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Abstract. Let %, 4 be infinite cardinals, FCP(x), A ¢ B for A # BeF; |A| < =
for 4 ¢ F. We give a necessary and sufficient condition (in ZFC) for the existence of
an F' CF with [F'|=#

lx— JF|=> 4.

§ 1. Let », 2 be infinite cardinals, F C P(x»), |F| = ». Problems of
the following type were considered in quite a few papers.

(1) Under what conditions for F does there exist #' CF, [F’| = » such
that |x— (JF'| > At

(2) Assume f is a one-to-one mapping with domain » and range F,
& ¢ f(&). Under what conditions for F' does the set mapping f have
a free subset of cardinality 4, i.e. a subset R C %, |R| = 4 such that
E¢f(n) for all &, neRY

It was proved in [3] that (1) holds with » = A provided there is a cardinal =
with |4| < v < » for all A ¢ F. In [4] it was proved that the same condition
also implies the stronger statement (2) with A = ». It is obvious that if
we only assume

(3) [Ad| <% for AeF

we have to impose further conditions on F to obtain results of type (1)
and (2).

The aim of this short note is to study the answer to (1) under the
following simple condition

(4) AGgB forall A#£BelF.

Here we get a complete discussion without using G.C.H. and we give
the solution of Problem 73 proposed in our paper [1] as well.

‘We mention that in a paper with A. Mété [2] we are going to study
the answer to (2) under condition (3) and under some additional and
more sophisticated conditions.
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To have a short notation we say that P(x, 1) is true if (1) holds for
all ¥ C P(x), [F| = », satisfying (3) and (4).

§2.

THEOREM 1. Let x be regular. Then P(x, A) holds iff either A< x and
W< % for all v<<x or A= x and = is weakly compact.

THEOREM 2. If = is singular then P(x,1) is false.

Proof of Theorem 1.

First we prove

(5) If v* = x for some v << %, << % then P(x, ) is false.

Proof. Let J, be minimal such that there is » < » with v* = %, and
let », be minimal such that »* = ». Then x being regalar v} < «.

It is well known that then there are X, |X|= v and G C P(X),
|G| = +¥ such that

(6) |A| = 2, for A e@ and [A~Bj<i,for A#Be@.

Let H= Co(G)={X—A: A eG}. We may assume X nx =@, Let
{B;: §< % CH be one-to-one, and put A,=B,u§ for E<»; F
={ds: E<x}. Then (A< =x for E<x, | Xwu|=12u% |Fl=% AT A,
for & # 9 << x since |B,— B, = J,. On the other hand if F'CF, [F'| = »
then, by (6),

(X g L] da @l

This proves (5).
Now we prove

(7)  Assume 1< %, v* < x for all v< » then P(x, 1) holds.

Proof. Let F be a system satisfying (3) and (4). Let &< = Put
F,={AcF: |E—A|=1}. I |F,| = » for some & then by the regularity
of » and by |§*< %, (1) holds. We assume |F¢ <z for all £< = and
we obtain a contradiction. Pick A,eF—F, for each &<x Put g(§)
= E—A,, h(&) = supg(§). We can choose a regular cardinal v such that
A< 1< % otherwise At = %, A*= =«

The set K, = {£< #: cf(&) = 7} is stationary in » and h(&) < & for
& e K,. By Fodor’s theorem there are p << x and a stationary set ¢ C K,
such that h(&) = o for & e €. By |p|* < %, there is €' C ¢, €' cofinal in »
such that g(&) = g(n) for &, ne C'. Choose £< e’ such that 4,C.
Then A4,C A, a contradiction.

(5) and (7) prove the first part of our theorem.

We now prove

(8) Assume P(x, x). Then x= is weakly compact.
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Proof. By the assumption P(x,2) holds for 1< » hence, by (5),
9% < x for A < x; x is strongly inaccessible. Assume x is not weakly compact.
Then there is an Aronszajn tree (%, <> on x». Let T, denote the set
of elements of rank £ in the tree and put 8,= | JT,. P is said to be

<
a path of length & if P is a chain C8; and P E’:;éﬁ for < & It is
well-known that there is a set K C x, |K| = x» such that there is a maximal
path P, of length & for each & e K.

Pot F={8;,— Py &ecK}. Assume &<, &,7e¢K. Then by the
maximality of P, 8,— P, ¢ 8§,— P, and obvicusly 8,—P, ¢ 8,— P,.

On the other hand let LC K, |L| = x, %,y ¢ | {8;— P,: £ e L}. Then
there is a & e L such that the ranks of # and y are less than &, hence
z,yeP, and s<y or y <

It follows that »— |/ {8,— P, §eL} is a chain and thus it has
cardinality less than x.

Thus F establishes not P(x, %). Hence if » holds x must be weakly
compact. This proves (8) (see Problem 73 of [1]).

Finally we have to prove

(9) If » is weakly compact then P(x,x) is true.

Proof. Let F be a system of sets satisfying (3) and (4). It is well
known that then there are 4 Cx and {d; &< »} CF such that 4 ~ &
= A, n £ for £ < np<<x First we claim that x— A is cofinal in ». Other-
wise there is & such that »— & C A. Then there is & << % such that 4,Cy
and then becanse of n—&C A4, 4.CA4,.

Then by transfinite induction one can easily choose two increasing
sequences o,, 7,; 7 << x such that o, ex— A, A, Co, for v <, and 7, >0,
for v = . Then

{o, n<u}Coax— U{A,’i << .

This proves (9) and Theorem 1.

Proof of Theorem 2. Assume eof(x) << x. Let {x,: v<Ccf(x)} be
a normal sequence of type x of cardinals less than x, tending to » sueh
that s, = cf(x). Then

=12 |J %,4y—x,.
v<ct(x)]

For », < &< » let »(£) be the unique » for which &ex, ,—x,. Put A,
=%, —{(£), &} for w < E<x and F={4; %< E< «}.

Assume & # 5 <x If (&) # »(n) then »(§) ed,—A,. I v(&) = »(n)
then §eA,—A,. Hence A, ¢ A,. On the other hand if LCzx—z, is
cofinal in » then obviously

U{d;: el =x.
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§ 3. Remarks.

1) First we mention that the weak assumption (4) is insufficient to
obtain set mapping theorems of type (2) as is shown by the following
example

For n e @ define

fln) = {m< n: m is even} v {m+1} if a is even
and
fim)={m< n: m is odd} v {n--1} if n is odd.

Then f(n) ¢ f(m) if » #m and there is no free set of three elements.
{Two independent points obviously exist.)

2) The following would be a Ramsey-type gencralization of the
positive part of Theorem 1.

(10) Let 2<k< o and lot F: [0 —>[w]< be such that F(X) ¢ F(¥)
for X # Y e [w]*. Then there is AC w, |A| = o such that

lo— UF(X): Xe[AT)]>w.

We have examples to show that (10) is false for k = 2 even if we assume
that F = {F(X): X ¢[w]*} satisties the following stronger condition.

(11) No member of F is contained in the union of 1 others for some
2gl< o

We suppress the proof.

3) We also mention that some of the counterexamples can be obtained
with set-systems I satisfying the stronger condition (11).

Using the fact that for each 1 <l< o there is G C P(w) such that
the intersection of I members of @ is infinite and the intersection of 141
members of @ is finite one can strengthen the counterexample of
Theorem 1 to

(12) For w, < x<2® there is FC P(x), |F|= » satisfying (11) and
such that

x— JP'|<w for F'CPF, |F|=x.

The existence of the required G was pointed out to us by L. Pésa.

Assnming C. H., we know that there is an F satisfying (12) and the
following condition stronger than (11). No member of F is contained in
the union of finitely many others. We did not investigate how far these
results can be generalized.

4) Finally we mention a rather technical problem. Let F': [w]P—[w]<*
be such that F(X) ¢ F(Y) for X # Y e[w]®. Does there exist an infinite
path IC[w]® such that |o— |J{F(X): Xel}|=w




(1]
(2]

[3]
[4]

Some remarks on set theory X1 265

References

P. Erdos and A. Hajnal, Unsolved problems in set theory, Proceedings of Symposia
in Pure Mathematics, 13, Part 1. A.M.S. Providence, R. I. (1971), pp. 17-48.

— — and A. M4ité, Chain condilions on set mappings and free sels, Acta Sei. Math,
34 (1973), pp. 69-79.

G. Fodor, On a problem in set theory, Acta Sei. Math. 15 (1953-54), pp. 240-242,
A. Hajnal, Proof of @ conjecture of S. Rueiewicz, Fund. Math, 50 (1961},
pp. 123-128.

Regu par la Rédaction le 24. 4. 1973




