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Some distribution problems
concerning the divisors of integers

by
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Introduction . In this paper we study the distribution (mod1) of
logd, where d runs through the divisors of the positive integer n. As usual
we denote the number of these divisors by z(n) .

The sequence {log m, m = 1, 2, 3, . . . } is not uniformly distributed
(mod 1), nevertheless if we set

1
fx (x) _ z (n)

	

IL, 1,
1ogd<x(mod 1)

then on a sequence of integers n of asymptotic density 1, we have that

fn (x) > x
uniformly for

0<x~<_ 1 .

Indeed, for each 7. < 2, there is a sequence of density 1 on which

Q

	

1
Sup Ifn(N)-fn(a)-(~-a) <	 1, .

0-a-<$ 1

	

(-r('n))}

This result was proved in a recent paper of Hall [2] .
It follows from this that for each fixed aE[0, 1), there is a sequence

of integers n of density 1 on which

minlllogd-all >0,
din

where i'xll denotes the difference between x and the nearest integer to
it, and we consider the following problem . How fast can the left hand
side tend to zero on a sequence of density 1, or even on a sequence of
positive density? It turns out that this question can be answered very
precisely .
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In the case a = 0, the problem is only interesting if we disregard
the divisor d = 1 in calculating the minimum above . This suggests that
for general a we distinguish two cases, whether we allow

(1) lhogd-ali = 0

or restrict our attention to the minimum positive value of the expression
on the left .

Let 41 denote the set of those aE[0, 1) for which there is an integer
m satisfying

logma - a (mod 1) .

As e is transcendental there can be at most one such m, and we denote
it by in (a) . Thus (1) can only hold if aE i1 and d in (a), that is, n must
be a multiple of m(a). We take account of this in our results which are
as follows .

THEOREM 1. Let a and e be real numbers, 0 < a < 1 . The integers
n having a divisor d satisfying

0 < Ilogd-all < 2-1091"9"-cllloglogn

have asymptotic density

(2)
`2- I1~

M

moreover, if a c 11 and we allow equality on the left, the density is increased
to

	 1 J e-u21'du +	1

	

f e-U2/2 du .
1/2n

	

mz(a)1/2n -~

We can replace c by a function of n tending to o0 or - oe . We
have

THEOREM 2 . Let f (m•) -> x as n--> oo, and 0 < a < 1 . Almost all integers
n have a divisor d such that

0 < ;logd-all < 2 loglogr+f(n)i'loglogn .

The segue-nee of integers n having a divisor d satisfying

0 < lllogd-all < 2-log log"-f(n)'~"glogn

has density zero, unless a E M and we allow equality on the left ;
the eensity is 1 /m (a) .

in this case
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Next, we study the behaviour of

sup min (hog d - a
I I

a dln

This is very similar to the case where a is fixed, indeed we give the fol-
lowing result .

THEOREM 3. For any real number c, the sequence of integers n for which

supminIllogd-all < 2-log log n-c I/log log n
a djnn

has asymptotic density
00

1

	

e-U212 d,u
1/2z C

and if c is replaced by a function of n tending to + - or - oo, the density
is respectively zero or 1 .

Before embarking on the proofs we would like to make a few remarks .
First of all, it is well known that

i(n) > nlOglOgn ~C} lOglOgn

on a sequence of asymptotic density given by (2), hence the least positive
value of

Ihogd-all,

	

dln

behaves roughly like 1/r(n), corresponding to the simple hypothesis that
the fractional parts of log d are almost equally spaced on the unit interval .

By the way, the present Theorem 2 gives the solution of one of the
problems in Hall's paper : Theorem 2 [2] holds if and only if y < log2,
not, as the author guessed, if and only if y < 1 .

Proof of Theorem 1 . The idea of the proof is that for most integers
n, we might expect the minimum value of

Ihogd-all,

	

d1n,

to be of the order of magnitude 1/a(n). Therefore numbers with a suf-
ficiently large number of prime factors should have a divisor d satisfying

Illogd-all < 2-l"l"n-cV1oglogn
,

the remaining numbers should not, unless they are multiples of m(a)
in the case a E M.
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Accordingly we divide the integers n < x into three main classes.
Class 1, which has cardinality

contains those integers for which

v(n) - loglogx=c(loglogx) 1 I 2 +3(loglogx) 1 i 3

The last term on the right does not affect the asymptotic density of the
class, being of smaller order than 1/loglogx, and simply provides some
leeway in the analysis ; we show that almost all these n have a divisor
d satisfying
(3)

N	x f e_u2/2 du

0 < hogd-all < 2-loglogn-c}lloglogn

the left hand inequality showing that d zA m(a)
Clearly almost all n < x exceed J11x, and there exists an a = a (c)

such that for these n,

loglogn cVloglogn,> loglogx+cVloglogx-a .

The second class contains integers n < x with

v(n) < loglogx+c (log logx) 1 / 22 -3(loglogx) 113

and we prove that the number of integers in this class with a divisor
d satisfying

(4)

	

0 < llogd-all < 2a-loglogn-cvloglogn

is o (x) . Evidently the multiples of m (a) in Class 2 have density

	 1	 Jn e-2L2/2 du .
m(a)112.n _ ,.

Class 3 contains the remaining integers n < x for which v (n) satisfies
neither of the inequalities above ; since the maximum cardinality of
a set of integers n < x with a fixed number of distinct prime factors is

x

illoglogx

and the range of values of P (n) within Class 3 is at most 6 (loglogx) 1 /3 ,
the number of members of the class is

x

(loglogx) 116 - o (x) .
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We remark that throughout the analysis which follows we could
replace o (x) wherever it appears by an explicit 0-estimate, except at
one point . This occurs in the treatment of Class 2, where we use the fact
that for d zA m(a),

Ihogd-all 0 0 .

However, so far as we are aware, no positive lower bound for the left
hand side is known, and this limits the precision of our result .

We begin by considering the first class . Let I = I (x) be the interval

(exp((1oglogX)3)' x l/(loglogx) )

and suppose that n has t prime factors, p l , . . ., pt lying in I (x) . Then
we may assume that these prime factors are distinct, moreover that
if n is in the first class,

loglogx+c(loglogx)'I'+2(loglogx) 1J3 < t< 2loglogx .

For the number of exceptions to the first assumption is

<x
pej

1
P2 = o(x)

while the second follows from the fact that the normal number of distinct
prime factors of it outside -I(x) is 5logloglogx. Suppose that

[rlogp i ] _- h i (modr), 1 < i < t

and that we can find a set of 8's, Ei = 0 or 1 for 1 < i < t such that

dIn,

	

Ihogd-all < t/r

Moreover, the choice of h ensures that the si are not all zero, and so

d > exp((loglogx) 3 ` .

E1 h1+E2h2+1"+Etht

	

h (modr)
where

Evidently

r ( 6 1109P1

A = max(1, Era]) .

+ E21ogp2 + . . . + Et logpt - a) - b (mod r)
where

and so if

certainly

h-ra < b < h-ra+t

d = plelp22 . . . P1 t
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Therefore d

	

( ) if x is sufficiently_ large. We let r be the integer part
of

2"91" X d- c (1 og log x)11 2 +(log lug x)1 1 3

and it follows that for sufficiently large x, d satisfies (3) . In order to
establish the existence of a suitable set s 17 827 . . ., Et we need the following
lemma, adapted from Theorem 2 of Erdős and Rényi [1] .

LEMMA 1 . Let G be an Abelian group of order r, and

tlog2 > logr .T 2loglogr .

Then for all but possibly o(~ r)) choices of the distinct elements gl, g2, . . .,

gt of G, every element of G may be written in the form

u<p<V
logpcE (mod 1)

£1g1TE2g2 l • • • rt£tgt'
This result is uniform in r and t .

We let G be the group of residue classes (mod r) under addition, and
note that r and t satisfy the requirement of the lemma. It will therefore
be sufficient to show that for almost all the integers n under consideration,
the corresponding classes hi are distinct and unexceptional in the sense
of the lemma. For this we need the following result .

LEMMA 2. There exists an absolute constant # > 0 such that if E is
any sub-interval of [0, 1) and l is the length of E, then

= lllog(logu)+0
(101

u 17+ 0(e-~ ''ogu)

This follows easily from the classical result

z
'n (z) -

	

dw
T 0(ze-2P Vlogzf

	

}
10-&W

2

and we suppress the details. Now suppose that

2c = exp((loglogx) 3 ),

	

v = ,x 1/(loglogx)2

so that (u, v) is the interval I(x), and let P(h) denote the set of primes
p in I (x) satisfying

[rlogp] _- h(modr),

that is, the fractional part of loge lies in the interval

h h+1
E(h) = C r ,

r
)
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of length l = 1/r . We deduce from Lemma 2 that

1

	

(logyl loglogx

p

	

r 1 + 0 (logl
1
ogx)4 ~} tog

pcP(h)

	

t logo 1

	

r

Evidently the number of integers n < x for which the corresponding
h,, are not all distinct is

2
X

	

1 <
x

(Ioglogx) 2 = o(x) .
O_<h<r pfP(h)

( 2: P

	

r

Next we estimate the number of integers n < x corresponding to an excep-
tional set of residue classes h,, h2 7 . . ., hi . Let t < 2loglogx as we may
assume any p„ p 21 . . ., p t be any primes in I (x) . The number of n < x
with precisely these prime factors in I (x) is equal to the number of in-
tegers not exceeding x Jp, p 2 . . . p t with no prime factor in I (x) . Notice
that if p is a prime in I (x) and loglogx > 3, certainly

x
P <

plp2 . . . A

so that a result of van Lint and Richert [4] derived by Selberg's upper
bound method gives the estimate

	 T 1- 1
PIp2 . . pt pE

	

p

for the number of such n < x . This estimate may also be deduced from
a theorem of Hall [3] . Hence for any h„ h2	ht the number of integers
n < x with t prime factors in I (x) satisfying

[rlogp i] _- hi (mod r) for 1 < i < t
is

t

< x11 (1-
1 )

	

(

	

1 ) < x llogo ) / l log ( logy )\t ,
p

	

p !

	

I, log v I1 r

	

log ups7

	

i=1 pcP(hi)

By Lemma 1, the number of exceptional sets h„ . . ., h t is

o (1t1) = o ( t!)

so the number of n < x corresponding to exceptional sets of residue classes
of cardinality t is

o x
logo 1 to t (logy

logy t! g I logo l~

Lemma 1 is uniform in t, hence we may sum over t and this is o (x) .

5 - Acta Arithmetíca XXVI . 2
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Therefore almost all the integers in Class 1 have a divisor d satisfying
(3), that is, a divisor other than m(a) with the required property . Thus
it is immaterial in Class 1 whether we allow m(a) as a divisor or not .

We now turn our attention to the second class, and in the case a E X,
we begin with the remark that the multiples of m(a) in the class have
asymptotic density

1 f e- ~`2/2 du .
m(a) 2z _~

For they are numbers of the form lam (a), n < x/m (a), and since

v(nm(a)) = v(n) 0(1)
they satisfy

v(n) < loglogx-e(loglogx)' 12 -3(loglogx)' 13 -0(1)

<loglog(m ( a ) l+(c +0(1))V log log
x

(m (a))

This gives the density above

!

.
Next, we show that the number of members of the class with a divisor

d satisfying (4) is o (x) . As in the treatment of Class 1, we set

u = exp ((log logx) 3)

and we begin by showing that at most o (x) integers n < x have a divisor
d satisfying (4) whose greatest prime factor does not exceed u . Evidently
it will be sufficient to weaken the condition on d to

(5)

	

0 < Inogd-alb < (logx)-l i e

and to show that

where the dash denotes that every prime factor of d is less than or equal
to u, and that d satisfies (5) . Let

H = exp((loglogx)') .
Then

1

	

1

	

logd

	

1

	

(

	

1 -1

	

logp
d < logH

	

d < logH

	

1 p
psU

P-1

= 0
log2u

	

o(1)loges
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Notice that for these large d's we have not used (5) . In the remaining
case d < H, we drop the condition on the prime factors of d. The sum
of the reciprocals of the d's satisfying

(6)

	

m-(logx)-'I' < logd-a < m+(logx) -l ie

is
(7)

	

< (logx) -'1a+e"

and since d < H we have

m < (log log x)'-;-0(1) .

Next, since e is transcendental, except in the special case a E M, d = m (a),
we have

11logd -all :A 0 .

Let d(x) be the smallest positive integer such that

0 < Ihogd-all < (logx) -"' .

Then
d(x)-*00 as X-* 00 .

As we remarked earlier, we do not know how fast d (x) -* oo and this limits
the precision of our result . Let the integer nearest to logd (x) be m&) .
Then the ranges (6) with m < m o (x) are empty, except the range cor-
responding to m(a) : we map assume m (a) < mo (x) . However, this range
contains only the one d, m(a) itself, which does not satisfy (5) . Therefore
we sum (7) for m > m o (x) and obtain

Y" 1

	

(loglogx)'

	

1
d < (logx)'I' + d (x) = o (1

) .
d6H

It remains to consider those integers in the second class with a di-
visor d satisfying (4), but no such divisor all of whose prime factors are
less than or equal to u . We refer to these integers as belonging to the
fourth class, and we have to show that their number is o (x) .

We begin by excluding from the class numbers with no prime factor
exceeding

w = x'llog log x

It follows from the results of van Lint and Richert [4] and Hall [3] quoted
above that the cardinality of the excluded set is

1
X Ti (1 -- = o(x) .

Pw<p_<x
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Thus if n is in Class 4 we write

n=mp, p>W .

The number of such n for which m itself belongs to Class 4 is

(8)

where the dash denotes that m belongs to the fourth class . In order to
estimate the sum on the right, we write

Where P12 p 27 . . ., p t are those prime factors of mm which exceed 2t, written
in increasing order . We restrict our attention to those m for which they
are distinct, that is

2s<p1<P2< . . . <P1

the contribution of the exceptional m's to (8) being

m<-

P . Erdős and R . R. Hall

x

	

xloglogx
n

	

<
Iw

M

	

logX

7n = gpip2 . . . pa

< r(q)2-3 (log logx) 1 /3 log

m<_x

< xloglogx

	

__ < x
loglogx = o(x) .

log x

	

u
p>u

	

6x

Since m belongs to Class 4, it has a divisor d which may be written

d = fpi' psp3 3 . . . pt1 , f I q,

	

as = 0 or 1 for 1 < i < t

satisfying (4) . By hypothesis, d must have a prime factor greater than
u, therefore there exists a j, 1 < j < t such that 6; = 1. But now the
fractional part of loge ; is determined to lie within the union of 2t-1 -r(q)
sub-intervals of [0, 1) each of length

(9)

	

l = 2a+1-(loglogx)-c (log log x) 1 )2

according to the possible choices of f, a 2 (i j, 1 < i < t) . We refer to
Lemma 2, with v = x, and find that if Y' * is the sum over possible p;'s,
then

~* 1 < 2t+a-ioglogx-c(loglogx)112,r(q)log logx) •
p;

	

log !u
Since a = 0 (1), and

t < loglogX+0(loglogx)112-3 (loglogx) 1 / 3

this is

logx
logo )



Hence

Distribution problems concerning the divisors of integers

	

185

1 <

	

1 ~-

	

~

	

1

	

#1

m

	

q c

	

?-

	

p1 .— p,-1pj+, . . . PI

	

p;

t-2- 3 (1,g log x)1/3

(t-1)!

•

	

to2-3(log logx)1/3 1-
1 -2

p<u

	

p

W<p<x/m
log p eE (mod 1}

lx
1 <

mlogw

log'

•

	

to'2 - 3 (log log x)1/3 (log x) (log u)
•

	

2-3 (log logx)113 (logx) (loglogx) 5 .

Therefore
xloglogx

	

, 1
logx

	

m = o(x) .

The remaining integers in Class 4 are of the form

n=nap, p>w

logx
logo

1 to t (logx )
t! g logo

where m itself does not belong to the fourth class . Hence n has a divisor
d, of the form fp, where f I m, satisfying (4), and so the fractional part
of loge lies in the union of z(m) sub-intervals of [0, 1), each of length l,
given by (9) . We require
LEMMA 3. There exist absolute positive constants A and fl such that
if E is any subinterval of [0, 1) and l is the length of E, then

1 <
Aly + 0 (ye-~Viogw) .

W<p-<ü

	

log ylogpcE (mod 1)

The proof is as indicated in Lemma 2, ,8 being the same . We have
the following

COROLLARY . Setting y = x 1m, where m < x1w, and choosing w as above,
we have

We are now ready to estimate the cardinality of the set of integers
n specified above. Notice that

(10)

	

'v (n) < loglogx+e(loglogx) 1/z -- 3(loglogx) 1/ 3 ,
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and we restrict our attention to those n for which

(11)

	

Z(n)

	

21091ogX+C(Iog log X) 1 /2 -2(109 log X) 1 13

To estimate the number of exceptional n note that

-r (n) < 2' (n)

where co(n) denotes the number of prime factors of n counted according
to multiplicity. Hence if n satisfies (10) but not (11), then

o~(n)-v(n) > ( log log x) 1 I 3 .

But

I (w (n) - v (n)) = O (x)
n<x

so we have discounted at most

x
o«Ioglogx)113

= 0
(x)

numbers. The remaining set of integers n in Class 4 has cardinality

< f I(m) 1
m<x/W w<p-<x/m

the inner sum being over p's for which the fractional part of loge lies in
the union of intervals corresponding to m, the dash denoting that

Z(m) < 2loglogx+c(jog logx) 112 -2 (log log X) 1 / 3

By the corollary to Lemma 3, this is

xl1

	

1' Z(m)

	

(log log x) 1 1 3<<		< x • 4-

	

loglogx = o(x) .
log w

	

m

This completes our treatment of Class 4, and so of Class 2 . We have shown
that the asymptotic density of integers in the class with a divisor d
satisfying

0 < lllogd-all < 2-loglogn-cVloglogn

is zero ; but if ae M and we allow equality on the left, the density is in-
creased to

1

	

e-U212du .
m(a)1/2 ~ ~-

This completes the proof of Theorem 1, and we indicate the changes
needed to prove the first part of Theorem 3 . It is plain that Theorem 2
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and the second part of Theorem 3, where c is replaced by a function of
n, are simple corollaries .

We divide the integers n < x into three classes in the same way as
before. The integers in Class 3 have zero density, moreover, those in . Class
2 with

sup min I llog d - a l l < 2'-109"9 '-"/í'-'9-'-'-9 '
a

	

dln

have zero density ; it is sufficient to select a particular a, say a l 0 M and
notice from the proof of Theorem 1 that the integers in Class 2 with
a divisor d satisfying

Ihogd - ai11 < 2`1011109" 111091090

have zero density . Hence to complete the proof of the first statement
of Theorem 3 we need to show that for almost all members of Class 1,

supminIhogd-all < 2-roglogx-C11logiogx

a dln

As in the proof of Theorem 1, we suppose that n has the prime factors
p 1 , p 2 , . . ., pt in I (x) and that

[rlogp i] = hi (mod r),

	

1 < i < t .

An examination of Lemma 1 and the argument preceding it shows that
unless the set of residue classes Ii i are exceptional, corresponding to
a subset of integers of Class 1 or zero density, every residue class h (mod r)
is representable in the form

is, h,+E2h2+ . . .+Etht - h(mod r),

	

Ei = 0 or 1 .

Thus for every a, there is a divisor d satisfying

Ihogd-all < tfr,
that is,

supminlhogd -all < t/r,
a dIn

and with the values of t and r given, this gives all that we require if x is
sufficiently large .
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