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PARTITION RELATIONS
FOR -q, AND FOR ,~0.SATURATED MODELS

P . Erdős, A . Hajnal and E. C. Milner , )

.1 . Introduction

We denote by R, the set of all 0, 1 sequences of length w, which have a final 1,
i .e . (x,), < „ a E Si, if there is S < co, such that x„ E {0, 1) (v < 6), xa = I .
x, = 0 (6 < v < w,) . The order type of R, with the natural lexicographic order
is denoted by rl, . The sets R, are the analogues of the ordered set of rationale to
higher cardinals . Their most important property is that they are universal em-
bedding sets for ordered sets of cardinal fit, and in § .'2 we mention other basic
properties .

A graph is an ordered pair G = (S, E) with E c [SJ 2 = ( X c S: jXj _ 2) . The
elements of S are the points of G and the elements of E are the edges . A set X c S
is independent if there are no edges in X, i .e. [XJ 2 n A' = 0 . Y is a complete sub-
graph if [Y] 2 c E and [17, N] _ {{x, y) : x E 117 n y c N n x +y) is a complete
bipartite subgraph of G if [M, NJ c E, 7 n N = 0 . In [2] it was shown that if N,
is regular and G is any graph on R„ then either G contains an independent set of
type il, or (in some sense) a large complete subgraph (see (6) below . In this paper
we establish analogous results which show that if G is any graph on R„ then either
there is an independent set of type rl, or there is (again in some sense) a large com-
plete bipartite graph . In fact we shall introduce some new concepts which enable
us to express our main results and the results of [3] in a more general setting .

As usual, ' y(E) denotes the power set of E .

Definition 1 . .-5
is an \,,-quasi filter on E if 0 é is c

	

0 and wheneve r
Fo D Ff • - • > F, . . . (v < ;.) is a non-increasing sequence of length ~ < co, of
;ets in

	

then there is F E it such that F c n F, .

Definition 2. Let ~ be an \,-quasi filter on E and let T E . A set A c F, is
dense in F if A n P =i= 0 for every F' E 'ij such that F' c F.

i) Research supported b . N.R .C . Grant #69-0982 .
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We classify the subsets of E as being dense or non-dense and write

DenseO _ ( .-1 C E : A is dense in sonic F E iS} ,

ND(;S) = 1(E) - Densc(~) .

In an obvious sense. the members of Dense(i) mat' be thought of HIs bring, Dirge'
subsets of E, We prove

1)

	

If ;t is an \,-qua,'i filter, the a ND(~) is an A,-complete proper ideal .

]'roof'. It is obvious that, it 'B c A E

	

then B E ND(?Y) . Also . E E ND(~)
once tS -F 0 .

Let y < w, an suppose that _1, E ND( ) for v < q . Let A = ) A,,, F

	

We

(define a sequence F, E 1 by transfinite induction as follows . Let v < ([and suppose
that F µ E is already defined for y -` v so that F D F, D . . ) F e, D • . . There is
F' E' such that F' c n F, n F. Since A, E ND('Zj), there is F, E

	

such that
µVi •

F, . c P and F, n A,, =6. This defines F„ E } for v < r so that

F)F,) . . .) F, D . . . .

There is F" E ;s such that F" c (? F, n F and clearly A n F" _ 0 . Thus A is not

(fense in F . Since F E zT was arbitrary, A E ND( ) and (1) follows .

An important example is the following .

(2) Let E = R, and let z5 be the set of all non-empty open intervals in R, of the
form (a, b) with a,, b E R„ v ,- x, CO) . .It is well known and easy to see
that iT is an \ ~~„~-quasi filter . In this case A E Dense(q) if A is dense, in
some interval (a, b) E ei considered as art ordered set .

We remark here that .9 E Dense() does not in general imply that !A > \, for
an arbitrary \,-quasi filter i although this is the case in genuine applications . An
obvious sufficient condition for this is the following .

( :3) Let be an \,-quasi filter on E . Then A E Dense(j) implies that 1,41 > \,
provided g satisfies the condition : if B c E . 1B; < \„ F E -?~, then there is
P c F- B such that P E Y.

-Note that this condition is satified by the example given in (2) when \„ is regular .

In order to state our results in the language of the partition calculus we generalize
the ordinary partition symbol of P . ERDÖS and R . RADO (e . see [31) . For any
cardinal in, [El n ' _ ( X c F:: iX = 11t;,

Definition 3 . Let E be a set . y an ordinal number, r a positive integer and lei
N, c $([Et') (r' < Y) • The partition symbol
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means that the following statement is true : For every r-partition [E]' = U I, of
.<r

E of length y, there are X c [E]' and v < y such that X E 0, and X c I, . The nega-
tion of (4) is written as

E-t-(0, . .

	

,(,. . . .);< ., .
If 6ü, _ {[X]': X E zr,) for some ~, c '(E), then we shall replace the 63, in (4) by
a„ i .e . we write

This does not lead to any confusion since the entries 0, in the symbol (4) are sub-
sets of ?([E]'), whereas the , in (4') are subsets of $(E) and must therefore be
interpreted in the most natural way as a shorthand notation for the set ([X]' :
X E tm c ?([E]') .

In most cases statements of the form (4) or (4') depend not so much upon the
actual set E but rather upon the cardinality or order type of E . In such cases we
simply write (EI - . . . or tp E -> • - - in place of E -> - - . . Similarly, if ` , in (4')
is the set of all subsets of E of cardinality (or type) m, we simply replace the entry

in (4) by m, . In this way we regain the original partition symbol

m-.(mo, . . .,m„ . .) <y
introduced in [4] . We use one other special convention in this paper . If r = 2,
v < y, t` c $(E) and

0,={[M,N]:McEANE AMr.N=6nIMI =m),

then we replace the entry 03, in (4) by the symbol [m, ` ] . For example, the relation
(see (11))

77. i (7Ía, [m , 7Ía] 2
means: if [Ra]a = Lo U L l is any 2-partition of R a of length 2, then either (i) there
is a set X c Ra of type rla such that [X] 2 c r0 or (ü) there are sets M; N c Ra such
that IM I = m, tp N = rl a and [M, N] c Z1.

Most of the results of this paper depend for their proof upon the generalized
continuum hypothesis and when a formula or statement depends upon this hypo-
thesis we prefix it by GCH . For example,

(5)

	

(GCH)

	

IRai -_- _7 2 1 '' = 2" _ t~s+i

The main result proved in [3] is that
(6)

	

If a = cf(a) > P and NY < ha holds for all y < a and m < R # and if
2sa = N,+,, they.

(7Ía, N f )2 .
In particular, this gives

( 7 )

	

(GCH)

	

7Í a T.1 ~ (17a+I, N'ft.,)) 2 '
7 Hausdorff-Gedenkband
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Using the concepts defined above, (5) can bee generalized to the following :

(8)

	

Let i be an \ a -quresi filter on E, 1zp i < .r, . If = ef(a) > ~ and \i < r a

holds for every y < x and m < a d , then

E -. (Dense( ), tide .

Also, corresponding to the simpler form (7), we have

(9)

	

(GCH) Let z; be an vd+i -quasi filter on E . Assume that ~

	

< ~d . i . Then

E- (Dense( ?-

We do not give the proof of (8) since this can be literally translated from [3] re-
placing the intervals of R. by elements of Zv . However, it seems worthwhile men-
tioning these results in the more general setting in view of the possible applications
we mention in § 4 .

We shall prove in § 3 the following theorem .

(10)

	

(GGH)

	

Let ~5 be an N.-quasi filter on. E and suppose that J! <_ Na ,

E --* (Dense(` ), [in, Dense( )]) 2 .

Since every dense subset of R a contains a set of type rl a (see (21)) as a corollary
of (10) we obtain .

(11)

	

(GCH)

	

If m± < R, = h ef(a) , then

rl, --r (n ., [ m, 77 .1) 2

We mention that, as a corollary of Theorem 17 of [2], we know that

(12)

	

(GCH)

	

N« i + ('R -+" [ a, fit, +l ]) 2

This shows that the condition m+ < ZZ . in (10) and (11) cannot be replaced by the
weaker condition m < R. and, in this sense, these results are best possible.

In contrast to (12) we shall prove

(13)

	

(GCH)

	

Let z be an tI 3+i-quasi filter on E,

	

< Np, j . Then

E -* (Dense(), [ttp N,6]) 2 .

And from this follows

(14)

	

(GCH)

	

rh+i _+ (rh~-i, [NO, ti t,])2

Note that for regular Np (14) is already implied by (6) and so the result is of interest
only when N O is singular. We do not know if (14) can be strengthened by replacing
[his , Dip] by 7lp ] . We could not settle even the simplest problem of this kind
whether or not

( 1 )

	

rh - (rlv [ o, r]oi) E
We remark that zü 4- (Ih, rlo) 2 follows from the trivial relation r l -1 . (CO, w*) ([4],
Theorem 19) .
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In addition to the general results (10) and (13) we state some further results and
problems involving r7, for singular ", . It is easy to see that

(15)

	

ttw -}. (" 1 > [ 1, %,,,1
j2

by considering the graph (S, E), where S is the union of disjoint sets S n (n < (0),

ISn1 = tv,,, and E = U [S„]" An independent set can meet each S n in at most one.
n<w

point and no point has valency

	

It follows from (15) that (11) is invalid for
singular ". . However, the following result holds for any limit cardinal \, .

(16)

	

(GCH)

	

If nt <

	

< a, n = 14 + 1, then

,7a , (qn , [m> 77x]) 2

We do not know if (16) is true or false when m

	

The simplest problem of
this kind is to decide whether or not the relation

( ?)

	

77 . - (77m, ["o, 270]) 2

holds. We do not even know if the relation

( ?)

	

17 . --s 07 ., ["o, "0]) 2

holds. On the other hand, it is easy to prove that

"m -- (N., ["A "k]) 2

	

(k < w) •
It was asked in [3] if

We observed that if Ck denotes the class of all circuits of length k, then (16) implies
that

(GCH)

	

27m - (71W, 02 k) 2

holds for every k < w . However, we do not know if

( ?)

	

17. , (r7m, C2k-¢1) 2

holds for any fixed k < w . (A graph on R. which has no independent set of type rl-
is not 2-chromatic and does therefore contain odd circuits . The question is whether
such a graph necessarily contains an odd circuit of fixed size .) Let P', P'-'
denote, respectively, the classes of 1-way and 2-way infinite paths in a graph . We
mention that (7) and (16) easily imply that

(GCH)

	

77. - (~a, P"')

	

if cf(a) > 0 ,

but we are unable to decide if

In § 2 we discuss special properties of the sets Ra and of general 27,-sets . In § 3
we give the proofs of (10), (13) and (16) and in § 4 we state corollaries of (8), (10) and
(13) for Z:asaturated models which are analogous to the respective corollaries (7),
(11), (14) for ??,-sets .

7 •
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2 . Special Properties of R. and of -Yt,-sets

If A, B are subsets of the ordered set (S. <), we write A < B if a < b holds for alf
a E A and b E B . We denote by I(S) the set of all non-empty intervals of S having
the forms

(a, b) = {xcS :a<x<b),

	

S=(-Co,oo),

(a, oo) _ {x E S: a < x) ,

	

(- oo, a) _ {x E S : x < a}

where a, b E S. When we say X is an interval of S we specifically mean that
X E I(S) . The order type of S is denoted by tp S and tp S > 0 means -that there is
a subset T of S having order type 0 .

HAUSDORFF [8] called an ordered set (S, <) an -qt -set if it has property P a : when-
ever A, B c S, .A < B and IA 1, JBj < via, theta there is x E S such that A < (x) < B .
It is well known that (e .g . [5])

(17)

	

(i) If (S, <) is an n .-set, then S is N.-universal, i .e . tp S > 0 whenever

(ü) If N. is regular then R, is an 21,-set and if (5) holds then every ) ,I .-set
contains a subset similar to R a .

It follows from (17) that R, is N,-universal for regular tt, . In fact, R, is N;
universal even if Nis singular (see [5] and especially [9]) .

We now give two further definitions . Our Definition 5 is motivated by the con-
cept of an $t ; saturated model (see [10] and [11]) and the correlation between these
two concepts will be explained in § 4 .

Definition 4. A family of sets, ` , has the finite intersection property (f.i .p .)
if n ` ' T 0 for any finite subfamily ' c .

Definition 5. The family is N. saturated if n !~' + 0 whenever ~' c ` ,
g'j < R. and a' has the finite intersection property.

The following are two simple consequences of the definitions .

(18)

	

The ordered set (S, <) has property P„ iff S is densely ordered and I(S) is
tt,-saturated .

(19)

	

If (S, <) has property Pa , then I(S) is an N .-quasi filter .

We remark that the converse of (19) is not true even if we assume that S is den-
sely ordered. For example, if tp S -- rlz eo + % w*, then S is densely ordered and
I(S) is an L%Za-quasi filter, but I(S) is not $,-saturated .

In order to apply (10) and (13) to r,;sets and the sets R, we now establish the
following .

(20)

	

If (S, <) is an ??,-set and A E Dense(I(S)), then A contains an q .-set.
(21)

	

If A E Dense (I(R,)), then tp A > q, .
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Proof of (20) . Suppose A is dense in the interval X = (a . b) of S. Let A', B'
A n Y 4' <- B', 1 3' B'

	

\,. Since S has property P, there are a', b' E S
such that

A' a 'a} < {á) < {b'j < B' v - {b} .

Since A is dense in X, it follows that there is x E A n X n (a' . b') and hence
A' < ; x ; < B' . Thus -1 n X is an q .-set .

(21) follows from (20) and (17) (ü) in the ease «•hen \, is regular. If \, is singular
then P, implies P,-,,, i . e . every q,-set is also an Yj, . ,-set . Considering that R,
is not an ri, r -set (because tp Ii, I the above argument fails for singular
\,. The following proof is quite general .

Proof of (21) . By a result of HARZHEIM [71, ,),)x = ri, . Suppose A is dense in the
interval X of R, . Since tp X = rl„ it follows by Hs HARZHEIM'Stheorem that X
contains disjoint intervals I2 (x E R,) such that IT < I, holds whenever x < y .
(21) follows since A n I 2 + 0 (x c R,) .

3 . Proofs of (1U), (13) and (16)

We shall begin by establishing a number of statements which depend upon some
or all of the following hypotheses :

(22) (a.) GCH.
(b) t is an \f(,)-quasi filter on E, ( ~ S R a .
(c) [E] 2 = Zu u `!ZI is a 2-partition of E such that [A]2 4Z. whenever A

E Dense() .

If x E E, and i < 2 we write ;Z,i(x) _ {y E E : (x, y) E Xs) . Also, for X c E, we
define Z,(X) = O Zi (x) .

2EX

(23)	Suppose that (22) (b), (e) hold and that C C F E . Then there are A c C,
F'cFsuch tWAnF'=O.IA(<~Z„F'E and CnF'CU r{x) .

zsx
Proof. By (22) (b) there is a sequence F, (v < w,) containing all the sets F" E

such that F" c F . We can assume that Fo = F. Suppose that (23) is false . Then
we define a sequence a, E C (v < co,) by transfinite induction as follows . Let
V <_ w, and suppose that a,, is already defined for y < v . Put A, _ {aµ : p < v) .
1f A, n F, -A 0, put a, = a,„ where y is the least index such that a, , E A, n F,. IC
on the other hand, A, n F,= 0 then by our assumption and the fact that 1A,,I < a,,
it follows that there is a, E F, n C - U Z,(a,) . This defines .4 = ( a, : v < w,) .

v< •
13y the construction [A) 2 c Z, and -4 is dense in F . This contradicts (22) (c) .
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Proof. Let q be the initial ordinal of cardinality m . We define d, and F, by
transfinite induction for v < q) . Assume that v < (p and that A F„ FF, have been
defined for y < v and suppose also that F ; F, D F, D . . . D FF, D • • By (22) (b)
there is F" c

n
F. n F. F" E . Then by (23) there are .i, c C. F, c F" so that

A, n F, = 0, IA,! <'Z, . F, E - and

A, n Z,(x) $ 0

	

(x E F, n C) .

Then F FO D F, (p < v) and the sets A, and F, are defined for every v < q .
Since 99 < (o f( ,) , the set A = U A, has cardinality IA 1 < N, and A c C . Also, by

<m
(22) kb) there is F'E' such that F' c n F, . The sets A, (v < q) are disjoint since

A, n F, = 0 and F, D A, (v < v' < q) . It follows that

ÍA n Z,,(x) Í ? IT Í = m

	

(x E F' n C) .

(25)

	

(GCH) Let IXÍ = ,t p < t~„ m* < N.. Suppose further that

(26)

	

if P + 1 = a, in = N., then cf(y) $ cf(fi) .

Then there is a set U m(X) c [X]1 such that ÍÚ,,,(X)Í < \ and is such that
whenever Y E [X]m, then Y) Z for some Z f Um(X) .

Remark. If (26) is false, i .e . if P + I = a, 1n = N. and cf(y) = cf(i4), then it is
easy to show that there is no set U,(X) having the above property unless ÍU.(X)I

Proof of (25) . If P + 1 < n, we simply put U,,,(_) _ [X]' sInce GCH implies
that IU.(X)I S Nm < N, .

40

Now assume that + I = a . Then 111 < tis . There are sets X, (v < cop,31 = P)
such that ÍX,Í < Np and X = U X, . Pat

U.(X) _ U U XF,I n .
, <e Ft< •

By GCH, ÍU.(X)] < Ng < N, The set U(X) has the required property since it
follows from (26) that every set Y E [X]'n contains a subset of cardinal m which is
non-cofinal with X .

Finally we prove :
(27)

	

Suppose (22) (a), (b), (c) hold. Let C c F E and suppose that m
1n} < N, and that (26) holds. Then there are A c C and F' C F such that
ÍAÍ<~t,,F'Eip,AnF'-0a.YtdCnF'c U (Z,(B) :BEU,n(A)) .

102 P . ERDÖS, A• HAJNAL and E . C . MILNER

(24) Suppose that (22)(b) acid (c) hold, m < ,yF C C F E Zp . Then. there are
A C C, F' c F such that A n F' = 0 . ;-A'
for all x E F' A C .

< r,,, F' E 5 and A n ,(x) ; > m
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Proof. By (24) there are A c C, F' c F such that A n F' = 0, ',A! < ti„ F' E z5
and A n Z1(x)'i > III (x E F' n C) . U,,,(A) exists by (25) and the result follows
since for each element x E F' there is some B E U,,,(_-1) such that A n Z,(x) ) B, i .e .
such that x E Z1(B) .

We now give proofs of the main results (10), (16) and (13) .
Proof of (10) . From the hypothesis of (10) we have m` < r J~,i = \„ and

both (22) (a) and (b) hold . We shall assume that (22) (c) also holds and deduce that
there are sets B E [E]" and C E Dense(S) such that [B, C] c `1 .

If a is a limit ordinal, then (26) holds vacuously . Suppose that t = + 1 . The
condition ilt < \, implies that nt < N' ~ . Consequently, if \~ is regular then (26)
holds . Finally, if N~ is singular we can assume (if necessary by replacing the cardinall
in, which appears in the statement of (10), by some larger cardinal that m is
regular and N,.J1~I < m < r~ . Therefore, we can assume that (26) holds .

Let C = F E '-i~ and let A, F' be the sets described in (27) . Then C n F' = F'
c Dense(Zv) . By (25) we have that 1Um(A)i < Vii, and therefore, by (1) and (27),
21(B) E DenseO for some B E U, (A) . This proves the result since [B . Z,(B)] c Zl
by the definition of Z1(B) .

Proof' of (16) : From the hypothesis that a is a limit ordinal and m <

	

it
follows that tut+ < i\,. Also, in this case (26) holds vacuously .

Put E = Ii„ ~ = I(R,) . (22) (a) holds by assumption and (22) (b) follows from
(2) . We can suppose that (22) (c,) holds .

Let C = F R, and let A, F' _ (a, b) be the sets satisfying the requirements of
(27) . Since tp F' _ n, and), < a, it follows from (21) that there is R c F' such that
tp R = via. We can assume that IR I _ ; j JA I+ and that t~x is regular . By (25),
we have jU,,,(A)j < \A . Therefore, since Rc U {`1(B)..BE U,,,(A)), it follows
from (1) and (21) that there is B E U .(A) such that tp ( ,(B) n R) > ?1A. This
completes the proof since [B, Z1(B)] c %Z1 •

To prove (13) we shall use the so-called ramification argument described in
lemma 1 of [2] . If v = (vo	V" . . . )~ < a is a sequence of length or, then (v, vQ)
denotes the extended sequence (vo	P.) of length o -}- I and (v j r) denotes
the restricted sequence (vo, . . . , Vµ. . . . )N,, of length -r (< or) .

Proof of (13). Put a = ji 4- 1 . We want to show that, if ~ is an \,-quasi filter
on E such that I ! < \, . then (assuming GCH)

(2S)

	

E

	

~Dense(zp), [\~, t`i~]~2
if \O is regular this already follows from (9) and so we can assume that fl > ef(f ) .
13y assumption (22)(x), (b) hold and we can suppose that (22) (c) also holds . We
then have to show that there are C, D E [E] 'O such that C n D = 0 and [C, D] C A1 .

We build up a ramification system of length e = tocpd) in the following way .
First we choose regular cardinals m„ (a < g) such that

`IefW)<III) <nil< . . . ~ttia< . . .<NO= Sm
o<Q
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For a < o. let Ne = ( v : v = (v a , . . . , v,, . . .) z <_ ~, v, < o->~ (-r < (;) ) . We shall define
sets

Fa , S'(v), 4(v)	for v E Na and (

	

,,

and also sets

FQ -- 1 , S(v), B(v)

	

for v E N,, . ; 1 and Q < " .

Let 0 < v < o and suppose that we have already defined Fr . S'(v), -3(v) for v íá' z

We first define

S'(v)=EnnS(vPz+1)
T<a

for v E NQ note that if a = T + 1, this implies that S'(v) = S(v) by (33)) . By (22) (b)
and (29) there is Fá c n F, +. 1 , Fá E a. By GCH, JNQ j <_ ~p and so there is a

'+1<0
1-1 map T from No onto a section of (op . We define A(v) and F; for Y E Na by
induction on g(v) . Assume that T(v) _ ~ and that A(v'), F, • have been defined for
v' E N,, with q(v') < Z so that Fá F,a• ) F° • holds whenever (f (v') < q(v") < ~ .
By (22) (b) there is F' E such that

F'cP.n n F; .
c(+') < a

Applying (27) with P = F, C = S'(v) n F' : it follows that there are F, E t and
A(v) c S'(v) n P so that jA(v) j < \ a , F, n A(v) = 0 and

(35)

	

F, n S'(v) c U {Z1(B) : B E Uma(A(v)))

This defines A(v) and F, for all v E Na . Since the Fr (v E Na) form a decreasing!
sequence in , it follows by (22) (b) that there is F+,; _ 1 E such that

F,_ 1 c n F, .
'ESa

If IA(v)l < ma , then F, n S'(v) = 0 by (35) and in this case we define B(v, va )
0 (va < (og) . On the other hand, if JA(v) ? ma, then there is a sequence

(B(v,va)),a<a, which contains all the elements of UT (A(v)) . This defines B(v')

and Ft+1 , S(P), B(v) for v c N_, , when T

	

a. Suppose also that our definitions
are such that for T < r;

(29) F1)F2) . . . :~ F,T1 ,

(30) S'(v) n F,+, = U
r i < mp

S(v, v,) (v E N,)

(31) S(v) = F,+, n Z1(B(v» (v E ~~ -=1)

(32) F,+, = U S(v)
s E N

s+1

(33) S (v ~ µ + 1) S'(v) S(v, V,)

	

(u < i, v E NT) .

(34) B(v, v s) c A(v) c &(v), A(v) n FT., = 0

	

(v E NL, v= < c)fl ) .
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for v' _ , , . Now define

S(v, va ) _ S'(v) n F, -, n 1,(B(v, va))

	

(l v ''a)

	

~,;_ i]

By (3ü) and the definitions of Fa ., . 1 and S(v, v a), it folfows that ( :30) holds with
r = a . It is clear from our definitions that (29), (:31), ( :3 :3) and (34) hold with i = a .
and it remains for us to verify ( :32) . Let x cc F, 1 . Let z < a and suppose that we
have already defined vµ < w~ for $ < so that x c S(vo , . . . , v,) for y < x . Then
r E S'(v	vv . . . . )µ < x by the definition of this set . Therefore, since (30) hold
fin• z <_ a, there is v, < w a so that .z E S(ro , . . , v;,} . This defines v~ for x < a s~~
that x E S(v o , . . . , v a) and it follows that ( :32) holds for z = a .

Considering that there is, by (22)(b), P E ~?V such that P c (1 .~'af1 . it foilolti-
a<q

(just as in the proof of (32) above), that there 1s v E Xa such that

n S(vror+1)+ 0 -
a r, < p

For this v put Ba = B (v r a + 1) for a <!? . By (31) we have that Ba T 0 and
so JBa i = »1 a (a < o) . Also, if a < á < o, then it follows from (31) and the fact
that Bá c A (v j á t 1) c S' (v t ó + 1) c S (v T a + 1), that Ba, B,, are disjoint
and [Bo, B,,] c T, If we put

C= U Ba ,

	

D= U Ba ,
a<P

	

a<e
o even

	

a odd

then !Cj _ (D( _ N fl , C n D = 0 and [C, D] c T, . This proves (13) .

4. Examples of R,-quasi filters

in this section we shall give examples of sets A and 0 c $(A) having the property :

(36)

	

There is an $0,1-quasi filter j on A such that 11 < Npt1 and, far every
X E Dense(, then there is Y E 0 such that Y c X .

It follows from (9), (10) and (13) that, if GCH holds and 01 satisfies (36), then

A --> (WK~~~ 1 )2 >
A

	

((5, [in, Cá]) 2

	

(m < tZfi) ,
A

	

(W, [t~a, Ká]) 2

We shall first try to extend as far as possible the relations (7), (11), (14) (which are
the respective corollaries of the above formulae for 77 0+1-sets) to Z~Z,_, 1 -saturated
models .
The following definition is due to KEISLER [101 although we use a slightly dif-

ferent notation .
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Definition 6 . Let ?f = "A, R,j,~ be a relational system of type Ea and let
L(,u) be a first order logic with identity and ,a( ). )-any predicate symbols P, (A < o) .
Let F(µ) be the set of formulas of L(p) . If O(x o , . . . , x„) E F(p) is a formula with
n + 1 free variables and a 1	a„ E A, we put

E'1x(0, a,	a„) _ ( ao E A : 0"((ao , . . . , a„) is true} .

Let ` (2O _ {E"i((P, a,, . . . . a„) : 0 E F(p), 45 has n. + 1 free variables and a,	
a„ E A} . The relational system ~f is said to be \,-saturated if V(2O is \,-saturated .

We shall outline the proofs of the following two examples of sets A and C3
satisfying (36) .

(37)

	

Assurne GCH. Let 9f = ~A, R,>,~ be an \~_ 1 -saturated relational system,
19f1 = 1A I _ yd T1, 2 < w,, ;. 1 . Let Cj be the set of all sets X c A for which

there is A', X c A' c A, satisfying the following- three conditions :

(i) T = W [ A' is \,,-_ 1 saturated and 1$f i = A~+1

(ü) X n B T 0 for every infinite set B E

(m) (2(') j X = (X n B : B E Zy(nf')} is \d,4-saturated .

Then, A, ( satisfy (36) .

(38)

	

Suppose the sane hypothesis as in (37) holds . Suppose further that, for every
0 E F(y) with n +- 1 free variables and a„ . . . , a„ E A,

a,, . • , an) Q {a	a„} - IE. 1 (0, a„ . . , aa)I

	

\o .

Then A and 05' _ { X c A : 9f ; X is \A+1-saturated and has power \a+ 1 }
satisfy (36) .

We remark that the conclusion of (38) is the desirable analogue of the results for
q ,yT ,, but as H . J . KEISLER pointed out to us that there are \p +1-saturated rela-
tional systems for which the set @ defined in (37) satisfies (36) but the set 03'
defined in (38) does not . The additional condition of (38) is true e . g . if W = (A, <)
and < is a dense ordering of A .

Outline proof of (37). It is known. (e.g. [11]) that any two elementarily
equivalent \,1+1-saturated structures of power \d+1 are isomorphic. Let $$
_ <B, 5,), < e be isomorphie to 9f . By Theorem 2 .1 of [10], we can assume that
2f = $r/D, where III _ \# and D is an \s+l good ultra filter on .I (for the special
properties of D see [101) . Put o = (F c A!F = j7 Ft/D, where Ft E `~(fl (i E r))

iEr
Then ~, satisfies the following conditions (a),

( .1) For every F E tso, ?Y(9( I' F) C -,V0 .

(fl) If és c rtfo, lal < \ g and 5' has the finite intersection property, then there is
F E &S F +0 such that F c n Z ' . Also, if 1n I > \o for every finite
` " c Zr', then F can be chosen so that !Fi = \,i 1 ,
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Note that (cx) holds since . for every 0 E F(µ) (of n free variables) and every
fI , . . . . f„ E'21

	

F, eh'1 "t (fl , . . . ,fn) holds iff fi E I : 0~3 ' F, (fl(i)	f n (i)) I E D
and, for every i, ;5(ZS I' z ) c

	

On the other hand . (fl) follows by a standard
argument from Theorem ? .1 of [101 .

Now put, = t5o n [A]'`a+ 1 . It follows from (t3) that 1 = _ o n [Afz'°, and
that is an t,%,3 _,-quasi filter . Suppose X' E DenseO. We will show that there
is X c X' sueh that X E W. Since X' E Dense(a), there is A' E Z5 c a, such that

X' n B =- 0

	

for every B c A' . B E D .

We verify that conditions (i), (ü) and (iii) of (37) hold for X = X' n A' and A' .

(i) From (~) it follows that , is \ d +1-saturated and hence ((') (C o ) is also

\d}1-saturated. By the definition of ~, we have that IA's _

(ű) Suppose B E

	

jBI > \o . Then B E ZV, by (n) and, by ((3), IBí
i .e . B E

	

Therefore, X n B

	

0 by the definition of A' .

(iii) Let S~ C , (A') F X, J~~j < 'N g and suppose that S has the finite intersection
property. Then there is ' c a(T) c a, such that i < and ~_l = f X n B :
B E ` 5') . If there is a finite subset S)' c such that S)' j < \o , then trivially
n * + 0 by the finite intersection property . So we can assume that n 5)'j > \o
for every finite set 5~' c . Therefore, i n a ' i > \o for every finite set " c tr
and so, by (fl), there is B E such that B c (~

	

Since B c A', we have

0+XnBcXnn '=n .5) .

Outline proof of (38) . Let 93, 2(, , o , X, A' be as defined in the proof
of (37) . The additional assumption of (38) can be formulated so that for every
0EF(fc),m <to

(

	

n
Vx1 , . .Vx,~ 3xo(41 (x,, x,, . . .,x.)n Axo+xi

i=1
m

	

l
3 y (O(y . x1 , . . , xn) n n y + xi l

i=0

The same holds for $ and hence for every

	

[ Ft with Fi c ( ) since (`

	

Fi)
c (~3) . Since T = W ~ A' = n 93 [ F;JD, where F i E Zs( :i) (i E I), the same also

iEl
holds for T. Thus we have that

Er((P, a, . . . , a„) Q far,

	

, a„) = ~Esl((P, a,, -

	

a+á)1

	

'\o

for every a,, . . . , a„ E A' and 0 E F(y) . It follows from (37) (ü) that 21' is an ele-
mentary extension of Qf ; X. Therefore,

	

X)

	

X and hence, by (iii)
of (37), i?-([ X = 91' ( X is \~_1-saturated .

Finally, we mention one further simple instance of sets _-i, lj satisfying (36) .

(39)	Assume GCH . Let s be an A . 1-complete ideal in A generated by at most
\3+1 elements anal let 0 = $(A) - `5 . Then (36) holds .
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For let C be any set such that A q a and such that each set 1 E' is

contained in sonic 11

	

Then ;r = (A - II: H

	

is an \h __ t -quasi filter on
1, 1 ~ _ \g rt and X E Dense(a) iff l é v .

As a corollary of (39) we regain the following, known result of [1] .

(40) Assume GCH . Let R be the set of real.s and let Cit be the set of snbsets of R
having positive Lebesgue outer measure and let Ú be the set of subsets of R
of second category . Then (36) holds with ~ = 0, d = R and C?i =. (ij,
(i

	

- 1 .2) .
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