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FOR 0, AND FOR x,-SATURATED MODELS
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1. Introduction

We denote by R, the set of all 0, 1 sequences of length @, which have a final 1.
Le (1), cw, € B, if there is 6 < w, such that =, ¢ {0, 1} (» < 8), z; = 1.
r, =00 <v < w,). The order type of R, with the natural lexicographic order
is denoted by »,. The sets R, are the analogues of the ordered set of rationals to
higher cardinals. Their most important property is that they are universal em-
bedding sets for ordered sets of cardinal 8, and in § 2 we mention other basic
properties.

A graph is an ordered pair @ = (8, ¥) with E ¢ [S]* = {X ¢ S: [X] = 2}. The
elements of S are the poinis of G and the elements of ¥ are the edges. Aset X ¢ §
is independent if there are no edges in X, ie. [X)2 n B = 0. Y is a complete sub-
graph if [Y2CE and [M,N] = {{zr,y}:ze M AyecNnzy}is a complelr
bipartite subgraph of Gif [M, N]c E, M n N = 8. In [2]it was shown that if &,
is regular and & is any graph on R,, then either & contains an independent set of
type 7, or (in some sense) a large complete subgraph (see (6) below). In this paper
we establish analogous results which show that if G is any graph on R, then either
there is an independent set of type #, or there is (again in some sense) a large com-
plete bipartite graph. In fact we shall introduce some new concepts which enable
us to express our main results and the results of [3] in a more general setting.

As usual, P(E) denotes the power set of E.
Definition 1. ¥ is an N,-quasi filter on Eif 0 ¢ ;5 ¢ R(E), § =6 and whenever

FodFya---5F,3...(y<A) is a non-increasing sequence of length 1 < w, of
sets in §§, then there is F ¢ % such that F ¢ N F,.
vk

Definition 2. Let 3§ be an ¥, -quasi filter on & and let # ¢ §. A set 4 ¢ E =
dense in Fif 4 n F° =0 for every F* € F such that F* ¢ F.
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We elassify the subsets of £ as being dense or non-dense and write
Dense(F) = {4 ¢ £ 4 is dense in some £ £ ¥},
ND(F) = V&) — Dense(F) .
In'an obvious sense. the members of Denze(F) may be thought of as bheing “large’
subsets of K. We prove
i) If 3% is an R -quasi filter, then NINF) is an R, -complete proper ideal.
Proof. Tt is obvious that, it B ¢ 4 ¢ ND(F). then B e ND(F). Also. £« ND(F)
sinee [y =0,

Let ¢ < w, and suppose that 4, & ND(F) forv < ¢. Let 4 = | d4,. FeF We

rg
deiine a sequence F, € T by transfinite induction as follows. Let v < ¢ and suppose
that F, ¢ §§ is already defined for g < » so that F o Fyo.-- 3 F, >-... Thereis

F e % such that ' c N F,n F. Since A, e ND(F), there is F, £ 5% such that

F,cFand F,on d, =Fl§'This defines. F, € % for v <0 ¢ so that
FyFyd-dF, 5.,
There is F** € §§ such that ¢ ] F, n F and clearly 4 n F** = 8. Thus 4 is not
dense in F'. Since F ¢ § was :L;}:}:rary, A e ND(F) and (1) follows.
An important example is the following.

12) Let E = R, and let [ be the set of all non-empty open intervals in R, of the
form (@, b} with a,be B u { — oo, co}. [t is well known and easy to see
that % u an W g -quasi filter. In this case A € Dense(3) if A is dense in
some interval (a, b) € § considered as an ordered set.

We remark here that . € Dense(F) does not in general imply that |4 = X, for
an arbitrary X,-yuasi filter 3 although this is the case in genuine applications. An
obvious sufficient econdition for this is the following.

3) Let 55 be an R -quast filter on B. Then A € Dense(7y) implies that |4| = W,
provided 5§ satisfies the condition: if Bc E, |B) < R, F ¢ F, then there is
F ¢ F — B such that I’ ¢ %,

Note that this condition is satified by the example given in (2) when N is regular.

In order to state our results in the language of the partition calculus we generalize
rhe ordinary partition symbol of P. Erpos and R. Rapo (e.g. =ee [3]). For any
cardinal m, [E]" = {X ¢ B: 1X| = m).

Definition 3. Let £ be a set. y an ordinal number, r a positive integer and let
o, ¢ BIE]) (v < »). The partition symbol
4) B o vl
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means that the following statement is true: For every r-partition [E} = {J I, of

vy

E of length p, there are X ¢ [E) and » < » such that X ¢ &, and X ¢ J,. The nega-
tion of (1) is written as

Ed (G .®. .. Y,
If &, = {[X]: X ¢ &%, for some %, ¢ T’(E), then we shall replace the (3, in (4) by
By i-€. We write
‘r_r] E_“‘(%o!-'-l'%-r“'):d}"
This does not lead to any confusion since the entries (¥, in the symbol (1) are sub-
sets of SB([EY), whereas the §, in (4) are subsets of ‘B(E) and must therefore be

interpreted in the most natural way as a shorthand notation for the set {[X]":
X e, ¢ BUET).

In most cases statements of the form (4) or (4') depend not so much upon the
actual set E but rather upon the cardinality or order type of E. In such cases we
simply write |E| — . -. or tp £ -» - - . in place of £ — . . .. Similarly, if §, in (4')
is the set of all subsets of £ of cardinality (or type) m, we simply replace the entry
S, in (4) by m,. In this way we regain the original partition symbol

m— (Mg, .o, My ey
introduced in [4]. We use one other special convention in this paper. If r = 2,
v <y, & c B(F) and

G, ={[MN:McEANeFAMnN=0nA|M|=m},
then we replace the entry &, in (4) by the symbol [m, §§]. For example, the relation
(see (11))

N2 = (M0, [, 0077
means: if [R,]* = T, u T, is any 2-partition of R, of length 2, then either (i) there
is a set X ¢ R, of type 7, such that [X]? ¢ §, or (ii) there are sets M; N ¢ R, such
that | M| = m, tp N = », and [M, N] ¢ T,.

Most of the results of this paper depend for their proof upon the generalized
continuum hypothesis and when a formula or statement depends upon this hypo-
thesis we prefix it by GCH. For example,

(3) (GCH)  [B|= 3 2" =2%=R,,,.
r < wg

The main result proved in [3] is that
(6) If « = cfla) > B and N <N, holds for all y <a and m < W, and if
2%e = N_,,, then
/P e ('?a- Kﬁ}a .
In particular, this gives
(7) (GCH) Nat1 — (Masrs '\":e;{n))z-
7 Hausdort{-Gedenkband
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Using the concepts defined above, (5) can be generalized to the following:

(8) Let 5 be an N -quasi filter on E. 75| = N, I[f x = ¢f(x) > fand R < N,
holds for every y < x and m << Wy, then
E — (Dense({¥). ‘.\‘ﬂ)*.

Also, corresponding to the simpler form (7), we have

(9) (GCH)  Let 5% be an Ry, -quasi filter on B. Assume that [ = R, .. Then
E — (Dense(F), Roya)? -

We do not give the proof of (8) since this can be literally translated from [3] re-

placing the intervals of R, by elements of 5. However, it seems worthwhile men-

tioning these results in the more general setting in view of the possible applications
we mention in § 4.

We shall prove in § 3 the following theorem.
(10) (GCH) Let § be an W,-quasi filier on E and suppose that |F| = R,
mt < W, = W,,. Then
E — (Dense($), [m, Dense({)])? .

Since every dense subset of R, contains a set of type 7, (see (21)) as a corollary
of (10) we obtain:

(1)  (GCH)  If m* < R, = Ry, then
s = (M [M, 70)7 -
We mention that, as a corollary of Theorem 17 of [2], we know that
(12)  (GCH) Vo + (Rapp, [R,, R y])

This shows that the condition m* <{ ¥, in (10) and (i1) cannot be replaced by the
weaker cendition m < N, and, in this sense, these results are best possible.

In contrast to (12) we shall prove
(13) (GCH) Let 5 be an R -quasi filter on E, |5 < Rg.p. Then
E — (Dense(), [N, R))2.
And from this follows
(14) (GCH) 745 = (g1, [N, Rg])2.
Note that for regular N,, (14) is already implied by (6) and so the result is of interest
only when ¥, is singular. We do not know if (14) can be strengthened by replacing

[R5 W] by [Ny, ;). We could not settle even the simplest problem of this kind
whether or not

(9 T = (M [N, 70002 -

We remark that 5, + (n;, 77,)* follows from the trivial relation 7, 4 (w,, ©*) ([4],
Theorem 19).
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In addition to the general results (10) and (13) we state some further resnlts and
problems involving », for singular 8,. It is easy to see that

(15) R, (N, [1 ],

by considering the graph (8, E), where S is the union of disjoint sets S, (n < @),
|Su} = Ry, and E = 1) [S,]*. An independent set can meet each S, in at most one
new

point and no point has valency ¥ _. It follows from (15) that (11) is invalid for
singular ¥_. However, the following result holds for any limit cardinal ¥,.
(16) (GCH) Ifm < Ve, A <o, ==+ 1, then

Mo = (s [0, 72))% -
We do not know if (16) is true or false when m = N,). The simplest problem of
this kind is to decide whether or not the relation

() N~ (e [Ro: m6])?
holds. We do not even know if the relation
(B N> (e [N, Rp])?
holds. On the other hand, it is easy to prove that
Nm =K {Rﬂ! [bth RL])’ {k < 0)) -
It was asked in [3] if
() %o = 3)*.

We observed that if C; denotes the class of all circuits of length %, then (16) implies
that
{GCH) Na — {’}w’ 02 l')a

holds for every k¥ < w. However, we do not know if

(%) Nw > (oy Caz41)?

holds for any fixed k < . (A graph on R, which has no independent set of type 1,
is not 2-chromatic and does therefore contain odd circuits. The question is whether
such a graph necessarily contains an odd circuit of fixed size.) Let P%, P*>
denote, respectively, the classes of 1-way and 2-way infinite paths in a graph. We
mention that (7) and (16) easily imply that

(GCH) 7, = (a P™™) if cffa) >0,
but we are unable to decide if
( ?) '?a i [?fw Pm}s *

In § 2 we discuss special properties of the sets R, and of general 7 -sets. In §3
we give the proofs of (10), (13) and (16) and in § 4 we state corollaries of (8), (10) and
(13) for W -saturated models which are analogous to the respective corollaries (7),
(11), (14) for 7,-sets.

T
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2. Special Properties of R, and of n,-sets
If 4, B are subsets of the ordered set (S, <), we write d < B if « <7 b holds for all
ac.dandbeB.Wedenote by I(S) the set of all non-empty intervals of S having
the forms

(a,b) = {zecS:a<z<h}), S = (— oo, co),

(a, ) = {xeS:a <z}, (—o0,68)={ze8:x<a}
where @, b ¢ S. When we say X is an interval of § we specifically mean that
X ¢ I(S). The order type of § is denoted by tp S and tp § = 0 means that there is
a subset T' of § having order type 0.

Havusporyr [8] called an ordered set (5, <) an n,-set if it has property P,: when-
ever A, Bc 8, 4 < Band |A|, |B| <R, then there isz € Ssuchthat A < {x} < B.
It is well known that (e.g. [5])

(17) (i) If (8, <) i3 an n,-set, then S is W, -universal, i.e. tp 8 = 0 whenever
]9' é Nu‘
(i) If &, 18 regular then R, is an 1),-set and if (5) holds then every ,-set
contains a subset similar to R,.

It follows from (17) that R, is &, -universal for regular R_. In fact, B, is N,

universal even if i, is singular (see [5] and especially [9]).

We now give two further definitions. Qur Definition 5 is motivated by the con-
cept of an N, -saturated model (see [10] and [11]) and the correlation between these
two concepts will be explained in § 4.

Definition4. A family of sets, {5, has the finite interseciion property (f.i.p.)
if N §" =0 for any finite subfamily § ¢ F.

Definition 5. The family 5§ is W, -saturated if | § == 6 whenever § ¢ F.
1| < R, and §§ has the finite intersection property.

The following are two simple consequences of the definitions.
(18) The ordered set (8, <) has property P, iff 8 is densely ordered and 1(S) is

R, -saturated.

(19) If (8, <) has property P,, then I(S) is an R -quasi filter,

We remark that the converse of (19) is not true even if we assume that 9 is den-

sely ordered. For example, if tp § = 5, & + 7, wf, then § is densely ordered and
I(S) is an W,-quasi filter, but I(S) is not N,-saturated.

In order to apply (10) and (13) to 7,-sets and the sets R, we now establish the
following.
(20) If (8, <) is an 7,-set and A ¢ Dense(I(8)), then A contains an 1,-sel.
(21) If A € Dense(I(R))), then tp 4 = n,.
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Proof of (20). Suppose A is dense in the interval X = (a. b) of §. Let A, B
cd o X, 4 <7 B, IAY B < W, Since 8 has property P, there are a’, b e S
such that

A u sy < {0} < {U) < B uib}.
Since 4 s dense in X, it follows that there is 2 ¢ 4 n X n (¢, ") and hence
A" < {x} < B Thus 4 n X is an 5 -set.

(21) follows from (20) and (17) (ii) in the case when X, is regular. If R, is singular
then P, implies P, ., i.e. every n,-set is also an 7, ,-set. Considering that R,
is not an 1, . ;-set (because tp R, & o, .,), the above argument fails for singular
R,. The following proof is quite general.

Proof of (21). By a result of Harzuery (7], 4} = %,. Suppose A is dense in the
interval X of R,. Since tp X =, it follows by HarzaemM's theorem that X
contains disjoint intervals I, (x ¢ R,) such that I, < I, holds whenever z < y.
(21) follows since 4 n I, =0 (x € R)).

3. Proofs of (10), (13) and (16)

We shall begin by establishing a number of statements which depend upon some
or all of the following hypotheses:

(22) (a) GCH.
(b) ¥ is an N g,y-quasi filter on B, |F| < W,
(¢) [EP=%3,vg, is a 2-partition of K such that [4]2 ¢ T, whenever 4
€ Dense(§).

fxek, and 1 <2 we write Tr) = {ye E: {x,y) eT}. Also, for X ¢ E, we
define Ty X) = M Tz).
ze X
(23) Suppose that (22) (b), (c) hold and that C c F € F. Then there are A ¢ C,
F o F suchthat AnF' =8, |[4] < R, F' e Fand C n F ¢ | Tyz).
zeX

Proof. By (22) (b) there is a sequence ¥, (v < w,) containing all the sets ¥ ¢ §
such that F ¢ F. We can assume that Fy = F. Suppose that (23) is false. Then
we define a sequence a, € C (v < @,) by transfinite induction as follows. Let
v < @, and suppose that a, is already defined for g <{v. Put 4, = {a,: g << »}.
If A4, n F, 3 8, put a, = a,, where y is the least index such that a,c A, nF, If
on thc other hand, 4,n F, = then by our assumption and the fact that || 41X,
it follows that there isa,eF,nC— U Sl{a,,) This defines 4 = {a,:» < w }

By the consteuction [4)12 ¢ T, and 4 1== nh‘nsf in F. This contradiets (22)(c).
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(24) Suppose that (22)(b) and (¢) hold. m < W, € ¢ F ¢ {. Then there are
AcC F cFsuchthat A n F" =0, |4 < R, FeFand |[dnIz)=m
forallze F' n C.

Proof. Let ¢ be the initial ordinal of cardinality ni. We define 4, and F, by
transfinite induction for v < p. Assume that v < ¢ and that 4, F, have been
defined for g < v and suppose also that F > Fo> F,>--->F, 5. By (22)(b)
there is F” ¢ | F, n F. F" ¢ 5. Then by (23) there are A, ¢ €, F, ¢ F” so that

B
d,0F, =0 |4, <N, F eFand
A, nT,(x) =0 (xeF, n ().

Then F > F, > F, (u <) and the sets A, and F, are defined for every » < ¢.
Since ¢ < @), the set 4 = U A, has cardinality (4| < N, and 4 ¢ C. Also, by

(22) (b) there is F" € ¥ such ;:-}faq;; Fc N F, The sets A, (v < ¢) are disjoint since
AnF,=0and F,o A, (v <v < q-'},‘ <I1? follows that
M@z pl=m @cF o).
(25) (GCH) Let |X| = Wy < W, m* < W,. Suppose further that
(26) iff+1=ua,m=RWN, then cfly) & cf(f).

Then there 15 a set Uy (X) c [X]™ such that |U,(X)| << 8, and is such that
whenever ¥ ¢ [X]™, then ¥ > Z for some Z ¢ Uy(X).

Remark. If (26) is false, i.e. if f 4 1 =, m = N, and ¢f(y) = ¢f(f), then it is
easy to show that there is no set U,(X) having the above property unless [U (X}
=R,

Proofof (25). If f 4+ 1 < o, we simply put U (X) = [X]™ since GCH implies
that [Uy(X)| < N3 < N,

Now assume that f 4+ 1 = «. Then m - R;. There are sets X, (v < Wy = o)
such that |X,| < Nyand X = U X,. Put

L]

UaD) = U [UX,J".

rgip<y
By GCH, |Un(X)] = Ry < W,. The set U,(X) has the required property since it
follows from (26) that every set ¥ ¢ [X]" contains a subset of cardinal m which is
non-cofinal with X.

Finally we prove:

(27) Suppose (22) (a), (b), (¢) hold. Let C ¢ F € § and suppose that m < Ry,
m* < W, and that (26) kolds. Then there are A ¢ € and F’ ¢ F such that
(A <R, FeF AnF =0and CnF c U {TB): Be Uy(4)).
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Proof. By (24) there are 4 ¢ €, F" ¢ Fsuchthat A n F" =8, A < R, F' 3§
and A nZTz) = m(ze P n ). Uyld) exists by (25) and the result follows
since for each element o ¢ F* there is some B e U (4) such that 4 n T)(x) > B, i.e.
such that z ¢ T (B).

We now give proofs of the main results (10). (16} and (13).

Proof of (10). From the hypothesis of (10) we have m* <Z R, = N¥,, and
both (22)(a) and (b) hold. We shall assume that (22) (¢} also holds and deduce that
there are sets B e [E]™ and (' ¢ Dense(7¥) such that [B, €] ¢ T,

If a is a limit ordinal, then (26) holds vacuously. Suppose thatx = § + 1. The
condition m* < W, implies that m <7 W, Consequently. if ¥, is regular then (26)
holds. Finally, if 8;is singular we can assume (if necessary by replacing the cardinal
m, which appears in the statement of (10), by some larger cardina]] that m is
reg“]a.r and Nf'ﬂ.ﬁ) < m < ‘\“ﬂ" Therefore, we can assume that (26) holds.

Let C = F ¢ 75 and let A4, F’ be the sets deseribed in (27). Then € n F* = F~
€ Dense(F). By (25) we have that [Ugy(4) < R, and therefore, by (1) and (27),
T,(B) € Dense(§) for some B ¢ U, (4). This proves the result since [B, T,(B)] ¢ T,
by the definition of I ,(B).

Proof of (16). From the hypothesis that & is a limit ordinal and m < 8, it
follows that m+ < 8. Also, in this case (26) holds vacuously.

Put £ = R, T = I(R). (22) (a) holds by assumption and (22) (b) follows from
(2). We ean suppose that (22) (¢) holds.

Let C = F = R, and let A, F* = (a, b) be the sets satisfying the requiremencs of
(27). Since tp F* = 5, and 2 < «, it follows from (21) that there is B ¢ F” such that
tp R = 7,. We can assume that |R| = 8; > |4]* and that &, is regular. By (25),
we have |U,(d)| << N,. Therefore, since B¢ U {T,(B): Be Uy(4)}, it follows
from (1) and (21) that there is B € Uy(4) such that tp (3,(B) n R) = ;. This
completes the proof since [B, T,(B)] ¢ T;.

To prove (13) we shall use the so-called ramification argument described in
lemma 1 of [2). {9 = (v, ..., ¥, . . -)r <y 18 8 sequence of length g, then (v, %)
denotes the extended sequence (v,. ..., v,) of length ¢ + 1 and (» }1) denotes
the restricted sequence (vy, . . . , ¥, - . .), <, of length 7 (< 0).

Proofof(13). Putx = f# + 1. We want to show that, if 5 is an W, -quasi filter
on E such that [§§! = R, then (assuming GCH)

(28) E - ('l)t‘nso('}_‘(-}, (X, &3])2 .

If ¥, is regular this already follows from (8) and so we can assume that 8 > cf(f).
By assumption (22)(a), (b} hold and we can suppose that (22)(c) also holds. We
then have to show that there are €, D ¢ [E]* such that C n D= 8and [C, D] ¢ T,

We build up a ramification system of length ¢ = .y, in the following way.
First we choose regular cardinals m, (¢ <7 ¢) such that

Wy << Mg <y <o My Lo e < W= F 1M,
a<a
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Foro <o let N,= {viv = (Vg .. . ¥po - Dr e ¥e < walr <7 o)}, We shall define
sets

F,, S, d(») tor ve N, and o -7 0
and also sets

'Fo +11 S(V)r Bh’) for re ‘va-i 1 and o < L1
Let 0 = ¢ < o and suppose that we have alveady defined F,. S»), A(») for v £ NV,
and F,_,, 8(), B) for v ¢ N, when 1 <7 g. Suppose also that our definitions
are such that forr < &

{29) FioFy3 3 Frp,

{30) Sl(y} n FIJ.—I = U S("! vl} (" € ivr} 1
l,{mﬁ

@l)  S)=Foun5(B6)  @eN.y).
(32) Foa= U S0,

reNr
(33) S@tu+ 13808 r (<, ve N).
(34) By, v)c A@) c S(p), Ap)n Fy =8 (e N,» << wg).
We first define
S =EanNSiHiz+1)

T
for v € N, (note that if ¢ = v + 1, this implies that S'(v) = S(») by (33)). By (22) (b)
and (29) there is F,c N F,.q, F,¢§. By GCH, [N, | < N; and so there is a
4+l <o
1-1 map ¢ from N, onto a section of w;. We define A(y) and Fj for v ¢ N, by

induction on ¢(y). Assume that ¢(v) = & and that A(v'), F,» have been defined for
v € N, with ¢(») < & so that F,> F2 > F?. holds whenever q(") < q(") < é.
By (22) (b) there is F” ¢ § such that
FcF,n N F.
o) < §
Applying (27) with F* = F, C = 8'(») n F". it follows that there are F) e §§ and
A(v) ¢ S/(v) n F” so that [A(»)] < N, F7 n A(») = 8 and

(35)  Fon8W)c U {T(B): B Uy, (40)}.
This defines 4(y) and F¢ for all » ¢ N,. Since the FJ(r ¢ N,) form a dcereasing
sequence in §¥, it follows by (22) (b) that there is F_ ., ¢ {5 such that

F,oic N F2.

reNg
If |A(»)| < m,, then F? n 8'(v) = 8 by (35) and in this case we define B(y, %,)
=@ (v, < wg). On the other hand, if |A(y){ = m,, then there is a sequence
(B, %)),, < w; Which contains all the elements of Uy, (A(»)). This defines B()
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tor v = N, . Now define
S(r,vg) = W) n F, o T, (B, v,) (s 1) = Nia) -
Bv (35) and the definitions of £, and Str, p,), it follows that (30) holds with
T = g. Itis elear from our definitions that (29). (31), (33) and (34) hold witht = 5,
and it remains for us to verify (32). Letr¢ F,_,. Let » = g and suppose that we
have already detined », < wy for § < » so that x € S(vy, ..., v,) for g < . Then
re 8 (g oo, ¥y e by the definition of this set. Therefore, since (30) hold~
for = g, there is », < wy so that z € Sy, . ... »,). This defines », for # = o 50
that z € S(y,, . . ., »,) and it follows that (32) holds for t = ¢.
Considering that there is, by (22)(b), F* & 7§ such that F' ¢ N #,,,. it follow~
a<g
(just as in the proof of (32) above), that there 1s ¥ € N, such that
N Setot1) +6.
a+l<g
For this vy put B, = B(v } o + 1) fur ¢ < o. By (31) we have that B, =8 and
so |B,] = m, (0 < 0). Also, if & < ¢* < p, then it follows from (31) and the fact
that B cA@p o +1)c8 (o +1)c8(» o+ 1) that B, B, are disjoint
and [B,, B, c ;. If we put

C= U B,, D=UB,,
o< a0
a even o odd

then {C] = D] == Ry, € a D = B and [C, D] ¢ T,. This proves (13).

4. Examples of &,-quasi filters

Tn this section we shall give examples of sets 4 and & ¢ B(4) having the property:

(36) There is an Ry -quast filter § on A such that [§] < Wz, and, for every
X ¢ Dense(F), then there is ¥ ¢ & such that ¥ ¢ X.
It follows from (9), (10) and (13) that, if GCH holds and () satisfies (36), then
-4 = (@5; Nw)]s 1
A— (@j» [mr @])2 (Tﬂ < Nﬁ} s
A (19, [N, Rg])2.
We shall first try to extend as far as possible the relations (7), (11), (14) (which arc
the respective corollaries of the above formulae for 7, -sets) to ;. ;-saturated
models.

The following definition is due to KersLer [10] although we use a slightly dit-
ferent notation.
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Definition 6. Let % = (A, B>, -, be a relational system of type i and let
L(x) be a first order logic with identity and u{2)-ary predicate symbols P, (1 < 0).
Let F(u) be the set of formulas of Liu). If @(z,, . .., z4) € Fly) is a formula with
n + 1 free vaviables and a,. . . . . g, ¢ 4, we put

END, a,. . ... @) = {u, 2 A: PNay, ..., a,)is true} .

Let ) = {ENP, @, ....a,): @ e Flu), @ has n + 1 free variables and a,. . . .,
€ A}. The relational system I is said to be N -saturated if () is W -saturated,

We shall outline the proofs of the following two examples of sets 4 and ®&
satisfying (36).

(37) Assume GCH. Let A = (A, B3, -, be an W, \-saturated relational system,
9] = |4]| = N3y, 0 < wy.q. Let & be the set of all sets X ¢ A for which
there is 4°, X ¢ A° ¢ A, satisfying the following three conditions:

(i) W =9 A a2V, saturated and W] = W, ,;

(i) X n B =8 for every infinite set B e FAA);
(iii) FA) P X = {X n B: B FHUA)} is W, -saturated.
Then A, ® satisfy (36).

(38) Suppose the same hypothesis as in (37) holds. Suppose further that, for every
@ ¢ Flu) with n 4 1 free variables and ay, ..., 6, € 4,

E“((pr Oy e ne :aﬁ] q {ai‘ s :G»} s IE‘H((I’:{IIE e »an)i g &D o

Then A and & = {X ¢ A: A } X is Wy, -saturated and has power Wy, 1)
satisfy (36).

We remark that the conclusion of (38) is the desirable analogue of the results for
fjg+1, but as H. J. KEISLER pointed out to us that there are N, ,-saturated rela-
tional systems for which the set & defined in (37) satisfies (36) but the set &
defined in (38) does not. The additional condition of (38) is true e.g. W = (4, <O
and < i3 a dense ordering of A.

Outline proof of (37). Tt is known {e.g. [11]) that any two elementarily
equivalent N;,,-saturated structures of power W;., are isomorphic. Let B
= (B, S;>; <, be isomorphic to 9. By Theorem 2.1 of [10], we can assume that
A = B!/D, where [I| = Ny and D is an N, good ultra filter on I (for the special
properties of D see [10]). Put ¥, = {¥Fc A|F = J] F/D, where F < F(B) (i ¢ I)}

vel

Then §, satisfies the following conditions (x), (5).

(x} For every F e o T F) ¢ R,

(#) If §F ¢ oo [&F| = Ny and 5§ has the finite intersection property, then there is
FeFp F =0 such that Fcn . Also, if INF|= N, for every finite
§7 ¢ &, then F can be chosen so that [F| = N,
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Note that (x) holds since. for every @ = F(u) (of n free variables) and every
foovo fa€ P F, ONF(f, o fa) holds iff {ie Li @PIF(f(0), ..., fuli))} € D
and, for every . F(*B | F)) ¢ F(8). On the other hand. (§) follows by a standard
argument from Theorem 2.1 of [10].

Now put F = Fp n (4141 It follows from (8) that 5§ = F, n [4]=%, and
that i is an W, -quasi filter. Suppose X’ € Dense(5F). We will show that there
is X ¢ X" such that X ¢ (. Since X’ ¢ Dense(5F), there is 47 ¢ ¥ ¢ ¥, such that

X' nB:=0 forevery Bc 4", B 3.
We verify that conditions (i), (ii) and (iii} of (37) hold for X = X" n 4" and A",

(i) From (8) it follows that §§, is N, ,-saturated and hence F(H) (¢ F,) is also
W, -saturated. By the definition of . we have that |47 = N;.,.

(ii} Suppose B e FHIA'), |B| = V. Then Be F, by (x) and, by (8), (B, = N, ,,
i.e. Be . Therefore, X n B s @ by the definition of A"

(iii) Let ¢ FA) t X, 19| = N; and suppose that § has the finite intersection
property. Then there is § ¢ H(U) ¢ F, such that [F'| =N, and H = {X n B:
B¢ §'). If there is a finite subset ¢ § such that [ H| < W, then trivially
N $ ==0 by the finite intersection property. So we can assume that [ | = N,
for every finite sei © ¢ H. Therefore, | F7| = W, for every finite set " ¢ F
and so, by (), there is B € §§ such that B ¢ M| §". Since B ¢ A, we have

8F+XnBcXnNF=nNHo.
Outline proof of (38). Let B, U, F, Fo. X, 4" be as defined in the proof
of (37). The additional assumption of (38) can be formulated so that for every
A=Va .. .v:c,,(a %.(q’{%, Bpissnmog ) o/ N g -i=:ci)

i=1

is=0

=>3y(<f’(y.-rp---,xa)f\ ANy #xn))

The same holds for 8 and hence for every 8 |} F; with F; ¢ {(B) since F (B } Fy)
Cc G(B). Since A =AU} 4" = JIB | F,|D, where F; ¢ F(A) (i € I), the same also

iel
holds for 2[". Thus we have that
EW[@: Gyoevn s 0n) 0 {Qy, ..., B0} => IE‘]V((D, Ty v ey U‘rl)!_ = N
for every ay, ..., a.¢ A" and @ ¢ Flu). It follows from (37) (ii) that U’ is an ele-

mentary extension of 9 } X. Therefore, F(U* } X) ¢ F) } X and hence, by (iii)
of (37), A } X = A" | X is N, |-saturated.

Finally, we mention one further simple instance of sets 4, (& satisfying (36).

(39) Assume GCH. Let Q be an R, -complete ideal in A generated by at most
Wy g elements and let 6 = P(A) — . Then (36) holds.
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For let £ ¢ J be any set such that $] = N, ., and such that each set [ € J is
contained in some H ¢ 9. Then § = {4 — H: H e D} is an R, ;-quasi filter on
A, (% = Wy, and X £ Dense(F) iff X & 3.

As a corollary of (39) we regain the following known result of [1].

(40) Assume GCH. Let R be the set of reals and let (3 be the set of subsets of R
having positive Lebesgue outer measure and let &, be the set of subsets of R
of second category. Then (36) holds with § =0, 4 = R and & = (&,
(i=1,2).
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