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Let (ay,...,an), (r1,...,rn) and (e, ..., ¢y) be real n-tuples, n = 3, satisfying

n n
2 rn= 2 ¢ and 0< g < min(r;; ¢), i=1,...,n
i=1 =t
It is shown that a necessary and sufficient condition for the existence of a non-
negative matrix with main diagonal (a,, ..., a,), with row sums ry, ..., ry and
column sums €y, . . ., €, is that

n
E (P‘j = a;) = max{r; + ¢t — 20;).
i=1 r
Equality can hold if and only if all the off-diagonal positive entries of the matrix
are restricted to the kth row and the kth column, for some &k, | << k& < n.

If A = (a;;) is an n-square matrix and ¢ is a permutation on n objects, then
the n-tuple (@1o(1), Q20(2)s - - -» Quarm) 1s called a diagonal of A. The sums

are the row sums, and
n
e= Yo fedievgn
i=1

are the column sums of A. The matrix 4 = (a;;) is said to be nonnegative if
a;; = 0foralliand j.

In this paper we obtain necessary and sufficient conditions for an n-tuple
to be a diagonal of a nonnegative matrix with prescribed row sums and
column sums. Clearly we may assume without loss of generality that the

diagonal in question is the main diagonal.

+ The work of this author was supported in part by the U.S. Air Force of Scientific
Research under Grant AFOSR-72-2164,
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THeOREM Let (ay, ..., a,), (ri,...,r,) and (cy, ..., c,) be n-tuples, n = 3,
satisfying

=

=

¢; and 0 < a; < min(ry, ¢;), ii= T sopn:

[1ag®

1

I

Then a necessary and sufficient condition for the existence of a nonnegative

matrix with main diagonal (a,, . . ., a,), with row sums ry, . . ., r, and column
SUMS €y, . . ., Cy IS that
Z (r; — mdx(r, + ¢, — 2a,). (1)
i=1

Equality can hold in (1) if and only if the nonzero entries of the matrix are
restricted to the main diagonal, the kth row and the kth column, where k is

defined by

r + ¢ — 2a, = m?x(r, + ¢ — 2a).

Proof Llet A = (a;;) be a nonnegative matrix with row sums ry, ry, ..., r,
and column sums ¢y, ..., ¢,. Clearly the sum of all off-diagonal entries of
A cannot be exceeded by the sum of off-diagonal entries in row # and column
t; that is,

Z (l 2 (l', = ai’l’) + (C, ™ arr)s

i=1

t =1,...,n In other words,

z (r; — ay) = max(r, + ¢, — 2a,).
[ 4

i=1
We prove the sufficiency by induction on #.
We can assume without loss of generality that

rn+e=2a2r,+c;—2a,2---2r,+c¢c,— 2a, (2)
With this assumption the condition (1) becomes

n

i=1
For n = 3, this condition asserts that

r, —a; +ry3—a;zc¢ —a, 4
or equivalently

Cz“az‘f‘c:;_'ﬂs;rl —-a;.
Suppose first that ¢, —a, = r; — a; and r, — g, = ¢, — a,. Then the
matrix

a, C; — 4a; ry —a, —(c; — ay)
¢ —a, — (r3 — ay) a, r,—a,+ry—as— (¢, —ay)
r3 — 03 0 03
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is nonnegative and has the prescribed diagonal, row sums and column sums.
If either ¢, — a; < r; —azorr, — a, < ¢, — a, (and therefore ry — a, =
€3 — a3z 0rc¢y; —a; = r, — a,, by (2)), then the matrix

a, ro—a,—(e;—as;)+x C3—a3— X
rz'—ag_x az X ,
c,—a —(ra—a))+x ry—as+ry—a,—(¢;—a,))—x as

where x = min(cs — a3, ; — a,), is nonnegative and satisfies all the pre-
scribed conditions.

Assume now that the theorem holds for all nonnegative (n — 1) x (n — 1)
matrices. Let

5=i;](r,-—a,-)—~r,—cl+20,?0

and set
g 0, ifr, + ¢, — 2a, <9, )
Y7 \min(r, + ¢, — 2a, — 8, ry — a,), ifr, +c, — 2a, > 0.

and

yy = max(r, + ¢, — 2a, — & — x,, 0).

By (5), 0 < x; < r; — a,. It is also easy to see that 0 < y, < ¢, — a,.%For
if y, =r, + ¢, — 2a, — 6 — x; >0, then x; = r;, — a,, and

]

n
6 =81 =N ‘»'1_al_{rn+cn_2ﬂn—_>:l(r£"ai)
ic

+ry 4+ ¢y —2a, —(ry — al)}

S (1= @) = (g + €, — 2a,)

> 0.

Now, let x,,...,x,, and y,, ..., y,_; be any numbers satisfying

0<x;<r;—a; 0<y;<¢; —a, P=2 cvygltim= 1y
and
n=1 n—1
Z X; = Cp — Ay, Z Vi= T, — a4y (7)
i=1 i=1
We have to show that such numbers exist, i.e., that
n=1
Xy + E (ri —a) =2 ¢, — a, (8)
i=2

and
n—=1

W+ Z (c; — a,) = r, — Q. )
i=2
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Ifx;,=0andé = r, + ¢, — 2a,, then

n—=1
By IZ’z fr=a)— (e, = d) =3 = (I, —a) + {6, —'a) — (e —a)
=0 —a
= 0.

If x, =r, +¢, —2a, — d =0, then

n—1
X4 = i;z (ri b ai) = (Cn . an)

n—

n 1
Pn—y— Y (i—a)+(ry +cey—2a)+ Y (n—a)
& iS5

Il

=C| -'al.

Finally, if x;, = r;, — a,, then (8) holds by virtue of (1). Inequality (9) is
proved similarly. If r, + ¢, — 2a, < 6, the proof is a virtual repetition of
the first case above.

fo<r,+¢,—2a,—6<r —a,ie,

ry+ € — 28— i(ci_ai)+rl —a; <1y —ay,
then '
." (¢; —a)=r,+ ¢, — 2a, (10)

Thus, in this case, o

n=1
}"1+ Z (Ci‘-_ai)=0+ Z (cl'-ai)—'(crx_an)
i=2

Brn-am
by (10). Finally, if r, + ¢, — 2a, — 6 = r; — ay, then x; = r;, — a,, and
y1=r,,+c,,—2a,,-—-5-x1
=y i€y 28y = 8 ~ (fy.— @)

n=1
=, —d, — E (C;—ﬂ'i)
i=2
= 0.
Thus
n=1
Vi =+ Z (ci—ai)=rn_an'
i=2

Next we use the induction hypothesis to show that there exists an (n — 1)-
square nonnegative matrix B = (b;;) with main diagonal (a,, . . ., @,_,), row
sumsr; — x, i = 1,...,n— 1,and columnsums ¢; — y,, i = 1,...,n — 1.
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We first show that
(ry = xg) + (cy — 31) — 2a, = miax((ﬁ - x) + (¢; — yi) — 2a). (11)

In fact we prove that
(rn—x)+@ =y)—2a, 2r,+c;,— 2a, (12)
and therefore
(ry—x)+ (e, —y)—2a, =2r;+ ¢; — 2a, i=20ut—»~1
It suffices to prove inequality (12) in case r, + ¢, — 2@, — 6 = 0. Then
X, + ¥y, =r, + ¢, — 2a, — 6 and therefore
(ro=x)) + (s =) — 2a, — (r; + ¢; — 2ay)
=r +c¢ —2a, —ry,—cy,+ 2a,— (r, + ¢, — 2a, — 9)
=r,4+e¢,—=2a, —ry—c¢>+ 2a, —r, — ¢, + 2a,

n

05 Z (ri—a)—c +a

r=2

(ri—a)— (r; + ¢ — 2a, + r, + ¢, — 2a,)

Il
=

1

[F

(ry+¢;—2a) — (ry + ¢, — 2a, + r, + ¢, — 2a,)
1

r

1
= 5{("1 + ¢y, — 2a,) — (ry + ¢, — 2a,)

n—1
-+ Z (r,- + (" s 26,) — (f,, + CH - Za,)}
r=3

=0,
by (2). We now show that

n=1
i;] (ri=—x)—a)=(ry—x)+ (e, —») — 2a,

and thus, by the induction hypothesis, that the matrix B exists. If
Xo 4 =1yt 6= 28, =520,
then
n=1 n n—1
Z ((r; — x) — a;) = ‘Zt (ri=—a)—(r,—a) — Z X;
i=1 - i=1
=T + ¢y —20; +5—(r,,—a.)—-(t‘,.—a,)
=f1 +C1 ‘_201 "“xl _}'1.
If x, + y, = 0, thatis r, + ¢, — 2a, — 6 < 0, then

n—1
Y((ri=-x)—a)=ri+c¢,—2a,+6—(r,—a,) — (¢, — a)
i=

=r + ¢ —2a,

=(ry, — xy) + (e, — y1) — 2a,.
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Thus there exists an (n — 1)-square matrix B = (b;;) with
bﬁ=ai, .l':],...,n—l,

and with rows sums r;, — x, i=1,...,n — 1, and column sums ¢; — ¥;,
i=1,...,n— 1 It follows that the n x n matrix

Xy
_tz
B
A4 =(a;) =
I e
-)’1}’2“'}’nm1 au o
where
a[j=b[j, f,j=1,...,ﬂ—],
G;n=xi, i=l, - ,H l,
a,; =y JF= Lot =1
and
allﬂ =a]!7

has the required properties, i.e., main diagonal (a,, a,, ..., a,), TOW sums
Fys T3y .. Iy and column sums ¢y, ¢, . . . €,

It remains to discuss the case of equality. With assumption (2), we have to
show that if

a, €y —4a; C3y—dy " C,— 4,
r, — a, a, 0O 0--- 0
rs — a; 0 (5% 0--- 0
A= ; i : " (13)
. ; 0
.’ 0 0 0---0 a, |

and A is nonnegative, then (3) is an equality, and conversely if equality holds
in (3) then the only nonnegative matrix with main diagonal (a,, . . ., a,), row
sums r,, ..., r, and column sums ¢, ..., ¢, is the matrix in (13). These
conclusions are quite obvious, since

1=

(ri—a) =0y —a)+(c; —a)

i=1

asserts that the sum of all off-diagonal entries is equal to the sum of the off-
diagonal entries in the first row and those in the first column.
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By setting ry, = +--=r,=¢, =+ = ¢, = 1 we obtain

COROLLARY An n-tuple (ay,...,a,), where 0 € a; <1, i=1,...,n, is
a diagonal of a doubly stochastic matrix if and only if

4

a; <n—2+ 2mina,
i

The result in the corollary is due to A. Horn [1].
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