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Denote by G(n; 1) a graph of 'n vertices and l edges . x(G) will denote the
( ,hromattc number of G . K,.(p,, . . ., p,) denotes the complete r-chromatic
graph with p i vertices of the i-th colour- where any two vertices of different
colour are joined . K,(p) is a graph consisting of p isolated vertices .
( ' : K,(p„ . . ., p,)) is obtained from G by adjoining a K_,(p ,, . . ., p,), and b join-
ing every new vertex to all the vertices of C . Clearly ;((G: K,(pv . . . . p,))=

(G) + r,f(n ; G) is the smallest integer so that every G,(n ; f(n; G)) con-
tains Gas a subgraph . The graphs G'()?,) =G'(n; f(n; G) - 1) which (lo not
contain G as a subgraph are called the extremal graphs belonging to G .

The vertices of G will be denoted by x, x,, . . ., y, . . ., the edges will be
denoted by (x, y) . The valence of a vertex x of G is the number of edges
incident to x . -r(G) denotes the number of vertices, v(G) the number of
edges of'G. If G' is graph and x„ . . ., x,,. are some of'the vortices of G' then
G'(x,, . . . . x,;) is the suhuraph 4 6" spanned by x,, . . ., x,; . C, c" . . . denote
absolute constants not necessarily the same if' they occur in different for-
nua1as .

In a previous paper [ 1 I 1 stated without proof that
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In the present paper I will prove that (1) is a special ease of ai wore general
theorem . A recent result of 8imr ovrrs and myself states 12) (x(G) = r)
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In this paper I will prove

Txr•.oiu : -r 1 . Lot %(G) = 2 . Then for n. > n„(1)
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First we deduce (l) from Theorem 1 . . A well known result of KőVÁR1

and the TURÁNS [5] states that

(3)

	

f(n ; K, (t, t)) < cn 2-1Jt .

Clearly K,(t, . . ., t) _ (K2 (t, t) : Kr_ z (t, . . .,t)) . Thus from Theorem 1 (G -
K2 (t, t)) we immediately obtain (1.) . (1) is probably best possible for ever, •
r- and t but -[ can prove this only for t < 3 .
Theorem 1 immediately implies that for n > n o(l)

(4 )

	

f(n ; K, (t, t, l, . . . , l)) - -nz (1 -	1	< c,(r - 1) n2-1 It + c, n. .
2

	

r - 1

where both c, and c 2 are independent of l . In fact perhaps for n > n„ (l,, 1 2 )

(5) f(n ;K,(t,t,l,, . . .,1,» - í(n ; K,(t,t,l2 , . . ., lz)) < en,

but I am very far from being able to prove (5) .
It seems likely that in contrast to (4) and (5)
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where ci - • and c, , cD as l -. o. The upper bound follows easily from
Theorem 1 and the known result
(6)

	

K2 (t, l) < ci n2-ilt .

((6) follows e .g. by the method of [5]), but I can not prove the lower bound .
By more complicated methods I can prove the following strengthening of

Theorem 1 .
THEOREM 2 . Let x(G) = r and put

f(n ; G) = n2 (1 - - 1_1 + h(n ; G) 1
2

	

r - 11
Let b = b(G) be sufficiently small . Then for n > n (,(G, b)

f(n ;(G :Ki([8n]))< 2 (1- 11r +c,h(n ;G)+c2n+
t
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Theorem 2 in particular implies (, (G) = 2)
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We do not prove Theorem 2 in this paper .
' By [2] h(~i. ; G) -- o(nz) .
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In a recent paper [3] 1 proved the following sharpening of (2) :

z
THEOREM A. Let l = (1 + 0(1))n

	

and assume that G(n ; l)
2

	

r - 1
does not contain a K,(t, . . ., t) as a subgraph . Then there is a

r-i
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K,---, (p,, . . . . pr-I),Z pi - n" pi = (1 + 0(1))	 , 2 = l, . . .
i=1

	

r - I

which differs from, our G(n ; l) by o(n 2 ) edges .
The principal tool in the proof of Theorem 1 will be

THEOREM 3 . Let G'(n) be any extremal graph belonging to G (x(G) _- r) .
Then the vertices a; I , . . ., x„ of our G'(n) can be partitioned into r - I classes

each containing (1 + o(l)) n
l
of the x i so that for every e > 0 all but cE

r- .
of the xi are joined to all but en of the x's which do not belong to the same clas .,
as xi .

Observe that Theorem 3 does not contain Theorem A, though the conclu-
sion of Theorem :3 is stronger its assumption is also more stringent .

To prove Theorem 3 we need a lemma which is of independent interest .

LEMMA. Let G'(n) be one of the extremal graphs belonging to G . Then every
1vertex of G'(n) has valence greater than (1 + o(1))n II - A

t

	

r-l)
Assume that the lemma is not true and let y be a vertex of G'(n) whose

valence is less than (1 - e)n l - l It easily follows from Theorem A

that for every k, if n > n„(k), G'(n) has k vertices x,, . . ., xk each of which

is joined to y t, . . ., ys , s = (I + o(I))n~I - - I ~ . The existence of these
r - 1

vertices is clear since by Theorem A all but o(n) vertices of the first colour
in K(p„ . . ., pr_,) are joined in our G'(n), to all but o(n) other vertices of
different colours . Delete now all the edges incident to y and replace them by
the edges (y, yi ), i = l	s. The new graph has more than GI (n; f(n; G))
edges and clearly can not contain G as a subgraph since if it would
contain G and if k would be greater than :c(G) then the subgraph
G'(x,, . . ., x i;, y,, . . ., yJ of G'(n) would also contain G as a subgraph,
which contradicts our assumption . This contradiction proves our lemma .

Not to complete the proof of Theorem 3 assume for the sake of simplicity
that r = 3 the case r > :3 can be settled similarly . Let

K2(pup2),PI+P2=n,pi=(l+o(l))

n

	

L -=- 1,2
2

be the graph (i) and let x,, . . ., x p ,, y„ . . ., yp, be the vertices of colour one
and two, respectively . -By Theorem A all but o(n2) of the edges (xi, y ) occur
in our G'(n) . By our Lemma we can further assume that the valence (in



least as many y's than x's and each y is joined with at least as many x's
than -y's (for if say x r is joined to more x's than y's we put it amongst the

,rd's) . Thus, each vertex is joined with at least (1 + 0(1))n vertices of the op-
4

posits colour .
Assume now that Theorem 3 is not true. ']'lien we can assume that for

lr fixed r > U and for every I• if n > n o(k) there are vertices

k„(F) each of which are joined to fewer than (1 - r)

	

y's. But then

I>y onr lentnur each x ;, i - L, . . ., k is joined to at least - n x's . I now shovv-
2

that this leads to a contradiction, since then our G'(-n) will contain G as a
a ih ; raph . i n factt for large enough k >

	

it contains a K.;(t, t, 1) which
cf course contains our G if t

	

sr(G) .
Applying t«ice the lemma on p . 185 of [4] it easily follows that if k > k, (t, t)

there are l x's say x l , . . ., x, and more than n n, y Ti(,, k, t) other
.i's and > I J n Y's say x„,, . . , x„ s ; y r , . . , Y" s > 11 n so that every x,,

l is joined to every x

	

i = 1, . . ., s and to every t

	

1 .
s . by Theorem A all but o(e 2 ) of the edges (x„ 1 , yj ) occur in G'(a),

belles h,\- the theorem of K6vA and the 7'e i~A Ts [5] there are vertices say
t- ,,, . . . , :~*,,, : y l , . . , y, so that all the edges (xu , yj ), 1 < i, j C t occur in
0 ' () f-) ]nit tiles clearly G '(x l	x,, x,,,, .

	

, x,,,, yl , .

	

, y,) contains a
KJ1, t . t) . Tills contradiction completes the proof of Theorem 3 .
'I'lreorcm I fóllows easily from Theorem 3 . Let G ,' _., be an cxtremal graph

;i it vertices with reslrect to (G' : K, ,(t	t)) . To prove Theorem l we
my have to ahmv

18)

	

t'( (; , .,) < -z- f l - - , - I + (1 -{- 0(1)) (r -- 1) / ~~	
n 	

I
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11 e now use Theorem 3. Let x r , . . ., x,, l G r ő be the exceptional vertices
of Gr_, whose existence is permitted by Theorem 3 . The other n -- l vcr-
íiccs of Gr , can by Theorem 3 be partitioned into r - I classes cacti of

which has p; _- (1 + 0(1)) ~r-- vertices and each of theseverticcs is joined
r - 1

to all Inrt ~ua vertices which belong to different classes . The graphs spanned
Ly. the ht \,t •rtices of the i-th class can not contain G as a subgraph, for if
ails statement would be false let y r , . . ., y, era = -r(G) be the vertices of the
i-th class which span a graph containing G as a subgraph . By what has been
just said the y t , i - 1, . . ., m, are joined to all but en vertices of the other
classes, and since each of these vertices arc again joined to all but en
vertices of the other classes we obtain by a simple but not quite short ar-
gument that for n > n ,) (r, t, l) our Gr_ 2 contains a (G : Kr _ ., (t, . . ., t)) which
contradicts our assumption .
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G'(n)) of all the x ; and yj is + 0(1,))
7Z
2 and that each x is joined with at
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Thus, the number of edges which join two vertices belonging to the same
class is less than

r- 1
(G)

	

~Í(p, ;G)C(1+°(1))(t•- 1) f
L [r

~a
1 1 ;G1 .

In (9) we used that if u I = (7 + o(l+t, then

(w)

	

Attl ; G) _ (1 + 0(1))í(u2 ; G) ,

the proof of (10) is easy and can be left to the reader .
The number of edges which join vertices belonging to different classes is

clearly not greater than

6 Graph
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The number of edges incident to the l < c E exceptional vertices is clearly
less than c,n,, hence (9) and (11) imply (8), which proves Theorem 1 .
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