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OSCILLATIONS OF BASES FOR THE NATUR AL NUMBERS

PAUL ERDOS AND MELVYN B. NATHANSON

ABSTRACT. Let A be a ser of positive integers. Then A is a basis

if every sufficiently large integer n can be written in the form n = a, +a}.

with a, a}. € 4. Otherwise, 4 is a nonbasis. In this paper we construct
sets which oscillate from basis to nonbasis to basis or from nonbasis to

basis to nonbasis under finite perturbatrions of the sets.

1. Introduction. A number is a positive integer. A set is a set of numbers.
If A=1{a ™ ; is a set such that every sufficiently large number » can be
written in the form » = @, + a, then A is called an asymptotic basis of order
2, or simply, a basis. If A is not a basis, then infinitely many numbers are
not of the form @ + A and A is called an asymptotic nonbasis of order, 2,
or, simply, a nonbasis.

A basis A = Eaif;.x:.l is minimal if no proper subset of A is a basis; that
is, A\ia.} is a nonbasis for every @. € A, Minimal bases were introduced by
Stéhr (4], and Héreter [2] and Nathanson [3] constructed examples of minimal
bases, and also of bases no subset of which is minimal.

A nonbasis A = fﬂi}?cﬂ is maximal if no proper superset of A is a non-
basis; that is, A U {b} is a basis for every number & ¢ A. Maximal nonbases
were introduced by Nathanson [3], and examples were constructed by Erdés
and Nathanson [1], It is still not known if every nonbasis is contained in a
maximal nonbasis.

Minimal bases and maximal nonbases are examples of sets which oscil-
late under small perturbations from bases to nonbases and from nonbases to
bases. Such oscillations are the theme of this paper.

Notation. Numbers will be denoted by lower case Latin letters, and sets
by upper case Latin letters. The set of all numbers is denoted N. We denote
by [A| the cardinality of the set A, and by ANB the complement of B in A.
The set of numbers between @ and b is denoted la, b). If A = idizrﬂ and
B = ibi.’;;”ﬂ, then the sum of A and B is A+ B={a, + bila, €4, b, € Bi.
The sum A + A is written 2A. Finally, the number of elements of A which
do not exceed n is denoted A(n), and the set A has density & if

limn_.“ 1‘1{}1‘/}1 == 5.
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Lemma., Let Q= {2@'& + l}:;l be a set of odd numbers such that q, >
54, 1+ 3. Let

v kU;‘ 2g, 1+ 2,0, -, J Vg + Lgg+ g, I
Then 242 CN\Q, and 2A9 contains all but finitely many of the numbers in
N\Q. Moreover, if F and G are any [inite sets, then 2042 U G) and
AAONF) differ from 2AC by only finitely many numbers; that is,
12042 U GN2(A\F)| < o=

Proof. Let I, =[2¢, ,+2,9,-4, Jand J, =lg,+1,9,+4, ;)
If 29, + 1 =a + b, then one of the summands, say @, must be greater than
q,. If a EAQ, then @ € J,. Butthen b=2q, +1~a ¢ AC. Therefore,
2¢;«",a +1 ¢ 24 Q, and so 249 C .-'\.’\Q. Moreover,

(1) ,k + "rk. = [29,21 +qk"‘ 3; 2qklc 2_4.Q,
(2) 21, - l4g, | + 4,29, -2q,_ ,1C24%,
. a4
(3 ey =120 1 %2 28, ,+2, ,lc24

Let « e AC, Then
(4) 'ik +laf = [2qk_1 + 2+ 4a, Gp = Gp_ + al 2AQ,

If 29, _, > a, then the intervals (1)-(4) completely cover [2:},3_1 + 2, qu},
and so all sufficiently large numbers in N\O belong to 2A%, If a finite set
F is removed from AQ, then A9 still contains the intervals I/, and |, for
large enough &, and the argument above shows that 2049\F) consists of
all but finitely many numbers in N\Q. If a finite set G is added to 49,
then 2(A% UG) will contain only finitely many elements of Q.

This Lemma will be applied frequently; in particular, A9 = Uzc:l 1 Ufk}
will always denote the set constructed from a set O = qu& 4 1{;‘___1 satisfying

g, 2 5@',&“1 + 3.

2. Minimal bases. A basis A is r-minimal if ANF is a basis whenever
|A 0 F| <r, but A\F is a nonbasis if |4 N F| >~ The minimal bases dis-

cussed in the introduction are precisely the I-minimal bases. We shall con-

struct for each r a class of r-minimal bases. The basis A is called X,-min-
imal if A\F is a basis for every finite subset F of A, burt for no infinite
subset F of A. We shall construct a class of R -minimal bases. This answers
a question posed in [1]. Finally, we prove that there does not exist 2 basis
A = {GEE?'C:___IL such that A\{Guiu ey is a basis if and only if U has density

ZEI0u

Theorem 1. Euvery A9 is contained in an r-minimal basis.
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Prool, Let {Uklr=r+2 be a sequence of sets each containing exactly 7
numbers, such that « <& for u € U,, and such that every set of r numbers
occurs infinitely often in the sequence. We shall construct an r-minimal
basis A = Ur::Ak such that I, yJ, €A, C [qu_t + 2, qu]' Let 4, =
I,u], for k<r+ 1, Suppose that A, has been determined for all i <k.
Write the elements of the finite set U‘_.( p A, in increasing order @) < a, <
@y <++. Let Ay =1, u]u f?qk + I-auf“euk. Then A CA= U:__;Z AL,
and every sufficiently large element of Q has exactly r representations of the
form 2q, + 1 =a, + a where a, a € A and a; < @ Moreover, every r-ele-
ment subset of A is required for the representation of infinitely many elements
of Q. It follows from the Lemma that A\F is still a basis if |[A NF| <,
but that A\F is a nonbasis if |A NF| >r

Theorem 2. Fvery AQ is contained in an No-mirzimaf basis.

Proof. We construct an K j-minimal basis 4 = (J;_, 4, such that
ILUJ,CA Cl2g, | +2,29) Let A,=1,uJ,ul(2, + 1)~ (2¢, + 2)}, If
A, has been determined for ¢ <k, and if U, , A, consists of the elements
a, <a,<ay<--+, thenlet Ay =1, uJ, ul2g, + 1-a,_,} Then A®CA
=Up-, A4 and A is a basis, Moreover, each element a; of A is required
for the representation of exactly one element of Q. It follows that A\F is
a basis if F is any finite subset of A, but that ANF is a nonbasis if F is

an infinite subset of A.

Theorem 3. There does not exist a basis A ={a|~_, such that
A\iauiu ey is @ basis if U has zero density and a nonbasis if U has posi-

tive density.

Proof. Let A =la’_ | be a basis such that A\{au {, ey is a nonbasis
if U has positive density. We shall construct a set U, of zero density such
thar A\la }, ety
sequence of numbers with density %. Then A\fa I is not a basis, so
there exists a number s, such that 2(A\{« (2)1 _1);42/1. If A\{au(;}t

i
is a nonbasis, we are done, since the finite set {u}z)ifz has densu:y zero.

(30
- W

is a nonbasis, Ler U, {u‘nll _; be a strictly increasing

=1

Suppose that A\{au(2ﬂf§1 is a basis. Let Uj be a subsequence
i

of U, of density 1/3 such that H[',')—uu) for j <s,. Then A\la "3 vy 1S
not a bas1s and so there is a number s3 > 5, such that Z{A\fﬂ (3)553 P £
2AA\la,, (2)]5 ;) Continuing inductively, we obtain either a flnlt}E set U
such that A\!au EH €Uy
s4 <-..,and a sequence of sets U, 2U; JUy O+« such that

(i) U, has density 1/n;

(i) 1f U, fu(")l y» then ”5 Huf,”ﬂ"' for j <53

(iii) Z(A\ia @ +t)i‘"”)£ 2A\la, @Fn,),

7

is a nonbasis, or a sequence of integers s, <5, <
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Let T, =V, U 'Then A\lau}

ZE€I0D.

wely is a nonbasis, and U, has density
By modifying slightly the proof of Theorem 3, one can show that if ¢

is any function tending monotonically to infinity, then there cannot exist a

basis A = {“i};?::l such that A\{aufu €U is a basis if and only if

lim sup, . Aln)/¢n) = 0.

3. Maximal nonbases. A nonbasis A is s-maximal if A UG is a non-
basis whenever ||G\A] <s, but B UG is a basis if |G\4| > s. The maxi-
mal nonbases discussed in the introduction are precisely the l-maximal non-
bases, We shall construct a class of s-maximal nonbases for each 5. A
nonbasis A could be called X -maximal if A UG is a nonbasis if and only

if |G\A| < = But we prove that K,-maximal nonbases do not exist.

Theorem 4. Every AQ is contained in an s-maximal nonbasis.

Proof. Let 1V, 17 4, be a sequence of sets each containing exactly
s~ 1 numbers, such that v <k for v €V, and such that every set of s 1
numbers occurs infinitely often in the sequence. We shall construct an
s-maximal nonbasis A = U:=2 Ay suchthat I, uJ, €A, C [qu__l + 2, 29;5].
Let Ap =1, uJ, for k <s+ 1. Suppose that A, has been determined for

all i < k. Let B, = [1, zqk—ll\UHkAi‘ Write the elements of the finite

set B, in increasing order by <b, <b; <::.. Let ;
Ak:"kujk.u{zqk "'l_b“’EBk and b #£b  for ve Vk}'

Then A9 CA = U;_,4, and A is anonbasis. If GNP A=¢g and |G| =
L

s~ 1, then G:{byl, b i b ! for some set V:{UI' gy sv00 B 5

vy "t Ve
But V =V, for infinitely many k, and, for each of these %, the number
29, +1 ¢ 2(4 UG). Therefore, A UG is a nonbasis. But if |G

AU G is a basis.

>s, then

Theorem 5. There does not exist an No-maxz'mal nonbasis.

Proof. If A is a nonbasis such that A UG is a nonbasis for every
finite set G, then there must exist an infinite set G such that AU G is a
nonbasis. Indeed, we have proved that there exists an infinite set G such

that AU G is a maximal nonbasis (1],

4, Double oscillations., Now we consider sets which oscillate from
basis to nonbasis to basis, or from nonbasis to basis to nonbasis, Let A
be a set, and let F and G be finite sets such that F CA and GNA =g,
Then A is an (r, s)-basis if (i) A\F is a basis if and only if |F| <7, and
(i1) if |F|=r (and so ANF is a nonbasis), then (A\F] UG is a nonbasis if
and only if |G| <s. We shall construct a class of (r, s)-bases. The set A
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is an (s, r)-nonbasis if (i) A U G is a nonbasis if and only if |G| <s, and
(ii) if |G| = s (and so A UG is a basis), then (A UGN\F is a basis if and

only if {F| <r. We also construct a class of (s, r)nonbases.
Theorem 6. Every AQ s contained in an (r, s)-basis.

Proof. Let (U l;_ 4, and [V, I7_ .. be sequences of sets containing
r elements and 5 — 1 elements, respectively, such that » <k and v <k for
u € U.I: and v € V,, and such that every set with r elements occurs infinitely
often in the sequence !Ukl:::’,,s and every set with s — 1 elements occurs
infinitely often in the sequence [V, I7_ 4. If |U| =7 lec KV ={klU, = UL
Then KY is an infinite set, and we may write KY = ik:." I?:v where le.? <
£ %oy

We shall construct an (r, skbasis A =y _, A, such that I,y J, CA,
C [2qk_| + 2, qul Let A =1,u], for k<r+s. Suppose that A; has
been determined for ¢ < k. Write the elements of the finite set Urc&. A‘. in
increasing order @, <a, E“; <eer. Let Ap =1, U] ui2g +1-a, u€ly*
1f U_Uk' thenkEK,andsok k;‘" forsomeffk. LetBk=
(1, 29, _ ll\Uf(k A . Write the elements of B, in increasing order b, < b,
< 63 <ese. Let

Ak=A‘kU{2qk +1~b|beB, and b# b for ve VJ.E.

Then A =|J ., A, has all of the desired properties.

Theorem 7. Every A9 is contained in an (s, r)-nonbasis.

Proof. Let tU, 17 ,.
in the proof of Theorem 6. We shall construct an (s, 7)-nonbasis A = Uk 24
suchthat I, ], CA, Cl29, ,+2,2¢.). Let A =1, u]J, for k<r+s.

Suppose that A, has been determined for i <k. If &= 2m is even, write the

and !Vk ;:_ +s be sequences of sets exactly as

elements of the finite set Ur.(_kAl. in increasing order @) <a, <a, <...,
andlet A, =1, U], Ui2q, + 1-a} ., . If k=2m+1 is odd, write the
elements of the finite set B, = 1, 2q, _ ]\U
<b, <b <usesy and let

A, in increasing order b,

A, =1, 0], ul2g, + 1-b|beB, and b#b, forveV L

Then A = | J;_, A, has all of the desired properties.

We are not able to construct a set that oscillates infinitely often from
basis to nonbasis to basis to nonbasis... . The existence of such infinitely
oscillating sets can be proved by a probabilistic method. This will be dis-
cussed in a later paper.

Note added in proof. We have constructed a set which oscillates in-
finitely often from basis to nonbasis to basis ... as random elements are

successively deleted from and added to the set, This is a special case of
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a theorem proved in the paper Partitions of the natural numbers into infinitely

oscillating bases and nonbases (to appear).
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