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concerning the divisors of integers
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Introduction. In this paper we study the distribution (modl) of
logd, where d runs through the divisors of the positive integer n. As usunal
we denote the number of these divisors by =(n).

The sequence {logm,m = 1,2,3,...} is not uniformly distributed
(mod 1), nevertheless if we set

Mo =—— Y1,

(n) log d=x{mod 1)

=

then on & sequence of integers n of asymptotic density 1, we have that

fal@) =2
uniformly for
O0==x<1.

Indeed, for each 2 < §, there is a sequence of density 1 on which

1
sup |fo(B) —fula) = (f—a)| < ;——.
" I fn f—a) ()
This result was proved in a recent paper of Hall [2)].

It follows from this that for each fixed ae[0, 1), there is & sequence
of integers n of density 1 on which

min |logd — af >0,

dln
where |[lz| denotes the difference between » and the nearest integer to
it, and we consider the following problem. How fast can the left hand
side tend to zero on a sequence of density 1, or even on a sequence of
positive density? It turns out that this question can be answered very
precisely.
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In the case @ = 0, the problem is only interesting if we disregard
the divisor d = 1 in calculating the minimum above. This suggests that
for general a we distinguish two cases, whether we allow

(1) ogd —afl = 0

or restrict our attention to the minimum positive value of the expression
on the left.
Let M denote the set of those ae[0,1) for which there is an integer
m satisfying
logm = a (mod 1).

As e ig transcendental there can be at most one such m, and we denote
it by m(a). Thus (1) can only hold if ae M and d = m(a), that is, » must
be a multiple of m(a). We take account of this in our results which are
as follows.

TarorEM 1. Let a and ¢ be real numbers, 0 < a < 1. The integers
n having a divisor d satisfying

0 < |logd —a| < o —loglogn—cyioglogn

have asympiotic density

oo

1 g 2ia
2) — | e du
( V2x J ’

moreover, if ae M and we allow equality on the left, the density is inereased
to

o0 ¢

1 1 .

S —— ‘ 6—”2“’2 du -+ — f 6-u2'f2 d"l{r .
Var o m(a)V2n

—_—00

We can replace ¢ by a function of » tending to o0 or —eo. We
have

THEOREM 2. Let f(n)—oc as n—>o0, and 0 < a < 1. Almost all integers
n have a divisor d such that

0 < ‘.Tlogd— al| < 2—lcglngﬁ-l-f(ﬂ)l/loglogn .
The sequence of integers n having a divisor d satisfying
0 < |logd —a|| < 9 —loglogn—f(n)Vloglogn

has density zero, unless ae M and we allow equality on the left; in this case
the Censity is 1/m(a).
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Next, we study the behaviour of

supmin [logd — a||.

a din

This is very similar to the case where « is fixed, indeed we give the fol-
lowing result.
THEOREM 3. For any real number ¢, the sequence of integers n for which
supmin |logd — a| < 2~ '08loEn—cVioglogn
a din

has asymplotic density

1 f ulfz
e ““du
Vam ’

and if ¢ is replaced by a function of n tending to + oo or — oo, the density
18 respectively zero or 1.

Before embarking on the proofs we would like to make a few remarks.
First of all, it is well known that

-r{'n) ~ 2103'101;1!—1—” loglogn

on a sequence of asymptotic density given by (2), hence the least positive
value of

logd —al, din

behaves roughly like 1/z(n), corresponding to the simple hypothesis that
the fractional parts of logd are almost equally spaced on the unit interval.

By the way, the present Theorem 2 gives the solution of one of the
problems in Hall’s paper: Theorem 2 [2] holds if and only if x4 <log2,
not, as the author guessed, if and only if u < 1.

Proof of Theorem 1. The idea of the proof is that for most integers
n, we might expect the minimum wvalue of

Nogd —all, d|n,

to be of the order of magnitude 1/v(n). Therefore numbers with a suf-
ficiently large number of prime factors should have a divisor d satisfying

”logd— all < 2-—loglogn-cl/10|zlog'ﬂ’

the remaining numbers should not, unless they are multiples of m(a)
in the case ae M.
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Accordingly we divide the integers n < x into three main classes.
Clags 1, which has cardinality

A
~ _Je‘”2du
l/2ﬂc

contains those integers for which

1;"3

»(n) = loglogz — ¢(loglogx)'? -+ 3 (loglogx)

The last term on the right does not affect the agymptotic density of the

class, being of smaller order than Vleglogs, and simply provides some
leeway in the analysis; we show that almost all these n have a divisor
d satistying
(3} 0 < ||10gd—a[| = 2—loglog-x—f.‘|/10gloga:
the left hand inequality showing that d == m(a)

Clearly almost all » < exceed Vx, and there exists an a = a(c)
such that for these n,

loglogn - ¢V1oglogn = logloga + ¢ Vioglogs —a.

The second class contains integers n < @ with

v(n) < logloga + ¢(logloga)'® — 3 (loglog @)

and we prove that the number of integers in this class with a divisor
d satisfying
(4) 0 < |logd —al < g¥-loglog z—ovioglogs

is o(z). Evidently the multiples of m(a) in Class 2 have density

1 T g
fm(a)]/ﬂ nJ ‘ .

Class 3 contains the remaining integers n < « for which »(n) satisfies
neither of the inequalities above; since the maximum cardinality of
a get of integers » < # with a fixed number of distinet prime factors is

&x

l/loglog$—
and the range of values of »(n) within Class 3 is at most 6(loglogw)'®,
the number of members of the class is

T

< Toglogay™ ~ "
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We remark that throughout the analysis which follows we could
replace o(x) wherever it appears by an explicit O-estimate, except at
one point. This occurs in the treatment of Class 2, where we use the fact
that for d # m(a),

llogd —al| 5 0.

However, so far as we are aware, no positive lower bound for the left
hand side is known, and this limits the precision of our result.
We begin by considering the first class. Let I = I () be the interval

(BXP ((loglog)), a'/iosios w)z)

and suppose that n has ¢ prime factors, p,, ..., p; lying in I(x). Then
we may assume that these prime factors are distinct, moreover that
if » is in the first class,

loglogx - ¢(logloga)* + 2 (loglogx)* < t < 2logloga.
For the number of exceptions to the first assumption is

1
< wZ—g = o(z)
pel

while the second follows from the fact that the normal number of distinet
prime factors of n outside I(z) is 5loglogloga. Suppose that

[rlogp;] = h; (modr), 1<i<t
and that we can find a set of £'s, ¢, = 0 or 1 for 1 < ¢ < ¢ such that

e hy+ehs+...+g by = h (modr)

where
h = max(1, [ra]).
Evidently
r(eilogp, +e.logps +... +¢logp,—a) = b (mod 7)

where

h—ra<b<h—ra-tt
and so if

d = pip? ... vt

certainly

dln, [logd—al <tfr
Moreover, the choice of » ensures that the ¢; are not all zero, and so

d > exp((loglogx)®).
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Therefore d # m(a) if @ i3 sufficiently large. We let » be the integer part

of
gloglog z+c(log log )12+ (loglog )13

and it follows that for sufficiently large », d satisfies (3). In order to
establish the existence of a suitable set e,, ¢, ..., & we need the following
lemma, adapted from Theorem 2 of Erdos and Rényi [1].

LevmMA 1. Let G be an Abelian group of order v, and

tlog2 = logr+2loglogr.

Then for all but possibly o((;)) choices of the distinct elements g,y gy ...,
g, of G, every element of G may be written in the form

&1 +exfat .o &G

This result is uniform in r and t.

We let 7 be the group of residue classes (mod r) under addition, and
note that » and ¢ satisfy the requirement of the lemma. It will therefore
be sufficient to show that for almost all the integers » under consideration,
the corresponding classes h; are distinet and unexceptional in the sense
of the lemma. For this we need the following result.

LumMA 2. There ewists an absolute constant f > 0 such that if E is
any sub-interval of [0,1) and 1 is the length of E, then

1 i logvy 1 Vi
Z P _l(log(logu)fo logu))—I_G('g P

uU<p<v
log peE (mod 1)

This follows easily from the classical result

2
d T—
a(e) = [ <=+ 0 sV i%%)
J logw

and we suppress the details. Now suppose that
u = exp((loglog®)’), v = M/(log log )

so that (u, v) is the interval I(z), and let P(h) denote the set of primes
p in I (@) satisfying
[rlogp] = h(modr),

that is, the fractional part of logp lies in the interval
h h+1)

B = [+, 2
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of length I = 1/r. We deduce from Lemma 2 that

1 1 1 1 logl
D e o e R
p T (loglog) 0gu

Evidently the number of integers n < # for which the corresponding
h; are not all distinet is

<o (> ) < uoglogay = o(a)
<2 — — (logloge)? = o(@).
e ) : &0
0sh<r 'peP(h)
Next we estimate the number of integers n < @ corresponding to an excep-
tional set of residue classes h,, hy, ..., h;. Let t < 2logloge as we may
assume any p,, Pay ..., P; be any primes in I(z). The number of n < @
with precisely these prime factors in I(z) is equal to the number of in-
tegers not exceeding x/p;p,...p; with no prime factor in I(x). Notice
that if p is a prime in I(x) and loglogw > 3, certainly

&x
< —_—
P1P2--- Dy

so that a result of van Lint and Richert [4] derived by Selberg’s upper
bound method gives the estimate

@ 1
- 1__)
Pl?nu-?t”( P

pel
for the number of such # < #. This estimate may also be deduced from
a theorem of Hall [3]. Hence for any k,, kg, ..., h; the number of integers
n< @ with ¢ prime factors in I(z) satisfying

¥ 4

[rlogp;] =h;(modr) for 1<i<i

<[]0 3 3=l el

pel i=1 ‘peP(hy)

By Lemma 1, the number of exceptional sets kq, ..., & is
7t
x
() =~(2)
80 the number of n < @ corresponding to exceptional sets of residue classes

of cardinality ¢ is
1 1 1
ofel2Es . L (e
logv ! logu

Lemma 1 is uniform in ¢, hence we may sum over ¢ and this is o ().

5 — Acta Arithmetica XXVI. 2
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Therefore almost all the integers in Class 1 have a divisor d satisfying
(3), that is, a divisor other than m(e) with the required property. Thus
it is immaterial in Class 1 whether we allow m(a¢) as a divisor or not.

We now turn our attention to the second class, and in the case ae M,
we begin with the remark that the multiples of m(a) in the eclass have
agymptotic density

e

L o,
m(a) Von K

For they are numbers of the form nm(a), n < &/m(e), and since
v(nm(a)) = »(n)+0(1)
they satisfy
v(n) < loglogw + ¢(loglogx)"* — 3 (loglog#)'* ~ 0 (1)

< loglog (;ﬁ%) +(e+o(1)) ]/log log (ﬁa)) ;

This gives the density above.
Next, we show that the number of members of the class with a divisor
d satisfying (4) is o(#). As in the treatment of Class 1, we set

u = exp|(loglog z)?)

and we begin by showing that at most o(x) integers # < # have a divisor
d satisfying (4) whose greatest prime factor does not exceed u. Evidently
it will be sufficient to weaken the condition on d to

(5) 0 < [logd— | < (logw)~*?
and to show that

rl
2 =W
where the dash denotes that every prime factor of d is less than or equal

to u, and that d satisfies (5). Let

H = exp((loglogx)).
Then

v 1 1 " logd 1 ( 1 )"1 logp
=< E < L
d% d logH d logﬂ'g P Zp—l

p<u

log®u
=5 ( log H

) =o(1).
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Notice that for these large d’s we have not used (5). In the remaining
case d < H, we drop the condition on the prime factors of d. The sum
of the reciprocals of the d’s satisfying

2 < logd—a < m+ (loga) ™'/

(6) m— (log®)~
is
(7) < (logz) 2 4-¢™™,
and since d << H we have

m < (logloga)” +0(1).

Next, since ¢ is transcendental, except in the special case ae M, d = m(a),
we have

[logd —all # 0.
Let d(wx) be the smallest positive integer such that

0 < |logd —al| < (logw)~"2.
Then
d(x)—>oc ag w—>oo.

As we remarked earlier, we do not know how fast d(«)—oc and this limits
the precision of our result. Let the integer nearest to logd(w) be m,(x).
Then the ranges (6) with m < my(wx) are empty, except the range cor-
responding to m(a): we may assume m(a) < m,(xz). However, this range
contains only the one d, m(a) itself, which does not satisfy (5). Therefore
we sum (7) for m = my(2) and obtain

+1  (logloga) 1
g2 o —o(1).
d; d (logx) d(z)

It remains to consider those integers in the second class with a di-
visor d satisfying (4), but no such divisor all of whose prime factors are
less than or equal to u. We refer to these integers as belonging to the
fourth class, and we have to show that their number is o(x).

We begin by excluding from the class numbers with no prime factor
exceeding

w = gMlogloge

It follows from the results of van Lint and Richert [4] and Hall [3] quoted
above that the cardinality of the excluded set is

<w H (1—%) = o(x).

w<p=z
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Thus if » is in Class 4 we write
n=mp, P>w.
The number of such n for which m itself belongs to Class 4 is

r [ wrloglogx
S — s
(8) e 2 “(m) loga 2

m=xw

where the dash denotes that m belongs to the fourth elass. In order to
estimate the sum on the right, we write

WM =qP1Ps - Py

where p;, Ps, ..., p; are those prime factors of m which exceed u, written
in increasing order. We restrict our attention to those m for which they
are distinet, that is

%< Py L Py < v Py

the eontribution of the exceptional m’s to (8) being

logl 1
QMZ \‘__<_10g10gm = ola).
logx ~ PP L 7

r=x

Since m belongs to Class 4, it has a divisor d which may be written

d =fpi'ppd...pity, flg, & =0o0r1for 1<i<t

satisfying (4). By hypothesis, d must have a prime factor greater than
u, therefore there exists a j, 1< j<1? such that & = 1. But now the
fractional part of logp; is determined to lie within the union of 2' 'z (q)
sub-intervals of [0, 1) each of length

(9) ] — 9at+1-(loglogd)—c(loglogz)1/?

according to the possible choices of f, e; (i =4, 1 <i<1). We refer to
Lemma 2, with v = », and find that if > is the sum over possible p,’s,
then

* 1 2 12 loga
2 }Tj < gt+a—loglog c(logloi )L/ -.-:(q)log (@)
Since a = O(1), and
< logloga + ¢(loglogx)'* — 3 (loglog «)"/?
this is

< 7(g)2~*Morlowa) P g0 ( s )
logu
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Hence
DEEED PP 2
4= & D1 e DjaPjgr -+ Py P
7(9) — 3(loglog x)”a ¢ log=
< 2 ; (t—1)! logu
< 332—3(105*105:5)“3 1'_ _22 logm
g! logu
’Pﬂ.u
< £9- 3(log log z)'/ (logz)(logwu)
< 2~ 3008108 2)'% (1500 (loglog 2)° .
Therefore

Ll Lyt By

logx m
The remaining integers in Class 4 are of the form
n=mp, P>w

where m itself does not belong to the fourth class. Hence » has a divisor
d, of the form fp, where f|m, satisfying (4), and so the fractional part
of logp lies in the union of 7(m) sub-intervals of [0, 1), each of length ,
given by (9). We require

LEMMA 3. There exist absolute positive constanis A and f such that
if E is any subinterval of [0, 1) and [ is the length of E, then

g 3 <2 | oyeovmw).
logy

wp=y
log pe E (mod 1}

The proof is as indicated in Lemma 2, § being the same. We have
the following

CoROLLARY. Setting y = xjm, where m < x/w, and choosing w as above,

we have
lz
E lg€—r—.
mlogw

w<p=gxm
log pe E (mod 1}

We are now ready to estimate the cardinality of the set of integers
n specified above. Notice that

(10) »(n) < logloga + ¢(loglog#)*?— 3 (loglog »)'?,
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and we restrict our attention to those n for which

(11) T S Foslm et Goglopaisaglgaii?,

To estimate the number of exceptional n» note that
7(n) < 2™
where w(n) denotes the number of prime factors of #» counted according
to multiplicity. Hence if » satisfies (10) but not (11), then
o(n) —v(n) > (loglogz)'.
But

Z(w(n)—v(n)) = 0(x)

n=x

80 we have discounted at most

O(L = o(2)
(loglogw)*®]
numbers. The remaining set of integers n in Class 4 has cardinality
<3 3
m=xfw w<p<afm

the inner sum being over p’s for which the fractional part of logp lies in
the union of intervals corresponding to m, the dash denoting that

L2 1/3
(m) < 2103103x+c(loglog_a}l 2(log log 2)4 )

By the corollary to Lemma 3, this is

1 '
= 1:;%» $ Tf:) < @-4700818 9 loglogy = o(a).

This completes our treatment of Class 4, and so of Class 2. We have shown
that the asymptotic density of integers in the class with a divisor &
satisfying

0 < [|logd—a[| < 2-loglcgn—cl’loglo§n

is zero; but if ae M and we allow equality on the left, the density is in-
creased to

&
1 f —uZj2
- e du.
m(a)¥V2r

This completes the proof of Theorem 1, and we indicate the changes
needed to prove the first part of Theorem 3. It is plain that Theorem 2

[a]
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and the second part of Theorem 3, where ¢ is replaced by a funetion of
n, are simple corollaries.

We divide the integers n < z into three classes in the same way as
before. The integers in Class 3 have zero density, moreover, those in Class
2 with

supmin [logd — a| < 2a—logloga:—clfm
a din
have zero density; it is sufficient to select a particular a, say a,¢ M and
notice from the proof of Theorem 1 that the integers in Class 2 with
a divisor d satisfying

lllogd L al" < 2a—loglugm-c Viog log =

have zero density. Hence to complete the proof of the first statement
of Theorem 3 we need to show that for almost all members of Class 1,

sup " "logd__a"<2_lnglogz-cv’loglogz.
a din

As in the proof of Theorem 1, we suppose that » has the prime factors
P1y Pay -9 Py in 1(50) and that

[rlogp;] =h; (mod 7), 1<Li<t.

N

An examination of Lemma 1 and the argument preceding it shows that
unless the set of residue classes h; are exceptional, corresponding to
a subset of integers of Class 1 o1 zero density, every residue class h (mod 7)
is representable in the form

g hy+eghy+... +5hy =h(modr), & =0 or 1.
Thus for every a, there is a divisor d satisfying

[logd —al| < t/r,
that is,
supmin |logd — al| < t/r,
a dn

and with the values of f and r given, this gives all that we require if z is
sufficiently large.

References

[1] P.Erdésand A. Rényi, Probabilistic methods in group theory, Journal d’Analyse
Math. 14 (1965), pp. 127-138.
[2]1 R. R. Hall, The divisors of integers I, Acta Arith. 26 (1974), pp. 41-46.



188 P, Erdés and R. R. Hall

(31 R. R. Hall, Halving an estimale oblained from Selberg’s upper bound method,
Aecta Arith. 25 (1974), pp. 347-351.

(4] J. H. van Lint and H.-E. Richert, On primes in arithmelic progressions, Acta
Arith. 11 (1965), pp. 209-216.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES
Budapest, Hungary

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YORK
Heslington, York

Received on 25. 7. 1973 (441)



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

