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1. INTRODUCTION 

In the first two parts of this study [ I] [2], we investigated the general 
question: Let K be a set in Euclidean n-space, En. Let the points of 
En be r-colored (divided into r classes) in any way. Then is there a 
monochromatic set K’ congruent to K (or similar to K, or a translate 
of K, etc.)? In this case we consider only the special case n = 2, Y = 2, 
I K ( = 3. That is if K is a triangle (= a set of three points) in E*, we 
consider the following statement: R(K): For any ‘L-coloring of E* there 
is a monochromatic K’ congruent to K. 

We recall from [l] that there are some K for which R(K) is false, 

For let E* = R U B where R = 

*NSFGP 335804 

**ONR N 00014-67-A-0204-0063 
**NSF GP 28696 
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B = E* - R, and d > 0 is a real number. Then no equilateral triangle of 
side d is monochromatic. This is a coloring in alternate half-open strips of 

(3 height d 2. IQ- If certain changes are made on the boundaries, y = -f m, 

there still may be no monochromatic equilateral d-triple. For instance, if 

the colors of each of the points n (i d, -$ d) are changed from R to 

B or vice-versa, there are still no monochromatic equilateral triangles of 
side d, We make the following conjecture. 

Conjecture 1. The o&y 2-colorings of E2 for which there are no 
monochromatic equilateral triangles of side d are colorings in alternate 
strips of width (m)d, as above, except for some freedom in coloring the 
boundaries between the strips. 

It is easy to check that if this kind of coloring is employed, only the 
equilateral triangle of side d fails to occur monochromatically. If d’ # d, 
then there is a monochromatic equilateral triangle of side d’. Thus such 
strip colorings can avoid only one size equilateral triangle. This leads to a 
weaker conjecture, which may hold even if Conjecture 1 fails. 

Conjecture 2. If E2 is 2-colored so that there is no equilateral 
triangle of side d, then there is a monochromatic equilateral triangle of 
side d’, for d’ # d. 

Now as we saw in [l] (and in Theorem 1 below), if there is a mono- 
chromatic equilateral triangle of side a in E2, then there is a mono- 
chromatic triangle of sides a, b and c for every b, c such that a, b 
and c can be the sides of a triangle. Thus if K is any triangle which is 
not equilateral, and if Conjecture 2 is true, there must be some mono- 
chromatic R congruent to K for any 2-coloring of E2. This finally 
leads to a conjecture, which in view of Theorem 1 is equivalent to Con- 
jecture 2. 

Conjecture 3. If K is a triangle which is not equilateral, then R(K) 

is true. 

Aside from the questions of monochromatic triples K, one could 
ask whether various other 2-colorings of K occur. In general, a triple 
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(A, B, C) with distinct distances has 4 inequivalent colorings, namely all 
three points the same color (monochromatic), and 2 points one color, the 
third point the other color {there are three choices for this coloring). For 
a 2-coloring f of E2, we ask which of the four must occur. That is, 
for which of the following four possibilities is there a triple {A’, B’, G] 
congruent to {A, B, C}? 

@I’) = f(B’) = f(C) 

AA’) f fTB’) = f(C’) 

AB’) # I-U’) = fc0 

AC’) f AA’) = f(B’) 

For isosceles triples this reduces to three possibilities, and for equilateral 
triples to two. Of course, if f colors the whole plane one color, then the 
first possibility occurs for all triples, and none of the latter three do. 

It is obvious that for pairs of points distance d apart, both the mono- 
chromatic and bichromatic cases occur, unless f is a l-coloring. 

If (A, B, C) is a collinear triple with B between A and C, then 
it is possible to color E2 with two colors so that no congruent {A’, B’, C) 
has flA’) = f(c) # flB’). Namely, we color {x, y) red if y > 0 and blue 
if y d 0. This leads to our final conjecture: 

Conjecture 4. Zf f is a Z-coloring of E2 (which ti not a l-color- 
ing), and {A, B, C) is a triple such that there is no congruent triple 
{A’, B’, c} with f(A’) = flc) f flB’), then {A, B, C} is a collinear trip 
le and B is between A and C. 

For convenience we use the notation R&a, b, c) to indicate that 
there exist (a, b, c)triangles in the coloring f of E2 for which the two 
endpoints of the a-side have the same color and the third point has the 
opposite color. 

In this paper we primarily pursue Conjecture 3, and find many triples 
K which satisfy R(K). We also obtain many bichromatic triples which 
must occur. Below is a partial list. 
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Monochromatic triangles 

1. Triangles with ratios between two sides equal to r where r = 
= 2sin(8/2) and 13 = 30”, 72”, 90”, 120”. 

2. 30” and 150” triangles. 

3. Triangles whose sides are equal in length to the sides and the cir- 
cumradius of an isosceles triangle. 

4. Triangles with angles (ar, ICY, 180” - ICY), 0” < (Y < 60” and 
(180” - 01, 180” - 2ar, 3a - 180”), 60” < CY< 90”. 

5. Triangles (a, b, c) with a6 - h4b2 + a2b4 - 3a2b2c2 + b2c2 = 
= 0 or a4c2 + a2b4 - 5a2b2C2 + b2C4 = 0. 

6. (Degenerate) triangles (a, 2a, 3a). 

7. Right triangles (a, b, c), a2 + b2 = c2, with (i) b2/a2 rational, 
(ii) tan- 1 b/a a rational multiple of 90” and many other special triangles 
(Theorems 6, 7). 

Bichromatic triangles 

1. Isosceles triangles with one base vertex opposite to the other ver- 
tices. 

2. All colorings of the isosceles 120” triangle. 

3. All colorings of the right (a, b, c)-triangle with a2 + b2 = c*, 

b2/a2 rational, or (tan- r b/a)/90” rational with even denominator. 

2. CONDITIONAL THEOREMS 

In this section we obtain theorems which say that if certain triples 
are monochromatic (or sometimes if certain triples are not monochromatic) 
then others are (or are not) monochromatic. It is convenient to define a 
new statement for each 2-coloring f of E2 : 

R&K): Some K’ congruent to K is monochromatic under J: 
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The most useful conditional theorem is the following, which is a 
strengthening of Theorem 8 of [ 11. 

Theorem 1. Let K be a triangle with sides a, b and c, and let 
Ktl, Kb and Kc be equilateral triangles with sides a, b and c, respect- 
ively, Then R+K) is true if and only if at least one of R+K, ), R,(Kt, ) 
or R&K,) is true. 

Proof. The proof is immediate. Consider the configuration in Figure 
1. The six triangles HBC, ABD, CDE, EFH, DFG, AHG all have sides a, 
b and c. The triangles ABH, DFE, BCD, FGH, HEC, ADG are equilat- 
eral with sides 4, n, b, b, c, c, respectively. As in the proof of Theorem 
8 of [I], we see that if one of the second six triangles is monochromatic, 
one of the first six must be. The converse is true by a symmetric argument. 
This completes the proof. 

We are indebted to Raphael M. Robinson for the following re- 
mark. 

Remark. Since the six triangles congruent to K in Figure 1 are like- 
oriented we have actually proved the stronger fact: 

If a trtingle K has a monochromatic like-oriented congruent copy 
K’ in a Z-coloring f of E2 then it also has a monochromatic opposite- 
oriented congruent copy K”. 

The analogous statement for bichromatic colorings is not known to us. 

Theorem 1 has several immediate Corollaries. 

Corollary 2. If K is a triple with sides a, a, b and if R&K) is 
true, then R&K*) is true for any triple K* with sides a, b, c, where 
la-bl<c<a+ b. 

Corollary 3. If RflKo) is false (K, the equilateral triple of side al, 
but R&K) is true, for a triple K with sides a, b, c, then R&K*) is 

true for K” any triple with sides b, c, d, I b - cl < d Q b + c. 

Let T = {{a, b, c), 0 Q a < b Q c < a f b}. For each 24oring f 
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Figure 1 

of E2 let Tf be the subset of T consisting of the triples (a, b, c), 
such that there are no monochromatic triangles with sides a, b and c. In 
view of Theorem 1, Conjecture 3 is equivalent to the statement that Tf c 
c {(a, a, a) I a > 0) for all f. 

Corollary 4. Let K be an (a, a, b>triangZe such that R(K) holds. 
Let f be a ‘L-coloring of E2, and suppose (c, d, e) E Tf. Then 
(b&z, be/u, be/u) 8 Tf, and (at/b, m/b, w/b) 4 Tf . 
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Proof. If R(K) is true, we observed that R(K’) is true for K’ a 
{ta, ta, tb)-triangle, t > 0. In particular, if t = C/Q, Theorem 1 implies 
then that either (c, c, c) 4 Tf or (b&z, be/u, be/u) 4 Tf. The former can- 
not hold by Theorem 1, since, (c, d, e) E Tf. Thus (be/u, be/a, be/a) e Tf. 
A similar argument gives ((a/b)c, (a/b)c, (a/b)c) 8 Tf. This completes the 
proof. We note that d or e can replace c above. 

Conjecture 2 says that Tr= {(a, a, a)} for some a > 0, or Tf = Cp. 
We show something not as strong below. 

Theorem 5. For every ‘L-coloring f of E2, the set Tf is totally 
d&connected in E3. 

Proof. Let f be a 2-coloring of E2, and let (a’, b’, c’) and 
(a, b, c) both be in the same connected component of Tf. We can assume 
that a < a’. Then by Theorem 1, (d, d, d) E Tf for all d E [Q, a’] or 
else the plane Hd = {(x, y, z) I z = d} would separate (a, b, c) and 
(d, b’, c'), and Hd n Tr = #. 

Consider two points x,y, distance a + a’ - = a” apart and both the 2 

same color, say red. Let D be a point such that x,y, z are an equilateral 

triple. Then, by Theorem 1, the disc with center z and radius q 

must be all blue. 

Now we claim that no circle C of radius r > $ is monochromatic. 

For if such a C exists, say it is red, then we choose two points distance 
a” apart on C and we then move around the circle. We get a blue annulus 

a’ - a of thickness - 2 and mean radius T’ = q8 + frq . Now 

repeating this argument for each blue circle in the annulus, we get a red 

annulus of thickness 2 (9). Continuing in this way, we get mono- 

chromatic annuli of thicknesses n (F] for all n, a contradiction 

since this would imply Tf = 9. 

Now let x and y be two points of different colors which are dis- 
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tance e<+ lo-’ apart. Let x be red, y blue. Consider the circle 

C of radius a” and center x. Since it cannot be monochromatic bylthe 
argument above, there must be two points x’ and y’ with opposite col- 
ors in C with distance < E. Let X’ be red. 

As above, if z forms an equilateral triangle with x and x’, we 

have z blue and a disc of radius at least 9 and center z which is 

all blue. But there is also a z’ which makes an equilateral triangle with 

Y and Y’, a’ - a and z’ is the center of a red disc of radius at least - - 
2 

- 2E. 

Since the distance between z and z’ is at most 2e, this is a con- 
tradiction, as we get two, overlapping, differently colored discs. This com- 
pletes the proof. 

For right triangles we can employ certain special arguments. The first 
may be called the “ladder method”, and is used below. 

Theorem 6. Let f be a ‘t-coloring of E2 and let n be a positive 
integer. Let a2 + b2 = c’, and let K be a triple with sides a, b, c. Let 
K’ be a triple with sides a/(2n + l), b, c’, with a2 /(2n + 1)’ + b2 = 
= (c’)2. Let K” be a triple with sides a/( 2n), b, c”, with a2/(2n)2 + 
+ b2 = (c”)~. Then if R&K) is true, so is Rr( K’). If there is a K” 
congruent to K such that the two points distance b apart in K” are 
the same color, while the third point is the opposite color, then R&K”) 
is true. Finally, if there exists such a K’, then there is a triple with sides 
a/n, b, d with (a/n)2 + b2 = d2 such that the points at distance b have 
the same color, and the third point has the opposite color. 

Proof. First let x and y be two points distance b apart which 
are the same color, say red. If (a’, b, e) E Tf, where (a’)2 + b2 = e2, 
then the points x1 and y1 distance a’ from x and y respectively 
must both be blue. (See Figure 2.) Repeating this argument gives two par- 
allel sequences x,x1, x2, . . . and y,yl, y2,. . . with alternating colors; 
xi is red iff i is even, and similarly for yi. 
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Figure 2 

Now to obtain the first statement of Theorem 6, let x, y, z be three 
points forming a monochromatic (a, b, c)-triangle, and let x and y be 
distance b apart. Then z is x2n+ 1 or yZn + 1 above, if a’ = a/(2n + I). 
This is a contradiction as x and xzn + 1 or y,, ~ 1 have opposite colors. 

For the second statement, we take x and y to be the same color, 
and distance b apart, z the opposite color, and x, y, z the points of 
an (11, b, c)-triangle. If a’ = a/(2n), then z = xqvr or yan above. This 
is a contqadiction, as x and .x2n or yzn have the same color. 

- 567 - 



For the third statement, we observe that if there were no (a/n, b, d)- 
triangle of the desired type, then by taking x and y distance b apart 
and the same color, we would get a “ladder” such as in Figure 2 with all 
xi and yi the same color. If we take x,y, z to be the vertices of a tri- 
angle K”’ with x and y the same and z the opposite color, then z = x, 
or Y,, and we have a contradiction. This completes the proof. 

The second method for right triangles may be called the “roulette 
method”, and it is used below. 

Theorem 7. Let f be a 2-coloring of E2. Let Ku be a triple with 
angles 90”, LY, 90” - (Y (a = 0 is allowed, that is, the triple may degenerate 
to a pair). Let Kp be a triple with angles 90”, /3, 90” - PI and with hy- 
potenuse the same length as that of lC,* If Rf(KOL) is true then R&Ka) 
istruewhere (2m+ l)p=a!+n* 180” for some integers m > 0, n > 0. 

If some triangle K& r Ko, has the two vertices on the hypotenuse 
one color and the third vertex the opposite color, then R+Kp) is true if 
2m/3= (r-k n* 180”. 

Finally, if there is some triangle Kb, as above, then there is a triangle 

Kj (with hypotenuse the same length as that of Kk) with the 90” verte;z 
colored opposite from the other two, if rnfl = (Y + n l 180”. 

Proof. The proof is analogous to that of Theorem 6. Consider the circ Ie 
of radius c/2 in Figure 3, where x and y are two points distance c apa rt 
which are the same color, say red, and c is the length of the hypotenuse o f 
Key . Then if Rr<KP) is false, the points x1 and yr must be blue, since 
x, y, xr is a triple congruent to K,. Repeating the argument yields two se- 
quences, .x,x1 ,x2, . . S and y,yl ,yz, . . . with altsrnating colors. 

If, in addition, R+Ka) is true, let x,y and z be a monochromatic 
triangle (with x and y on the hypotenuse) congruent to KLy. But if 
(2m+ l)fl=cri- n* 180”, then z=x~~+~ or Y~,,,+~, acontradiction 
since the colors of the xi and yj alternate. 

The second statement follows in the same way. The third statemt& 
follows by assuming that there is no J$ of the desired kind. This leads 
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to sequences x, x1, x2, . . . and y,yl ,y2, . . . which are all the same 
color. If rnp = cy + y1 l 180”, we get a contradiction. This completes the 
proof, 

Figure 3 
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3. MONOCHROMATIC TRIANGLES 

In this section we use the conditional theorems of Section 2, together 
with the fact that in every proper 2-coloring of E2 we get both mono- 
chromatic and bichromatic pairs of points at every distance, to prove 
R(a, b, c) for a variety of triangles with side lengths a, b, c. 

We start with a theorem due to Raphael M. Robinson, which 
indicates what conclusions can be drawn from colorings of configurations 
involving only 5 points of E2. 

Theorem 8. Iffive points can be found in the plane which have only 
the distances a, b, c, d and the distance d (not necessarily distinct from 
a, b, c) occurs only once and a, b, c satisfy the triangle inequality, therz 
R(a, b, c) holds. 

Proof. Let the set of five points be P = {JJ, , p2, . . . , p5 ) with 
d(pI,p2) = d. We can choose the points so that p1 and pz have oppo- 
site colors. Now P must contain a monochromatic triple {pi, pi, pk } 

whose distances are contained in {a, b, c}. 

Thus, by Theorem 1 and its corollaries we have R(a, b, c) whenever 
a,.b, c satisfy the triangle inequality. 

In order to check the consequences of Theorem 8 we need only clas- 
sify the quadruples of points with at most 3 distinct distances and therl 
checl. whether they can be augmented to a quintuple which satisfies the 
hypothesis of Theorem 8. Labelling the distances a, b, c in order of de-. 
creasing frequency of occurrence in the quadrilateral we get the followii,@ 
possibilities for the distance matrices: 

The triangle with vertices 2, 3,4, an arbitrary 
30” or 150” triangle whose circumcenter is the 
vertex 1 and whose circumradius is a. A re- 
flection on a line of symmetry of the equihnter- 
al triangle 1, 2, 3 yields a 5th point. 
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Oaa b 
aOca 

I I ac Oa 

baa0 

rOa aa 

aObb 

abOc 

\abcO i 

rOaac 

a Oa b 

aaOb 

,c b b 0 I 

A rhombus. Can not in general be augmented 
to a quintuple satisfying Theorem 8. 

An isosceles (b, b, c)-triangle 2, 3,4 and its 
circumcenter 1 with circumradius a can be 
augmented to a quintuple by reflection of ver- 
tex 2 on the line 13. 

An equilateral (a, a, a)-triangle (1, 2, 3) and an 
isosceles (b, b, a)-triangle (2,3,4). (a, b, c) is 
a 30” or 150” triangle. 

A parallelogram with one of the diagonals equal 
to one of the sides can be augmented by reflec- 
tion of 4 on the line of symmetry of (1,2,3). 
We have c2 = a2 + 2b2. 

An isosceles trapezoid with one base equal to 
the sides can be augmented by rotating about 
the circumcenter when a f c. The (a, b, c)- 
triangle has angles 01, 2cu, 180” - 3a for 
O<cu<60", cu+45", 180” -o!, 180” -2a, 
3a - 180” ; 60” < Q < 90” or is a (degenerate 
(a, 2a, 3a)-triangle. Satisfies a2 f ac - b2 = 0. 

Isosceles (a, a, b)-triangle with b-side common 
with isosceles (b, b, a)-triangle, can be aug- 
mented by reflection on line of symmetry of 
one of the isosceles triangles. It satisfies 
a6 - 2a4b2 + a2b4 - 3a2b2c2 + b2c4 = 0. 
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Oaa b 
a oc b 

1 1 

a c oc 
bbc0 

Oaab 

aObc I 1 a bOc 

bcc0 

Oabc 

aOcb I 1 bcOa 

cba0 

Contains 3 isosceles triangles (a, a, c) (b, b, a) 
and (c, c, b). Can be augmented by reflection 
on the line of symmetry of one of these trian- 
gles. Satisfies 
a4c2 + a2b4 - 5a2b2c2 + b2c4 = 0. 

Can not in general be augmented. 

Rectangle, can not in general be augmented. 

To sum up we have: 

Theorem 9. R(K) holds for all triangles K = (a, b, c) which 

(i) have a 30” angle, 

(ii) have a 150” angle, 

(iii) are the sides and the circumradius of an isosceles triangle. Satis- 
fies 4a2b2 - a2c2 - b4 = 0. 

(iv) satisfy c2 = a2 + 2b2, 

(v) satisfy a2 -+ ac - b2 = 0, a f c. Includes K with angles 
(a, 2a, 180” - 3a), 0 < (Y < 60”) TY f 45” and angZes (180” - cu, 180” - 
- 2q 3cu - 180”); 60” < (;Y < 90” and K = (a, Zz, 3a). 

(vi) satisfy a6 - 2a4b2 f a2 b4 - 3a2 b2c2 + b2c4 = 0. 

(vii) satisfy a4c2 + a2b4 - 5a2b2c2 f b2c4 = 0. 

The above list includes isosceles triangles with vertical angles of 0 = 
= 30”, 72”, 108’, 120”, 150”. 
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Corollary 10. We have R(K) for all triangles for which the ratio of 
two sides is r = 2 sin (8/2) where 8 is one of the above mentioned an- 
gles. 

Corollary 11. If ( a, a, a) E Tr and (b, b, b) E Tr and the triangle 
K = (a, b, x) belongs to one of the family of triangles for which R(K) 
holds (e.g. according to Theorem 9 or Corollary 101, then R,-(x, x, x) 
and hence R&x, y, z) for all possible vaiues of y, z. 

The hypothesis of Corollary 11 would foilow from (a, b, c) E Tr for 
any c or from (a, ., .) E 7” and (b, ., .) G Tr for any choices of the un- 
named sides. 

4. BICHROMATIC TRIANGLES 

In this section we consider the question of which triangles must occur 
bichromatically for any f which is not a l-coloring (i.e., a proper 2-color- 
ing). It is clear that out of the 4 possible colorings of a triangle at least 
3 must occur in every proper a-coloring. 

Theorem 12. Let f be a proper 2-coloring of E2. Then for every 
a and b, 2a > b, the isosceies (a, a, b)-triple satisfies R&Z, a, b). 

Proof. Since f is proper, there are two points of opposite color dis- 
tance b apart. The third point of an (a, a, b)-triangle agrees with one of 
these in color, and the proof is complete. 

We now turn to right triangles and use an argument by Raphael M , 
Rob i n s o n improving an earlier argument. 

Lemma 13. Let L = {k + 1-1 k, I E Z}, d > 0, d E Q, be a lattice 
in E2 (considered here as the complex plane). Then there is a lattice L’ 
obtained by rotating L about 0 by an angle which is not a multiple of 
90” such that L n L’ is a two-dimensional sublattice of L. 

Proof. Pick X = u + vm E Q(fq) such that X2 is neither real 
nor purely imaginary. Let p = h2/N(X) = (U + v)/_-;~)~/(u~ + dv2). Then 
L.’ = pL satisfies the lemma. 
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Theorem 14. If f is a proper 2-coloring of E2 and (a, b, c) 

(c2 = a2 f b2) is a right triangle with b2/a2 rational: then the (a, b, c)- 
triangle occurs in all four possible colorings. 

Proof. By Theorem 6 we know that R/ii, 2b, fa2 + 4b2) implies 
R&a, b, c). It therefore suffices to prove the theorem for bichromatic col- 
orings. We may assume without loss of generality that a = 1. Consider a 
rectangular lattice with sides 1 and b. Consider three consecutive points 
x,y,z of L with Ix -yI = ly --z( = 1. Unless all pairs x and z of 
such triples agree in color, there must be such a triple with, say, x and y 
of one color and z of opposite color. We now consider the three possible 
bichromatic colorings of (a, b, c), If Rf( 1, b, F) is false, each line of L 
perpendicular to z -y must be monochromatic. If R&i, b, c) is false 
then, equally, each line of L perpendicular to x -y must be monochro- 
matic. If Rr( 1, i, c) is false then the colors must alternate on each line of 
L perpendicular to z - y. 

Thus if one of the bichromatic colorings fails to occur, then in every 
lattice congruent to 2L there is one of its coordinate directions in which 
each line is monochromatic. Now consider the lattice 2L’ of Lemma 12. 
The lattice (2L) n (2L’) contains a twodimensional sublattice generated 
by the monochromatic coordinate directions of 2L and 2L’ which in 
turn contains a sublattice kL, (k E 22). We thus get a monochromatic 
sublattice for each of the four possible choices of the monochromatic di- 
rections of 2L and 2L’ and therefore a sublattice KL, (K E 22+ ) 
which is common to all three lattices. Thus, since the position of L is ar- 
bitrary, it follows that all points with distance K are like colored, con- 
trary to the hypothesis that f is proper, 

Since Theorem 14 includes the case of isosceles right triangles we get 
the following. 

Corollary IS. We have R(a, b, c) whenever the ratio of two of the 
sides is 0. 

Theorem 16. If f is a proper ‘L-coloring of E2 there is a (1, 1, fi)- 
triangle with the 120” vertex colored oppositely from the other two. Thus 
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all 3 colorings of an isosceles 120” triangle occur in any proper ‘L-color- 
ing of E2. 

Proof. This proof is similar to the last proof, but we employ the tri- 
angular lattice rather than the rectangular lattice. 

Let f be a proper 2-coloring of E2, and let x be a red point. 
Let u and Y be unit vectors forming a 60“ angle, and consider the lat- 
tice x + L, where L = (iu + j~l i, j integers}. 

We suppose that the desired kind of triangle does not occur. We will 
show that x + 120~ must also be red. This, then, is a contradiction, as 
x and u were arbitrary, and f is proper. 

Suppose x + L is not all red. Then somewhere in the lattice are 
three points 9, r and s forming a bichromatic triangle with (+(s - 9), 
+(r -9), ?(r -s)) = {tr, Y, +(v - u)}. Let s be red and 9 and r blue. 
Then all points r + i(q - r) are blue, and all points s + i(q - Y) are red. 
Now by induction on k, we see that each “line” of points s + k(s - 9) + 
+i(q-r), i= .,., -1,0,1,2 ,... is a single color, depending on k, k 
any integer, positive or negative. 

What we have shown, then, is that in at least one of the three direc- 
tions U, Y or u - Y the colors are constant. Without loss of generality 
we can assume that colors are constant in the tc direction. 

Let L’ = {iu’ + $1 i, j integers}, where U’ = +(5~ + 3u), V’ = 

= ;(3v - 5~). Then applying the argument above to the lattice x + L’, , 
we see that colors are constant in one of the directions u’, Y’, IL’ - u’. Thus 
starting at x, one of the three points x + 7 l 24~’ = 120~ + 72~ + x, 
x-i- 7s 15u’=x+ 12Ov-75u, x-774O(u’-v’)=x+ 12Ov-32Ou, 
must be red. 

But since colors are constant in the tl direction in x + L, we see 
that x + 120~ must be red in ail cases. Since x and Y were arbitrary, 
we have every two points distance 120 apart are the same color, contra- 
dicting the fact that f is proper, and completing the proof. 
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Theorem 17. If K is a right (a, b, c&triangle with a2 + b2 = c2, 
and the angle opposite the side of length a is a rational multiple of 180”) 
then R(K) is true. 

Proof. It is sufficient to assume c = 1. Let f be a 2-coloring of E2. 
We wish to show (b, m, 1) 8 Tf for every b such that sin- 1 b is 
rational. Let p = sin- ‘b If p = n l 90” for any n, it is true, since K , 
has only two points. Then by the roulette argument (Theorem 7), it is also 

true for p = 2mn+ 1 90”. By Theorem 14 it is true for fl= v 900, 

and again by the roulette argument, it is true for j3 = 2n+ L 90”. 
2(2m + 1) 

Finally, by Theorem 14, either f is a l-coloring, in which case we are 
done, or there are points forming a bichromatic (l/l/z, l/I’?, I)-triangle 
with the 90” vertex the opposite color from the other two. But now using 

the roulette argument here yields the desired result for any * 90”. 

This completes the proof, as all cases are exhausted. 

Theorem 18. Let K be a right triangle with angles (cu, 90” - (Y, 90”) 
where 490” is rational with even denominator. Then in every proper 2- 
coloring of E2 there exists a triangle ABC congruent to K whose 90” 
vertex C is colored opposite to A and B. 

Proof. It suffices to prove the theorem for triangles whose hypotenuse 
is of length 1. By Theorem 14 there exists an isosceles right (l/j’?, l/l’?, 
I)-triangle A’B’C with C colored opposite to A’ and B’. By the 
roulette argument (Theorem 7) there therefore exist right triangles ABC 

with C colored opposite to A and B and 4A = 1 + 2n 7 90” for any 

integer m > n > 0. 

Theorem 19. Let K be a right triangle with angles (ar, 90” - cy, 90”) 
where cy is a rational multiple of 90” and the numerator and denomina- 
tor of 490 are not both odd. Then in every proper Zcoloring of E2 
there exists a triangle ABC congruent to K with Q A = Q! and A col- 
ored opposite to B and C. 

Proof. It again suffices to prove the theorem for triangles of hypote- 

- 576 - 



nuse 1. We can pick points A,, B, of opposite colors and distance 1. If 
there are no triangles congruent to K with the desired coloring then by 
the roulette argument we get a sequence of points A,, A,, . . . and 
B,, B,, . . . on the circle with diameter A,B, so that the arcs AiAi+ 1 
and BiBi, 1 are all 2a and the Ai and B, have alternating colors. This 

leads to a contradiction if cy = 1 + 2n r 90” where m, n are integers with 
2m 2m.2n-F l>O; orif o- l+2n - 90” where m, n are integers and 

0 < 2m < 1 + 212. 

Corollary 20. In every proper Zcoloring of E2 all right triangles 
with angles 01, 90” - cy, 90” where (x/90” is rational with even denomi- 
nator occur in all 4 possible colorings. 

The situation summarized in Theorem 14 and Corollary 20 is by no 
means complete since we can apply the ladder and roulette methods alter- 
nately to get increasing families of right triangles with prescribed colorings. 
Both methods lead to new side-lengths which are obtained from the old 
side-lengths by rational operations and solutions of cyclotomic equations. 
This leads us to the following conjecture about the closure under the two 
operations. 

Conjecture 5. In any proper 2-coloring of E2 all right (a, b, c)-tri- 
angles with a2 + b2 = c2 and a/b in the cyclotomic closure of Q occur 
in all 4 possible colorings. 

We outline briefly some of the wealth of additional results on right 
triangles. 

If we have (a, b, c) E Tf with a2 + b2 = c2, then according to The- 
orems 6 and 7 we get an infinity of right triangles in Tr. From now on we 
we use sI t, u to denote arbitrary odd positive integers. We get 

(su, tb, ts2a2 + t2b2) E T / (Theorem 6); 

c(cos 01, sin CY, 1) E Tf , tan (o/s) = b/a 

c(t cos a, u sin 01, r’t2 COS’QL + u2 sin2cu) E Tf, 

tan (U/S) = b/a 

(Theorem 7); 

(Theorem 6). 
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and so forth, applying alternately the ladder and the roulette method. We 
thus get an infinite number of equilateral triangles in Tf and by Corolla- 
ry 11 an infinite number of equilateral triangles for which Rf holds. Be- 
fore listing these triangles we get an additional tool. 

Lemma 21. If (a, b, c) E Tf, a2 f b2 = c* then Rf(: (1, 1, 1)) 

holds. Hence 2sx(cos (Y, sin (Y, 1) B Tf where x = a, b or c. 

Proof. In any coloring of five points which form the vertices and the 
center of an a X b rectangle we get a monochromatic triangle whose sides 
have lengths contained in the set {a, b, c, c/2). Since our hypothesis im- 
plies (a, a, a), (b, b, b), (c, c, c) E Tf we must have R&c/2, c/2, c/2). 

Theorem 22. Let (a, b, c) E Tf, a2 + b2 = c2. Then we get the fol- 

lowing partial list of side lengths for equilateral triangles in Tf and trian- 
gles not in Tf. 

We make two columns headed Tf and Rf , listing sample side lengths 
of equilateral triangles which occur in either category, using the following 
shorthand: x, y distinct eiements of {a, b, c}; r = one of the ratios in 
Corollary 10 or 15; m = arbitrary positive integer; s, t = arbitrary positive 
odd integers. 

Tf 

SX 

fs2a2 -I- t2b2 

tc cos a, tan (a/s) = 
= b/a or a/b 

(Theorem 6) 

(Theorem 6) 

{Theorem 7) 

Rf 
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SC/2 

rsx, sx/r 

2dm 

xv2 + t* + VT st 

- 
xli2m 

Js2x2 f 2t2y2 

Ilsx(sx 2 ty) 

(Lemma 21) 

(Corollary 10, 15) 
(Theorem 9, (iv) 

with 
c = sx, a = tx, 
8m=s2 -t*) 

(Theorem 9, (i), 
G.9) 
(Theorem 9, (v)) 

(Theorem 9, (iv)) 

(Theorem 9, Iv)) 



It is clear that we get a contradiction whenever a number appears 

in both columns. Thus, for example we must have R(( 1, I/lo 

I4 1 + 3fi)) since otherwise the number m would occur in 
both columns. 

As an interesting special case we mention the following: 

Corollary 23. If we have R(s, t, u) for some triple of odd integers 
s, t, u then we have R(K) for all right triangles K. 

Proof. If K = (a, b, c) E Tf for some 2-coloring f of E2 then 
we have SK, tK, UKE Tf by Theorem 6 and hence s(a, a, a), t(a, a, a), 
u(a, a, a) E Tf by Theorem 1 and thus (sa, ta, ua) E Tf by the same The- 
orem. Since the triangles for which R holds are closed under similarities 
it follows that R(s, t, u) is false. 

5. ADDITIONAL REMARKS AND PROBLEMS 

One might ask whether for any ‘L-coloring of E2 there is one color 
so that all triangles K which occur monochromatically occur in that col- 
or. We cannot answer that question, but we can give affirmative answers 
to related questions. 

Theorem 24. For any 2-coloring of E3 there is one color so that 
all equilateral triangles occur in that color. 

Proof. If there is some distance, say a, so that no pair of red points 
has distance a, then every monochromatic set K is either blue, or eve- 
ry translate of K by a vector of length a is blue. We may therefore assume 
that there are pairs of points of either color with any prescribed distance. 

Now assume that there is no red (a, a, a)-triangle and that A, B are 
red points at distance a. Then the entire circle % lying in the perpen- 
dicular bisecting plane of AB with center at the midpoint of AB and 
radius afl/2 must be blue. If there is any (b, b, b)-triangle with b < 
< aj’3 which does not occur in blue, then to every pair of points C, D on 
G$ with distance ?% = b there corresponds a red circle of radius bk5 in 
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the perpendicular bisecting plane of CD centered at their midpoint. The 
union of these circles is a red torus 5 whose outer radius is R = bf3/2 + 

f m/2 and whose inner radius is r = max {O, w- b2/2 - 
- bfi/2}. If t < a/D, the circumradius of an (a, a, a)-triangle, then Y 
would contain the vertices of a red (a, a, a)-triangle contrary to hypothesis. 
If Y > a/1/3 then b < a/2 and to each pair of points E, F at distance 
a in the inner circle of .7 there corresponds a blue circle of radius a/3/2 
in the perpendicular bisecting plane of EF centered at their midpoint. 
The locus of all these circles is a blue torus 5’ with outer radius R’ = 
= af3/2 + fr2 - a2/3/2 and no hole. Since R’ > b it follows that 3’ 
contains a blue (b, b, b)-triangle contrary to hypothesis. 

We have thus shown that, if there exists no red (a, a, a)-triangle then 
there exist blue (b, b, b)-triangles for every b < a+‘?. Thus if there did 
not exist a blue (c, c, c)-triangle, we would have c > afj, and then there 
would exist a red (a, a, a)-triangle contrary to hypothesis. 

Remark. The arguments in the proof of Theorem 24 can be extended 
to cover all triangles which have one altitude that exceeds half the corre- 
sponding edge. If we call such triangles nonfirat we can state the following 
extension of Theorem 24. 

Theorem 24’. In any 2-coloring of E3 there is one color so that all 
nonflat triangles occur in that color. 

We can generalize Theorem 24 in another direction. 

Theorem 25. In any 2-coloring of E2” - 1 there exists one color so 
that all regular n-simplices occur in that color. 

Proof. By induction on n. Theorem 24 is the case n = 2. Assume 
the theorem to hold for n - 1 and assume that there exist regular (n - l)- 
simplices of every size all of whose vertices are red. If for some a > 0 
there does not exist a regular red n-simplex of edge-length a we can pick 
a regular red (n - I)-simplex A 1, A,, . . . J A, of side-length a in an --- 
(n -l)-plane P” -I. The (n - I)-sphere, S, of radius af(n + 1)/2n 
centered at the centroid of A,, . . . , A, and lying in an ?2-plane 
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perpendicular to Pn - l must be all blue. If for some b with 0 < b < 
< aj’(/<n f 1 )/(n - 1) there does not exist a regular blue n-simplex of edge- 
length b, then to each regular (n - I)-simplex B,, . . . , B, of edge- 
length b on S there corresponds a red (n - 1)-sphere centered at the 
centroid of B,, . . . , B, and in an n-plane perpendicular to this plane. 
The locus of all these red spheres is a generalized torus 5 whose outer 
radius is 

and whose inner radius is 

If I < &2/2(n + 1) then 9 contains the vertices of a regular n-simplex 
of edge-length a, contrary to hypothesis. If r > al’-) then b < 
< a/n and to every regular (n - l)-simplex C, , . . . , Cn of edge-length 
a on the inner sphere of 5 there corresponds a blue (n - I)-sphere of 
radius a$(<n + 1)/2n . The locus of these spheres forms a blue torus 9’ 
which, as in the proof of Theorem 24 can be shown to contain the vertices 
of a regular n-simplex of side-length b, contrary to hypothesis. 

Now, if there were no blue regular n-simplex of edge-length c then 
c Z am- 1 )/(n - 1) and hence there are regular red n-simplices of edge- 
length a, contrary to hypothesis. 

A generalization analogous to that of Theorem 24’ holds where a 
nonflat - simplex is one with an altitude that exceeds the circumradius of 
the corresponding face. 

We have already proved in [ 21 that for all positive integers k, 2 there 
exists an iV = ZV(k, 1) so that in every k-coloring of p there is one 
color so that all bricks (vertices of a rectangular solid) with 2’ points 
have a congruent image all of whose vertices are in that color. 

In view of the results in Section 4 one might ask whether there are 
analogous results concerning trichromatic triangles in a proper 3-coloring 
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of E2 or at least in En for sufficiently large yt. The answer is entirely 
in the negative, even if we ask for triangles similar to a given triangle. 

Theorem 26. Given any triangle K there exists a proper 3-coloring 
of Hilbert space so that no triangle similar to K is trichromatic. 

Proof. Let F be the field generated by the ratios of the sides of K. 
Now color the origin white; every point whose distance from the origin is 
a positive number of F red, and the rest of the points blue. Then clearly 
the ratios of the sides of a trichromatic triangle are not in F so the tri- 
angle is not similar to K. 

All the results on monochromatic triples which we have obtained in- 
volved triangles with an algebraic dependence among the 3 side lengths. 
Of course, in order to prove Conjecture 3 it would suffice to prove it for 
all non-equilateral isosceles triangles. So far we have no case of an (a, a, b> 
triangle with R(a, a, b) and a/b transcendental. Any such result would 
constitute an important advance. 

Theorem 27. If I?( 1 f 1, x) holds for some transcendent& number 
x < 2 then there exists an interval I containing x in its interior such 
that R(1, 1, y) holds for all y E I. 

Proof. By a compactness result (see [ 11) there exists a finite set 
S(x) c E2 such that in every 2-coloring of S(X) there is a monochromat- 
ic (1, 1, x)-triple. Without loss of generality we may assume that the ori- 
gin is in S(X) and that all the coordinates of the points of XX) are in 
the algebraic closure &xx> of Q(x). For, if there were coordinates which 
were transcendental over Q(x) then we could only increase the set of dis- 
tances in S(X) which are 1 or x by specializing those transcendentals 
to values in Q(x). 

Thus the coordinates in S(X) are algebraic functions over Q(X) with 
real values at X = x. The branchpoints of these algebraic functions occur 
at algebraic values of X. Thus there exists an interval I whose algebraic 
endpoints consist of the branchpoints nearest to x. For any y E I the 
choice X = y gives us a set S(y) so that in every 2-coloring of So/) 
there is a monochromatic ( 1, 1, y)-triple. 
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Even if we restrict attention to triples with commensurable distances 
the proof of Conjectures 3 or 4 cannot be carried out with the coloring of 
finite subsets of E2 with bounded numbers of elements. 

Theorem 28. Let R( 1, 1, x) hold and let S(x) C E2 be a set with 
a minimal number of elements such that every Zcoloring of S(x) yields 
a monochromatic (1, 1, x)-trip&?. Then I S(x) I + 00 as x + 1. 

Similarly, let R(1, 1, i) hold and let S(x) C E2 be a set with a 
minimal number of elements so that every proper Zcoloring of s(x) 
yields a (1, 1, x)-triple where the vertices adjacent to the x-side are col- 
ored alike and opposite to the third vertex. Then I S(x) I + = as x + 2. 

Proof. To prove the first part, assume that there exists a sequence 
x, + 1 so that I S(x,) 1 = N. Assuming 0 E S(x,) we get Ip 1 < 2N for 
all p E S(x,) since otherwise we could divide 3(x,) into two nonempty 
sets, A, B, one containing 0 and the other p so that the distance be- 
tween any point of A and any point of B exceeds 2. Thus all (1, 1, xn)- 
triples are entirely in A or entirely in B, contradicting the minimal- 
ity of S(xn). Thus, the S(x,) are sets with N elements in a bounded disk 
and as n +- 00 there is a convergent subsequence S(X,) + S. Then in eve- 
ry 2-coloring of S there must be a monochromatic (1, 1, 1)-triple con- 
trary to the fact that R( 1, 1, 1) is false. 

The proof for the second part is entirely analogous, using the fact 
that R( 1, I, 2) is false. 
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