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OSCILLATIONS OF BASES FOR THE NATURAL NUMBERS

PAUL ERDOS AND MELVYN B . NATHANSON

ABSTRACT . Let A be a set of positive integers . Then A is a basis
if every sufficiently large integer n can be written in the form n = a z. + a .

7

with az., a7. e A . Otherwise, A is a nonbasis . In this paper we construct
sets which oscillate from basis to nonbasis to basis or from nonbasis to
basis to nonbasis under finite perturbations of the sets .

1. Introduction . A number is a positive integer A set is a set of numbers .

If A = la i l'_1 is a set such that every sufficiently large number n can be

written in the form n = a i + a ., then A is called an asymptotic basis of order

2, or simply, a basis. If A is not a basis, then infinitely many numbers are

not of the form a i + a 1 , and A is called an asymptotic nonbasis of order. 2,

or, simply, a nonbasis .

A basis A = is minimal if no proper subset of A is a basis ; that

is, A\ja I i is a nonbasis for every ai E A . Minimal bases were introduced by

Stőhr (4], and H~rtter [2] and Nathanson [3] constructed examples of minimal

bases, and also of bases no subset of which is minimaL

A nonbasis A {a Z °

	

is maximal if no proper superset of A is a non-
Z =I

basis ; that is, A U {b} is a basis for every number b i A . Maximal nonbases

were introduced by Nathanson [3], and examples were constructed by Erdös

and Nathanson [1], It is still not known if every nonbasis is contained in a

maximal nonbasis
Minimal bases and maximal nonbases are examples of sets which oscil-

late under small perturbations from bases to nonbases and from nonbases to

bases. Such oscillations are the theme of this paper .

Notation . Numbers will be denoted by lower case Latin letters, and sets

by upper case Latin letters The set of all numbers is denoted N . We denote

by IA I the cardinality of the set A, and by A\B the complement of B in A .

The set of numbers between a and b is denoted [a, b]. If A = la and

B = (b .

	

then the sum of A and B is A + B = iai + bi la z E A, b i E BI .

The sum A + A is written 2A . Finally, the number of elements of A which

do not exceed n is denoted A(n), and the set A has density 5 if

limn__ A(n),'n = 8.
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Lemma . Let Q = (2q k + 1(k(k-_1 be a set of odd numbers such that qk >

5qk 1 + 3. Let

g k >5g k _ 1 +3,

;1Q = U 1[2qk 1 + 2, qk - qk-1 ] U [qk + 1, q k + q k _ ] fi,
k- 2

Then 2AQ C N\Q, and 2AQ contains all but finitely many of the numbers in

N\Q . Moreover, if F and G are any finite sets, then 2(.4Q U G) and

2(AQ\F) differ from 2AQ by only finitely many numbers ; that is,

12(AQU G)\2(A Q\F)l < m.

Proof . Let 1. = [2qk ._ 1 + 2,
qk

- q k _ 1 ] and Jk - [q k + 1, q k + qk _ 1 ].
If 2qk + 1 = a + b, then one of the summands, say a, must be greater than

qk° If a E AQ, then a E Jk . But then b = 2q k + 1 - a ~ AQ . Therefore,

2q k + 1 V 2AQ, and so 2AQ C N\Q . Moreover,

(1) tk + Jk -- [2qk 1 +- qk + 3, 2qk ] C 2AQ,

(2) 21 k - [4qk
1

+ 4, 2q k - 2g k _ ] ` 2A Q

(3)

	

? tk 1

	

[2q,, _ I + 2, 2qk _ 1 + 2qk 2' -
2AQ .

Let a E AQ. Then

(4)

	

1k+1a1-[2qk
1 +2+a,qk-qk 1 +a]C2AQ

If 2qk _ 2 > a, then the intervals (1)-(4) completely cover [2qk_
1
+ 2, 2q k ],

and so all sufficiently large numbers in .N\Q belong to 2AQ . If a finite set
F is removed from AQ, then AQ still contains the intervals 1 . and J k for
large enough k, and the argument above shows that 2(A L)\F) consists of

all but finitely many numbers in N\Q . If a finite set G is added to A Q ,
then 2(AQ UG) will contain only finitely many elements of Q .

This Lemma will be applied frequently ; in particular, AQ = Uk=111k UJk I
will always denote the set constructed from a set Q = 12g k + 11-=, satisfying

2 . Minimal bases . A basis A is r-minimal if A\F is a basis whenever

IA n FI < r, but A\F is a nonbasis if ;A n FI > r. The minimal bases dis-

cussed in the introduction are precisely the 1-minimal bases . We shall con-

struct for each r a class of r-minimal bases The basis A is called ?(O-min-
imal if AV is a basis for every finite subset F of A, but for no infinite

subset F of A . We shall construct a class of N O-minimal bases . This answers
a question posed in [1] . Finally, we prove that there does not exist ., basis
A - (a lx_ 1 such that A\ia u lueU is a basis if and only if U has density
zero

Theorem 1 . Every AQ is contained in an r-minimal basis .
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Proof . Let {Uklk=r+2 be a sequence of sets each containing exactly r

numbers, such that u < k for u E Uk , and such that every set of r numbers

occurs infinitely often in the sequence . We shall construct an r-minimal

basis A = Uk=2 A k such that 1k U Jk C A k C [2qk _ 1 + 2, 2qk ]. Let A k =

I k U J k for k < r + 1 . Suppose that A i has been determined for all i < k .

Write the elements of the finite set
Ui<kAi

in increasing order a I < az <

a 3 <- . Let A k = Ik U Jk U (2q k + 1 - c1 u IuEUk° Then AQ C A = Uk=2 Ak'
and every sufficiently large element of Q has exactly r representations of the

form 2q k + 1 = a i + a il where a t , a j E A and a t < aj . Moreover, every r-ele-

ment subset of A is required for the representation of infinitely many elements

of Q. It follows from the Lemma that A\F is still a basis if IA n FI, < r,

but that A\F is a nonbasis if A n FI > r.

Theorem 2 . Every AQ is contained in an K o-minimal basis .

Proof. We construct an K o -minimal basis A = Uk=2 A k such that
IkU Jk C A k C [2gk_ I + 2, 2qk ] . Let A 2 = 1 2 U J 2 U 1(28 2 + 1) - (2q I + 2)). If

A i has been determined for i < k, and if Ui <k A i consists of the elements
a, <a 2 <a 3 < • • • , then let A k =Ik u j k u{2qk + l-a k _ I. Then AQ CA
= Uk=2 A k , and A is a basis. Moreover, each element ai of A is required

for the representation of exactly one element of Q . It follows that A\F is

a basis if F is any finite subset of A, but that AV is a nonbasis if F is
an infinite subset of A .

Theorem 3 . There does not exist a basis A = tai1x

	

such thati =1
A\{aj,,

EU
is a basis i/ U has zero density and a n

i
onbasis i( U has posi-

tive density .

Proof. Let A = (aij , be a basis such that
A\{auju6U is a nonbasis

if U has positive density . We shall construct a set U Q of zero density such

that A\[aul,,

	

is a nonbasis . Let U 2 = iu( 2)[x=1 be a strictly increasing
sequence of numbers with density z . Then A\{au)u

eUz
is not a basis, so

there exists a number s 2 such that 2(A\{au(2 ) 1 2 1)/2A . If A\{a u (z)Is 2

is a nonbasis, we are done, since the finite s
I

J=
et (u

J

	

j~ 2) )
=1

has density zero .

Suppose that A\{a (2)js2 is a basis. Let U = {u(3)1°

	

be a subse uenceu j

	

J-1

	

3

	

i

	

j =1

	

q

of U z of density 1/3 such that u~ 3) =u~ 2) for j < s z . Then
A\(au~uEU3

is

not a basis, and so there is a number s 3 > s z such that 2(A\1au(3)jj 31 )
2(A\iau(2))j?1) . Continuing inductively, we obtain either a finite set U o

such that A\€au~uEU0 is a nonbasis, or a sequence of integers s 2 < s 3 <
s 4 < . . . . and a sequence of sets U 2 ~U 3 D U

4
-) . . . such that

(i) U n has density 1/n ;

(ü) If Un = jinn )h=1 , then urn) = ur n+1 ) for j < sn ;

(iii) 2(A\{au (n 1)}Jn+1 ) ~ 2(A\(a u ( ;) nl ) .

J

	

J
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Let Uo = 1 1n_2 Un . Then A\\1au )uEUp is a nonbasis, and Uo has density

zero .

By modifying slightly the proof of Theorem 3, one can show that if

is any function tending monotonically to infinity, then there cannot exist a

basis A = [ az)i~-I such that A\[au)uEU is a basis if and only if

lim sups,__ A(n)/¢(n) = 0 .

3. Maximal nonbases . A nonbasis A is s-maximal if A U G is a non-

basis whenever IG\AI < s, but B UG is a basis if JG\AI > s . The maxi-

mal nonbases discussed in the introduction are precisely the I-maximal non-

bases . We shall construct a class of s-maximal nonbases for each s . A

nonbasis A could be called N o -maximal if A U G is a nonbasis if and only

if G\AI < m. But we prove that K o-maximal nonbases do not exist .

Theorem 4 . Every AQ is contained in an s-maximal nonbasis .

Proof. Let [Vk )k=s ¢2 be a sequence of sets each containing exactly

s-- 1 numbers, such that v < k for v E Vk , and such that every set of s -- 1

numbers occurs infinitely often in the sequence .

	

We shall construct an
s-maximal nonbasis A = Uk_2 A k such that Ik UJk C A k C [2gkTt + 2, 2qk].

Let A k = Ik U ] k for k _< s + l . Suppose that A i has been determined for

all i < k . Let B k = [ 1, 2qk= YT\ U i < k A,. Write the elements of the finite
set Bk in increasing order b l < b 2 < b 3

	

• . Let

A k =I k uJ k u[2gk +I-blbeB, and b~b,u for vEV.) .

Then AQ C A = Uk=2 A k, and A is a nonbasis . If G P A = 0 and JGI =

s - 1, then G = 1bv l , bv 2

	

bvs_,Y[ for some set V = (vi, v 2' . . . , v s-1 1 .

But V = V k for infinitely many k, and, for each of these k, the number

2q k + 1 V 2(A U G). Therefore, A U G is a nonbasis . But if GI > s, then
A U G is a basis .

Theorem 5 . There does not exist an KO-maximal nonbasis .

Proof. If A is a nonbasis such that A U G is a nonbasis for every

finite set G, then there must exist an infinite set G such that A U G is a

nonbasis . Indeed, we have proved that there exists an infinite set G such

that AU G is a maximal nonbasis [I] .

4. Double oscillations. Now we consider sets which oscillate from

basis to nonbasis to basis, or from nonbasis to basis to nonbasis . Let A

be a set, and let F and G be finite sets such that F C A and G n A = 0 .

Then A is an (r, s)-basis if (i) A\F is a basis if and only if FI < r, and

(ü) if IF I = r (and so A\F is a nonbasis), theca (A\F) UG is a nonbasis if

and only if IGI < s . We shall construct a class of (r, s)-bases . The set A
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is an (s, r)-nonbasis if (i) A U G is a nonbasis if and only if IGI < s, and

(ü) if IGI = s (and so A U G is a basis), then (A U G)\F is a basis if and

only if IFI < r. We also construct a class of (s, r)-nonbases .

Theorem 6 . Every A C) is contained in an (r, s)-basis.

Proof. Let (Uk}k=r+s and IVk1k=r+s be sequences of sets containing

r elements and s - . 1 elements, respectively, such that u < k and v < k for

u E Uk and v E Vk , and such that every set with r elements occurs infinitely

often in the sequence {U k }k_r+s and every set with s - 1 elements occurs

infinitely often in the sequence f Vk k=r+s . If 1U1 = r, let K U = iklU k = W.

Then KU is an infinite set, and we may write K U = { kujk=I , where ku <

kz <

We shall construct an (r, s)-basis A = Uk=2 A k such that I k U Jk C A k

C [2qk-I + 2, 2q k ] . Let A k = Ik u Jk for k < r + s. Suppose that A t. has

been determined for i < k . Write the elements of the finite set Ui <k A i in

increasing order a, <a 2 < a 3 <--- . Let Ak = Ik U Jk U { 2qk + 1 - au}u 6Uk ,
if U = Uk , then k E K U , and so k = kU for some j _< k . Let B k =
[1, 2% _ 1' \U i < k Ai. Write the elements of B k in increasing order b I < b2

<b 3 < • • . Let

A k =AkU(2g k +1--blbEB k and b ;ib v for vcV .I .

Then A -= Uk=2 A k has all of the desired properties .

Theorem 7 . Every AQ is contained in an (s, r)-nonbasis .

Proof . Let {UJk_r+s and IVkI- +s be sequences of sets exactly ask =r
in the proof of Theorem 6 . We shall construct an (s. r)-nonbasis A Uk=2`ak
such that Ik U Jk C A k C [2qk_ 1 + 2, 2gk l . Let A k -- Ik UJk for k < r + s .

Suppose that A i has been determined for i < k . If k = 2m is even, write the

elements of the finite set U i < kAZ in increasing order a I < a2 < a 3 < . . . ,

and let Ak = Ik U J k U(2g k + 1 - au}uEUm . If k = 2m + 1 is odd, write the
elements of the finite set Bk = [1, 2 qk-- 1 ,\ Ui < k A i in increasing order b I
< b 2 < b 3 < . . ., and let

Ak = Ik UJ k Ui2g k ~ 1-bl beB . and b* by for vcV M 1 .

Then A = Uk-2Ak has all of the desired properties .

We are not able to construct a set that oscillates infinitely often from

basis to nonbasis to basis to nonbasis . . . . The existence of such infinitely

oscillating sets can be proved by a probabilistic method . This will be dis-
cussed in a later paper .

Note added in proof. We have constructed a set which oscillates in-

finitely often from basis to nonbasis to basis . . . as random elements are

successively deleted from and added to the set . This is a special case of
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a theorem proved in the paper Partitions of the natural numbers into infinitely
oscillating bases and nonbases (to appear) .
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