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ON SOME APPLICATIONS OF GRAPH THEORY III
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In memory of Leo Moser, a friend and colleague

1 . In the first and second parts of this sequence we dealt with applications of
graph theory to distance distribution in certain sets in euclidean spaces, to potential
theory, to estimations of the transfinite diameter [1] and to value distribution of
"triangle functionals" (e.g. perimeter, area of triangles) [2] . The basic tool is
provided in all these applications by the result formulated as Lemma 2 . This, an
essentially pure logical result, proves to be a very flexible and versatile instrument
in applications .

Here the same method is used in an abstract setting . First we deduce certain
results for the density of a given family of subsets of an abstract set S in another
family of subsets of the same S. Then we apply the results obtained to distance
distribution in certain (e.g. totally bounded or compact) sets in metric spaces, in
particular in a normed linear function space. Applications of this method to func-
tionals on Hilbert spaces were given by Katona [3] .

2. Let S denote an infinite set and F an infinite family of its finite subsets satis-
fying

(2.1) F contains arbitrary large subsets

(2 .2) f c-F and flc f imply fi E F.

Let G be a given family of finite subsets of S . We shall be interested in the relative
density of G-subsets in F-subsets .

For fixed f c- F and fixed integer k we denote by L k(f, G) the number of sets
g c- G with I gI =k such that g-f. Then for fixed n, n >_ k we define

(2.3)

	

ln,k(F, G) = 1 inf Lk(f, G) .n feF
(k) lfl=n

The quantities l,1, k(F, G) are lower bounds for the density of G-subsets of
cardinality k in F-subsets of cardinality n . As we shall prove later, the following
result holds :

LEMMA 1 . For n >_ k

(2.4)

	

ln+1 , k(F, G) ? ln.k(F, G) .
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It follows thus from (2.4) that

(2.5)
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Ak(F, G) =def 11m 1,,,,(F, G)

exists for every fixed k. By (2.3) clearly 0<_ Ak(F, G) <_ 1 .

As an immediate consequence of the definitions and (2 .4) we obtain :

COROLLARY. If every subset fc F with If I= N contains a subset g E G (with
gI =k), then for n >_ N

1
(2.6)

	

In , k(F, G) >_ (k )
-1

In particular, VF, G) >_ (k )
Although (2.6), in general, is a weak lower bound for ln , k, in some cases it yields

nontrivial conclusions (see [2]) .
3. In case k=2 we can improve (2.6) substantially on using the graph theoretic

Lemma 2. In fact we shall show that in certain cases we can determine the best
possible lower bounds for ln, 2 and the exact values of AZ(F, G) .

Our main result for k=2 is the following :

THEOREM 1 . Suppose every subset f in F with If I =N+ 1 contains a pair g e G .
Then for n >_ N+ 1,

(3.1)

	

1, 2(F, G) > 1V n

In particular, AZ(F, G) > 1_ N

4. Applications . (i) Let S be a set, 0 and 0 functionals defined on all k-tuplets
in S. Let F consist of all finite subsets {xl , . . ., xn} of S for which

max

	

xjj
1slp5n

Let G consist of all those finite subsets {yl , . . ., ym} for which

min

	

(Yl,a . . ., y lk) < 0
lslfsm

with some fixed 0 < 0 < 1 .
If among any set of N points in S there is a k-tuplet such that the corresponding

value of ~ is _< 0, then among any set of n (> N) points there are at least

(.)/(
N
k )

k-tuplets whose corresponding 0-value is < 0 . Specializing this result we get Theorem
1 of [2] .
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(ü) Let K be a compact (and therefore totally bounded) set in a complete metric
space (X, p) . Let the sequence of positive numbers d,=di(K) (the "packing con-
stants ") be defined by

(4 .1)

	

d, = sup inf p(x, y), i = 2, 3, . . .
x-B x.yex
Ixl=i x#y

and the "critical indices" it (j=2, 3, . . .) by

(4 .2)

	

da = . . . dia > dia+ , = . . . = dia > . .

Observe that from the definition it follows that di+1 <di for all i and d,,+l=di,+i .
Because of the total boundedness of K, lim a-. d,=0 .

In order to apply our previous result, we choose all finite subsets ofK as F and
all pairs of points {P„ PS} in K for which p(P„ PS) < B (0 < B < d2 ) as G. Then we
have

THEOREM 2. For any finite subset f of K and arbitrary fixed B (0 < B< d2 ) let
L(f, B) denote the number ofpairs {PT , PS} in f satisfying p(P,., P,,)< 6. Let

(4.3)

	

ln(K, 6) = 1 inf L(f, B)(n' a
2) ffl=n

and let it be the integer so that

(4 .4)

	

di , +l <- B < d,, .

Then for n > it

(4 .5)

	

ln(K, B) > Í -n •
i

Moreover, inequality (4.5), in general, cannot be replaced by ln(K, B)>-(ij)-' .
If we define the "lower distance distribution" of K for 0 < 6 < d2 by

(4.6)

	

A(K, B) 2f lim ln(K, 0),
n- w

we have with the above used notation

THEOREM 3. IfK is a perfect, compact set in a complete metric space (X, p), then
for j=2, 3, . . .

1(4 .7)

	

A(K, B) = i,

	

di,+1 < 6 < d,, .
I f

Thus, A K, 6) is a right-continuous step function with jumps at B=d,,, j=3, 4, . . .

A particular case of Theorem 2 deserves special attention .

THEOREM 4 . Let X denote the set offunctions {x(t)} such that x(t) E C[0, 1],
x(0) = 0 and 1x(t l ) - x(t2 ) (< I t l - t2 l whenever 0 < tl < t2< 1 . Let the distance of any
two functions x, y in X be defined by the usual maximum norm 11x-y11 .
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Then for v=1, 2, . . . if n > 2 9 and x l , . . ., xn are any functions in X, the number
of distances 11 xt -xf 11 which are < 2/v is at least

n2 n
29-2 •

This estimate, in general, is best possible .
An illuminating interpretation of Theorem 4 is that the probability that randomly

chosen x, y e X satisfy jIx-yjj < 2/v is at least 1/(29-1) ( v=1, 2, . . .) .

5 . Proofs. We need the following :

LEMMA 2 [6] : Let P be a graph (with simple edges and no loops) having n vertices
and e edges. Let n = N • m + v, 0<_ v < N and suppose that

e > 2Nl (n2 - v 2) + ( 2)

Then r contains a complete subgraph of order N+ 1 .

In order to prove our Theorem 1, let fbe any fixed set in F with If I =n, n >- N+ 1 .
Denote the elements of f by xl , . . ., xn . Corresponding to f we define a graph on
the vertices P l , . . ., Pn as follows : The pair (Pi, Pj) should be an edge in P if and
only if the pair (xt , xf) is not in G. Then, by the assumption of Theorem 1, P cannot
contain a complete subgraph of order N+ 1 . Thus, by Lemma 2 the number of
edges a in P satisfies

(5.1)

	

e < 2N1 (n2 - 2)+ (2)

where n=N.m+v, 0<v<N. Returning to f, inequality (5 .1) implies that at least

(n) _ N-1 (n2 _V2 ) -
(v)2

	

2N

	

(2)

pairs {xs , xi} are members of G. In other words

(5.2)

	

L2(f, G) ? (2)

	

2NI
(n2-y2) (2)

Since as one easily calculates, the right-hand expression is

> 2 ( 1 n)

and f is an arbitrary set in F, (3.1) follows from (5 .2) .
Inequality (4.5) is a consequence of Theorem 1 . Namely, if 8 satisfies (4 .4), then

by the definition (4 . 1), among any set of i1 + 1 points in K there is a pair (P„ P3)
with distance p(P,, P$)< B . Hence the conditions of Theorem 1 are satisfied with
N= if .
Now let K be a perfect set and n = if • m (m an integer) . From the definition of the
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packing constants it follows that there exist points, say Q 1 , . . ., Q;, in K such that
p(Q„ Q$) > 8 for 1-< r < s :5 if. Since K is perfect, for each r, 1 :5 r < it there exist m
points in K, say Q,, 1, Qr . 2, • • •, Qr, m, "near" Q, so that p(Q,, p , Q,, q) > B when-
ever 1 <_ r < s _< ü, for all values of p, q. Hence in the set of n elements {Q,, r},

(1 <_ r < ü, 1 :5p :5 m), the number of distances <- B is not greater than if (2) . This
implies that

ln(K, B) <
n-1 < i

This completes the proof of Theorem 2 .
The proof of Theorem 3 follows from the above . Namely, since 1,,(K, 0) is an

increasing sequence, IJK, B) < I /if holds for all n > ij. Hence (4.7) follows from
(4.5) and (4.6).
Theorem 4 follows from (4.5) and a result of Newman and Raymon [5] (see also

[4]) . Namely, in our notation, it was shown in [5] that for the set X of Theorem 4,

2d2 y +1 = d2v+2 - . . . = d2v+i = v+ 1 , v = 0, 1, . . .

and thus i,=29-1 , v=1, 2, . . . .

Finally, we prove Lemma 1 . Suppose

(n+1) -1 (~
1.+ 1, k(F, G)

	

k

	

Lk(f*, G).

Let fí, .Í2, . . . f,+1 denote all subsets of f* with cardinality n . By (2.2), f C- F for
1 < 1 :5 n+ 1 . Now, if for some g e G we have gcf *, then gcf, will hold for n-k+ 1
of the f's . Hence

/

	

(n+1)-1

	

1

	

n+1 /~
1.+ 1,k(F, G) = k

	

n-k+1 , LkV{, G)

which by the definition (2 .3) of the Ln, k ' s is
-1

(n k
1)

n-k+l (k) (n +1)ln,k(F, G) = In, k(F, G).
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