufficient-
ly small constant c3 .

Proof. Let t denote the number of even integers in A . Then we can
assume, in view of the corollary to Lemma A, that

du ll' < t < 10-2n,

and that there are at least 2 t > 120 12 even integers of A falling into the
interval [40t, 2n-40t]. Thus, if c3 is sufficiently large, there exists a sub-
interval [n,., 2n1 ] containing at least 30 12 even integers of A. Since
the sum of any two integers in [%, 2nj lies between 2n, and 4n„ there
exist even integers z,, z2 , z3 , z47 z5 7 zó of A such that

zl + z2 = x3 + z4 = z5 + z6

and thus also

b2+b4 = z4,

b2+b3 = x6 •

It is clear that bl < 64 < b3 < 52 and that they are all odd or all even .
Solving for b„ b 2 , b 3 , b4 gives

bl ~= 2(x5 - x3)1

b2 = 2(2x, -z5+x2 - z3)f

b3 - 2(x2 + z3 -x5)7

b4 = 2(x2 - z3 + x5) •

Since clearly b l > 0 we have b 2 > 0, b 3 > 0, b 4 > 0 as well .
If b l , . . ., b 4 are all odd (even) then we determine even (odd) integers

b57 b 6 in [2x5 -20t, 2z5 -E-20í] such that

b 5 + b6 = z5

and such that b,;+b5 (i = 1, 2, 3, 4) and bi+b6 (i = 1, 2, 3, 4) are all in
A. This is possible since for each i = 1, 2, 3, 4 there exist at most t even

b3 + b4 - z2,

b l + b3 = z39

b, + b4 = z5
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(odd) integers a in [2z;-20t, 4, 20t] such that bi =a does not belong
to A ; but there are initially 10t possible choices for b;, b 6 such that b s -+b6
= zs .

To prove the last part of the theorem we let A consist of all the odd
integers < 2rt and c3 n1 /2 even integers- 2 (4) so that the sums taken two
at a time of these even integers are distinct . Suppose in fact there exist
b	b6 such that b i + bi (1 < i < j < 6) are all in A. h[% e shall deduce
a contradiction . Clearlyy at most two of the integers bi can be even for
otherwise we have a sum - 0 (4) . Thus there are four odd bi , say b„ b 2 ,
b 3 f b4 . The sums b, -+ b 2 , b3 - b4 7 b, -+ b,, b 2 -{ - b 4 are in A. But then

(b, + b 2 ) + (b 3 + b4) _ ( b, b3)+(b2+b4)7

violating our choice of the even numbers in A .
1%t% e summarize the results contained in Theorems 1-4 as follows. We

first recall the definition of t i. in the opening paragraph off this section .
For large n, Theorems 1-4 reveal that the order of magnitude of t i. (k
= 3, 4, 5, 6) is known . More precisely

tg = 2 f

	

2 < t4 < e ll

CZ logn < t 5 < CZ log r2 ,

	

c 3
32112 < t6 < e3 11 112 ,

where e„ e lf e~, e3f C39 C49 e 4 are positive absolute constants . It might be
of interest to determine these constants precisely . For k >, i, the order
of magnitude of tk is not known, but Theorems 5 and 6 below give some
indication of the possible rate of growth of tk . TG'e mention that a slightly
more precise form of Theorem 5 below, is possible ; but as there is no indi-
cation that Theorem 5 is anywhere near the best possible we shall not
aim at precision here .

TELEOREDi 5 . Let k be a positive integer and n > n,(k), and suppose A
is a sequence of n=, t positive integers not exceeding 2n, where t > 2k i.t 1-2 k

Then there exist integers b	bk all whose sums bi+bj (0 < i < j < k)
are in A.

Proof. Since there are at least 2 kn1 k even integers in A, the the-
orem follows from the corollary of Lemma A .

COROLLARY. If A is aa sequence of n+t positive integers not exceeding
2n, where t > art, and n >, n, (á), then we can find integers b	bk where
k < loglogn f with the implied constant depending on 6, such• that all sums
b i + bi (1 < •i < j < k) are in A.

Proof . By Theorem 5 we can always choose b	bk if

n-2- '0 2k < á

which is valid if k < loglogn .



(2)
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Before stating our next theorem, we prove a result concerning the
frequency of occurrence of sequences with few distinct sums (taken two
at a time) .

LEAimA B. Suppose a,, is given. Then there exist k, = k,(a,) and a 2
depending only on a„ such that, if k > k, and n > n, (k, a,), the number of
choices of sequences A

a,< . . .<ak<n

each with < a, k distinct sun2s (M7,en two at a time), does not exceed n'2 .
We deduce the leninia from the following theorem of Freiman (see [2],

p. 134) reworded to suit our present purposes .
THEoR.E-is A. Suppose the sequence A

a,< . . .<a,,

is such that there are at most c7+; distinct sums a.i +aj (1 < i < j < k), then
there exist k*, c* depending only on c, and an integer in < e-1, such that,
if k > k*, there are arithmetic progressions B,, B„ . . ., 8,,, each of length
at most c * k such that A is contained in the set S,,,, where the sets Si (i = 0, 1,
. . ., m) are defined inductively by

So = B,,

Si - U (ui-, T bi),
b .ic-N

Proof of Lemma B . %e apply Theorem A with e = a, . Then we
have k, = k* such that if k > 7t„ the sequence A is contained in S„ 27 with
5,,, defined by (2) . The number of choices for Bi (i = 0, . . ., m) is at most 92 2 .
Thus the total number of choices for S . is < n"' . Now the number of
choices of A corresponding to each choice of S .. is < (c* k)az k . Therefore, the
total number of choices of A is

2a, ( c* k)a,k < W2,

where a2 depends only on a, if we choose it > n,(k, a,) .
Tim, OREiki 6. Suppose 0 < e < 1 is given. Then there exist k,(s) and

n, (k .) such that if n > n o , there exists a sequence A of it +t positive integers
consisting of all the odd integers G 2n ,;?,d t positive even integers < 272, where
t =

	

such that there are at most 7c, (s) -1 integers

b„ . . ., bk(#) -,
all whose seams bi + b, (1 < i < j < k o (s) -1) are in A .

Proof . Let a = [2/s)=1 . We, apply Lemma B with a, = a2 . Let
k,, = 2a 2 ak„ where ki, and a2 are the numbers in Lemma B corresponding
to a, = a 2 . Finally, let it, = n,(k o , a,) be the choice of it, in Lemma B
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corresponding to k = k o . We shall establish the theorem with these choices
of k o and n o . Accordingly let n > no and we proceed to establish the ex-
istence of a sequence A with the desired property.

We determine first the number of choices of sequences B

b, < . . . < bko < n

so that 'the number of distinct even sums bi + b; is < ak o . We let B*, B**
denote the subsequences of B consisting of respectively the odd and even
integers of B. Further we denote by T(B*), T(B**) the number of dis-
tinct sums (taken two at a time) formed from the integers of B* and B**
respectively. tiV e have

T(B*) < ak o ,

T (B**) < alco .

We consider two cases according as both B*, B** have each > á'k, > k l

integers or otherwise. Take the first case and let M, denote the number
of choices of B in this case. Then

and similarly

T(B**) < a l IB** 1

Since IB*1 > k l and IB**1 > k, we may apply Lemma B to B* and B**
to conclude that

1Íl, < n2a2 .

We next consider the second case . Let X2 denote the number of choices
of B in this case . One of the sets B*, B** has < a-l ko integers and thus
the number of choices for this set is < nkola, The number of choices for
the other set is < na2 , by an application of Lemma B . Thus

í , < 2nkoa-1+a2 .

Thus the number of choices of B each with < ak o distinct even sums is

3 a-1k0311 +"d < n2a2 +2nkoa 1+a2 < n2

	

7

since k o = 2a 2 ak, .
Each such sequence B determines at least k,-3 even sums, so cor-

responding to a given B, there exist < ~n-ko-3) choices of A containing
t-ko -3

these sums. Let Nl denote the number of choices of A corresponding to
these B. Then

(3)

T(B*) < a2 IB * I = al IB* 1

N < 72-ko +3 n a-lko
1

	

~t-ko-f 3 )



We now consider sequences B having each at least ak o distinct even
sums. Each such sequence determines at least ak o distinct even sums and
thus the number of choices of A containing these even sums is at most

It-~Q
o] As there are <

`k
) choices for such B, the number N2 of

0

choices of A corresponding to all such B satisfies

(4)
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n-[ako]
nN, < ( t-[ako])(ko

Since the total number of possible choices of A is (t} we have our theorem

if we can prove

(n,) > Nl + N' .

We shall estabilish this by showing that

We have

nNl < z t , N2< 2
(t )

.

t

	

t -k o +3
(n)/(n-ko+3)/22Eko+o(i)> 2 ~2 21«-1k1

on recalling a = [2/E]+1 and t = [n1- E] . The above

Nl < 2 ~t1
in view of (3) .

Next

(n) n-[ak o l) > 72-cko+0(1)> 2
ra

t ~t-Lakol '

	

' ~ko

inequality implies

on using a = [2/s] +1 and t = [nl- E] . We have N2
< ~tl in view of (4) .

This completes the proof of Theorem 6 .

2. In this section we consider the question of estimating the number of
integers that can be chosen from a given sequence so that all sums, taken
two at a time, should appear in the sequence . We shall prove three theorems
(Theorem 7, 8, and 9) of which the last depends on the following theorem
which has just been established by Szemerédi .

Timo=Z B . For any given integer k > 2 let rk (n) denote the largest
number of integers that can be chosen from 1, 2, . . . , n with no k terms in
arithmetic progression . Then n-1 r k (n)-~0 as n--~-cc .

We further remark that Theorem 7 would also follow from Szemerédi's
result though we give a proof which uses only a theorem of Varnavides .
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THEOREDI 7 . For any given s > 0 and any integer k > 1, there exists
no (s, k) so that if n > n o and A is a sequence of t integers not excedding n,
where t > ( 2 + s) n, then we can find k integers

in A whose sums ai + a; (I < i < j < k) are all in A .

Proof. Since t > ( 3 + s) n there exist s integers, where s > s, n, in the
sequence A, say a,, . . ., a, such that 2a„ 2a2f . . . . gas are also in A . By a theo-
rem of Varnavides (see [4]) there are CEl n 2 triples a,.,, a,2 , a, ,, which form
an arithmetic progression. Thus there is an integer, say ail , for which
there are > s 2n integers a2?'s so that

z(ai l +ai,) = ail ;

but then a il + a,, = 2a,, is also in A . Now repeat the same argument with
these stn a,,'s, and so on. In this way one can find integers az,, ai2 , . . ., aik
in A such that aiu + aiv (I < it < v < k) are all in A .

The following theorem is a refinement of Theorem 7 .
THEOREDI 8 . Suppose k is given. Then there exists sk > 0 such that if

n > n o (,,k , k) and A is a sequence of t integers not exceeding n, where
t > (s -,,,) n, then one can find k integers in A

whose sums ai +aj (1 < i < j < k) are all in A .
Proof. Let sk > 0 be a sufficiently small number . In view of Theorem

7, we may assume there are at most skn integers a in A such that 2a is also
inA . Thus there exists a subset B of A with at least (3 - 2ek) n integers and
with the property that whenever a belongs to B then 2a does not belong
to B. This property is crucial in our proof and we refer to it as
property P .

For j = 1, . . ., k, let

h = (n2-', n2-'=2],

	

h = ( áz2-á-1 áa2-j ],

Bi = BnI? ,

	

= BnI .

As property P implies that .

IB11+lB,I<2 -i n

	

(j =1,2, . . .,k)

and as

IBI > (3 -2,c,) n,

we conclude that

(5 )

	

IB;I + IB; I > ( 2-'-2ek)n .

a,, a21 . . ., ak

al , a2, . . ., ak
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Further, by repeated application of property P and using (5), we may assert
that for each j = k, k-1, . . ., 1, and i = 0, 1, . . ., k-j, Bj contains
all but at most 2(i+1)sk n integers of type 4'x (where x is odd) in Ij . By
now choosing 8k small enough, we can find an integer b l of type x l in B.., an
integer b 2 of type 4x2 in B k_17 . . ., and an integer bk of type 4k- 'xk in B l ,
where x„ . . ., xk are all odd, such that bi bj (1 < i < j < k) are all in
B and thus in A . This completes the, proof .

TI-LEOREM 9. For any integer r > 2, and any integer k, there exist 6, . > 0
and n o (S r , k) such that if n > noOr , k) and A is a sequence of t positive
integers not exceeding n, where t > (1- 6,.) n, then there exists a subsequence

aI < . . . < ak,
such that all suns of the form

k

	

k
~sj aj (aj =0,1 ;1< ~sj <r)
j-1

	

j=1
are in A .

Proof . lVe choose b,. = lf(2r 2 ) and suppose n > n„(8,, k) . Then there
exist s > of (2r 2) and a subsequence of A

al < . . .<as

in [(r-1)r-2n, r-1 n] such that 2aj , 3aj , . . ., raj (j = 1, 2, . . ., s) are all
in A. By Theorem B, we can find an arithmetic progression

a, a+b, . . ., a+r!(k-1)2b

within a l , . . ., as . Tow we take

b l = a,

	

b, = a+ r! b,

	

. . .,

	

bk = a+r!(-k-1)b .
k

	

k•
Clearly G s i b .i , subject to 1 < si < r•, ara all in A . This completes

i=1

	

i=1
the proof of the theorem .

3. In this section we consider some aspects of the multiplicatíve analo-
gue of the additive problems in § 1 and 2 . Theorems 10-12 below repre-
sent the type of results that can be established by probabilistic arguments .

THEoREnr 10. Suppose c4 is any positive integer and n > n a (c4,) . Then
there exists a sequence A of k positive integers not exceeding n, where
k > n(1-e -c4logn ~loglogn ) such that for any s, where s is an integer or the
reciprocal of one, there . exist at most t < ecslogn/loglogn integers

b,< . . .<bt ,

where c, depends only on c47 such that all products s - 'b i bj (1 < i < j < t)
are in A.
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Proof. Let t = V5logn11oglogn]+1, where cs is a sufficiently larg
constant depending on e4 . Let k = n-[nm- '], where m = d%1'I n/loglogn

Suppose B is a sequence of t integers

(6)

	

bl < . . . < bi .

We first estimate the number of sequences A

al< . . .<ai.<n

which contain all products b i bs- ' (1 < i < j < t) for a given s, where s is
an integer or the reciprocal of one .

Since d(l) < 24+01"1"91091 for l > 1,(s), where d(l) denotes the divisor
function, the number of distinct products bi b; determined by (6) is

> 2-'t(t-1)2-(i+e)lognjloglogn +OE (1)'>t3/2 '

if es is chosen large enough . Thus, if A contains all s - ' b.ibj for a fixed s,
at least h = [t3/2 ] of its integers are fixed by B and thus the number of
choices of A is at most

n-h
(k -h

Hence, on allowing s to vary, the number of possible choices of A corre-
sponding to a given B is at most

(7)

We have

(non-h'~ - n . . . (n-há-1)
.k

	

k-h

	

k . . . (k-h-}-1)

For each i = 0, . . ., h-1,

(n-i)(k-i)-'> (n:-h)(n-2nna-')-' > I+m- '
Therefore,

(k )/(k -h) > (1 rn-') h > eh/(2m) > eí413

Since h = [t312 ] and m = ec4109nho9109n < íc4115 . B ut t )n2 < n2~Zt < e í413

Thus we have (r) as required .

n2 (k-h)k-h

The number of choices of B is (tt) . Since the number of choices of A (without

restriction) is
(n)

, the theorem would follow if we can prove

(k > (t) n2 (k -h) .
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The following lemma, whose proof is somewhat involved (see [4])
enables us to strengthen Theorem 10 .

LE3mA C. Suppose k is any positive integer, and t > ( log,n) k , where
log,n denotes the logarithmic function to the base 2 . Then for any sequence

al < . . . < a, < n

of t positive integers, there are at least ckIt distinct products aga; (1 < i < j < t)
where c is a positive absolute constant .

Using the above lemma we obtain the following
THEOREM 11 . Suppose 0 < a < 1, and n > n o (a) . Then there exists

a sequence of k positive integers not exceeding n, where k > an, such
that for any s, where s is an integer or the reciprocal of one, there exist at most
t = [ecb(logn)11 21oglogn] _ [(log.n)cb(logn)112] integers

b l < . . . < bt ,

where cb depends only on a, such that all products s -1 bib; (1 < i < j < t)
are in A .

Proof. Arguing as in proof of Theorem 10 and using Lemma C
instead of d(l) < 2(1+')1°gall°91°91, we need only prove that

n

	

n - [c 7 (log n) t]

	

2 n
([an]) ([an] - [c7(log n) t])

	

n (t )

We note that the left hand side is > e (lo" 1)c$ (logn)t which is greater than
n2 (n) ,, if cb and hence also c$ is large enough in terms of a .

It seems quite plausible that the following conjecture is true :
Suppose a, < . . . < at < n, t > ( log 2 n)k. Then there are (_I+ C) k t dis-

tinct products aial (1 < i < j < t), where c is some positive absolute
constant ..

The above conjecture, if true, would imply the following
THEOREM 12 . Suppose 0 < a < 1 and n > n, (a) . Then there exists

a sequence A of k positive integers not exceeding n, where k > an, such that
for any s, where s is an integer or the reciprocal of one, there exist at most
t = [ecy(loglogn)2] integers

bl < . . < bt,

where c9 depends only on a, such that b ibs-1 (1 < i < j < t) are all in A .
The proof, which we omit, is an adaptation of the probabilistic argu-

ment used in the proof of Theorem 10 . The theorems in this paragraph can
undoubtedly be sharpened considerably . We hope to return to these
questions at another occasion .
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