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Denote by G(n; 1) a graph of » vertices and / edges. () will denote the
chromatic number of . K,(p,. ..., p,) denotes the complete r-chromatic
graph with p; vertices of the i-th colour where any two vertices of different
colour are ]nme(l K(p) is a graph consisting of p isolated vertices.
(G B Dy, iiw ))mobt unccllmm(xln adjoining a K (g)],.. . 1), and by join-
ing every nm\ vertex to all the vertices of G. Clearly ,(( (1 P p_,)):

((7) = r.f(n; (/) is the smallest integer so that every @ (n: f(n; (}')) con-
tains G as a su])gmph The graphs f“{ab] = @'(n; f(n: ) — 1) which do not
contain ¢ as a subgraph are called the extremal graphs belonging to @.

The vertices of & will be denoted by @, ay, ..., ¥, ..., the edges will be
denoted by (z, 7). The valence of a vort( x x of G is thu number of edges
incident to a. 7(¥) denotes the number of vertices, »(@¥) the number of
edges of G, If ' is o graph and a,, . . ., @, are some of the vertices of 77 then
@y, ... wy) s the subgraph of G spanned by x,, . . ., . ¢, ¢, . . . denote
absolute constants not necessarily the same if they occur in different for-
mulas.

In a previous paper [1] I stated without proof that

8 ; n? [ "
(1) fln; Kt, .., iJ) <= —)—l] — - —I—] + en?-lt,
2 r—
In the present paper 1 will prove that (1) is a special case of a more general
theorem. A recent result of Simoxovrrs and myself states [2] (#(() = r)
1
=) o,
1

=

(2) fons6) = -

b4

In this paper 1 will prove

THEOREM 1. Let +(G) = 2. Then for n = (i)

f(n: (G K (o)) < ’; |:1 ?-_IA'])_l_

4+ (1 4 o(1)) (r — l)fl[r j IJ: G} + e

(¢ independent of ¢!).
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First we deduce (1) from Theorem 1. A well known result of Kévairi
and the TurANs [5] states that

@) /(n 3 Kg(g, t}) < en?—1t

Clearly K. (¢, ..., t) = (.Kg(t, t) K, _,(t, .. .,.()). Thus from Theorem 1 (G —
Kt .f.)) we immediately obtain (1). (1) is probably best possible for every
r and 7 but I can prove this only for ¢ < 3.

Theorem 1 immediately implies that for n > n({)

(4) ]’(n;}{r(l,e,l. i ,E))—- 22 [l — ] <elr—1D)n>M4emn.

r—1
where both ¢, and ¢, are independent of /. In fact perhaps for n > n, ({,, /,)
(5) [T Kt s oo ) — fns Koty oo )| < om,

but I am very far from being able to prove (5).
It seems likely that in contrast to (4) and (5)

a2t = ‘f(n s K8 D) —— |1 —
|

< ¢/mA-1t
2 r—1

’ -
where ¢; -+ = and ¢/ —+ >0 as [ — o<. The upper bound follows easily from
Theorem 1 and the known result

(6) K,(t, 1) < efn?-it,

((6) follows e.g. by the method of [5]), but I can not prove the lower bound.
By more complicated methods I can prove the following strengthening of
Theorem 1.

THEOREM 2. Lel »(() — r and put

oy ()1
fn; G) 2[ s G

Let & = 8(() be sufficiently small. Then for n > n,(G, d)

= 1
J(n; (G Ky ([on])) <:2%{l =2 +ehn; G) +ceun.

Theorem 2 in particular implies (. (() = 2)

(036 Kmalty -t T0D) < 1—-L)+
r—1

S

+(1+ol))(r—1/f
We do not prove Theorem 2 in this paper.
"By [2] A{n; ) = o(n?).
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In a recent paper [3] I proved the following sharpening of (2):

n2 1
TurorEM A. Let | = (1 + o(l))—Z— [1 —— and assume that G{n; [)
¥y o—_
does not contain a K (t, . . ., t) as a subgraph. Then there is «
r—1
(1) K,a(pry oo s Praa)y D D=0 p; = (14 0(1)) T t=1,...,r—1
=1 r—

which differs from our ((n; 1) by o(n?) edges.
The principal tool in the proot of Theorem 1 will be

TuroreM 3. Let G'(n) be any extremal graph belonging to G (x(G) = r).
Then the vertices zq, . . ., ¥, of our G'(n) can be partitioned into r — 1, classes

each conlaining (l + 0(1)) ———of the a; so that for every & = 0 all but ¢,
r—1
of the x; are joined lo all but en of the x's which do not belong to the same class
s X,
Observe that Theorem 3 does not contain Theorem A, though the conclu-
sion of Theorem 3 is stronger its assumption is also more stringent.
To prove Theorem 3 we need a lemma which is of independent interest.

LEMMA. Let G°(n) be one of the extremal graphs belonging to (1. Then every
} 1

r—11

Assume that the lemmsa is not true and let y be a vertex of G'(n) whose
1

r—1
that for every £k, if n > n(k), @'(n) has k vertices x, . . ., z;, each of which

vertex of (I'(n) has valence greater than (1 +-o(1))n ll —

valence is less than (1 — &)n {] - l It easily follows from Theorem A

e 1 ; :
is joined toy, ... ¥y, s = (1 - n(l_))n 1— - . The existence of these
r —

vertices is clear since by Theorem A all but o(n) vertices of the first colour
in K(p,, ..., p,—,) are joined in our G'(n), to all but o(n) other vertices of
different colours. Delete now all the edges incident to y and replace them by
the edges (y, ), t = 1, . . ., s. The new graph has more than G (n; /(n; @))
edges and clearly can not contain ' as a subgraph since if it would
contain ¢ and if £ would be greater than =(G) then the subgraph
G'(wy, ooy Ty Yy - Ys) of GY(n) would also contain @ as a subgraph,
which contradicts our assumption. This contradiction proves our lemma.

Not to complete the proof of Theorem 3 assume for the sake of simplicity
that » = 3 the case » > 3 can be settled similarly. Let *

; n . .

Ko(pys 22 01+ Pa=mn, p; = (1+0(1)) —, i=1,2
be the graph (T)_:mc;l let oy, . o, Lois Yir o+ 52 Uy be t-hf; vertices of eolour one
and two, respectively. By Theorem A all but o(n?) of the edges (x;, y;) occur
in our G'(n). By our Lemma we can further assume that the valence (in
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(''(n)) of all the a; and y; is 2(], -+ 0(1]) %-a,ml that each x is joined with at

least as many #»’s than 2’s and each y is joined with at least as many «’s
than y’s (for if say @, is joined to more 2’s than y’s we put it amongst the

¥’s). Thus, each vertex is joined with at least (1 4 o(1)) ;l vertices of the op-

posite colour,
Assume now that Theorem 3 is not true. Then we can assume that for
a fixed # = 0 and for every L if n > n (k) there are vertices x,, ..., x;

: ; = : T _
k= kyle) each of which are joined to fewer than (1 — #)— y’s. But then
9

. . . - &
by our lemma eachay, @ =1, .. ., kis joined to at least — » 2’s. T now show
9
that this leads to a contradiction, since then our (r) will contain @ as a
stubgraph. in fact for large enough & = L (¢, 1) it contains a K44, ¢, () which

ol course contains our (¢ if z‘} :r{(:)
Applying twice the lemmaon p. 185 of [4]it casily follows that if £ > k()

there are [ 2's say @, ..., v, and more than o n, 5 = (e, k, #) other
o's and > 0 y's SAY Ty, oo Fyi Ypooee Yo 8 >0 S0 that every a,
b= Ay s ¥ AR |n|11<<1 to every Ly i =1, ..., s and to every y, 7 — 1,

5, B_\ T]‘i('(]?(.‘lll A all but o(s?) of the ed;._,t‘s: (2, y;) occur in G'(n),
hence by the theorem of KovArt and the TurAxs [5] there are vertices say
s, w3 :‘”‘ ¥p. - - . ¥y 8o that all the edges (2, y,), 1 <14, j < { occur in
(7'(n) but then clearly G'(ay, ..., &, @y, 0y Ty Yy - -, Yy) contains a
N.(t, (. t). This contradiction completes the pmuf of Theorem 3,

Theorem 1 follows casily from Theorem 3. Let (7], be an extremal graph
ol n vertices with respeet to (f.}" bl LR | - .")). To prove Theorem 1 we
onlv have to show

: n* 1 i
(8) WOy < — 1 ——— | (l +o(l) [[ ;(1] en .
2 r— 1 ¥
We now use Theorem 3. Let ay, . . ., x;, { < ¢, be the exceptional vertices
of () _, whose existence is permitted by Theorem 3. The other n — [ ver-
tices of 7, can by Theorem 3 be partitioned into » — 1 classes cach of

which has p; = (1 4 o(1)) B : vertices and each of these vertices is joined
to all but en vertices which belong to different classes. The graphs spanned
Ly the p, vertices of the i-th class can not contain @ as a subgraph, for if
this statement would be false let y,, . . ., ¥, m = a(() be the vertices of the
i-th class which span a graph containing & as a subgraph. By what has been
Just said the g, 2 = 1, .. ., m are joined to all but en vertices of the other
classes, and since each of these vertices are again joined to all but en
vertices of the other classes we obtain by a simple but not quite short ar-
gument that for n > n, (r,t, I) our G/_, contains a (0 s K, o . t)) which
contradicts our assumption.
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Thus, the number of edges which join two vertices belonging to the same
class is less than

() ,5%@5@<ﬂi+mnnr—nf[ % }G}

i=1 ¥ —4

In (9) we used that if u;, = (1 + (){1))3{2 then
(10) fluy; G) = (14 0(1)) fluy; G)

the proof of (10) is easy and can be left to the reader.
The number of edges which join vertices belonging to different classes is
clearly not greater than

(1) 3 s =i,

l<i<j<n 2 r—1)* N 2

The number of edges incident to the [ < ¢, exceptional vertices is clearly
less than e, hence (9) and (11) imply (8), which proves Theorem 1.
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